[go: up one dir, main page]

JPS5816205A - Optical waveguide for infrared ray - Google Patents

Optical waveguide for infrared ray

Info

Publication number
JPS5816205A
JPS5816205A JP56114489A JP11448981A JPS5816205A JP S5816205 A JPS5816205 A JP S5816205A JP 56114489 A JP56114489 A JP 56114489A JP 11448981 A JP11448981 A JP 11448981A JP S5816205 A JPS5816205 A JP S5816205A
Authority
JP
Japan
Prior art keywords
light guide
optical waveguide
light
guide unit
units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56114489A
Other languages
Japanese (ja)
Inventor
Kenji Kashima
鹿島 研司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56114489A priority Critical patent/JPS5816205A/en
Publication of JPS5816205A publication Critical patent/JPS5816205A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Laser Surgery Devices (AREA)
  • Laser Beam Processing (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To transmit infrared rays efficiently by working the intermal surface of the hollowd part of each optical waveguide unit made of a cylindrical hollow body into a specular surface, and successively araying plural optical waveguide units in the axial line direction of the optical waveguide units and thus obtaining flexibility. CONSTITUTION:The hollow part 2 of each optical waveguide 1 for infrared rays has specular surface 3 as its internal surface. A number of optical waveguide units are arrayed successively in the direction of the axial line 4, and this array is covered entirely with a sheath 5 made of a flexible material to constitute an optical waveguide. Further, optical waveguide units 31 and 31 which have similar sectional optical transmission hollow parts at right angles to the optical waveguide unit axial line 4 are manufactured and then arrayed so that the sectional area of the hollow part increases gradually toward a waveguide light emission part B, thus improving the optical transmission efficiency of the whole of the optical waveguide

Description

【発明の詳細な説明】 本発明は、可撓性を有し光透過損失の少ない赤外線用導
光路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an infrared light guide path that is flexible and has little light transmission loss.

従来から可撓性を有する導光路として使用されている石
英系オプティカルファイバーやプラスチック系オプティ
カルファイバーは、可視光域や近赤外光域に対する光透
過性に優れているが、赤外光域を吸収する特性を有する
ため、C02レーザー光線の発振波長(10,6μm)
を含む赤外光域に対しては使用不可能である。
Silica-based optical fibers and plastic-based optical fibers, which have traditionally been used as flexible light guides, have excellent light transmission in the visible and near-infrared light ranges, but they absorb in the infrared light range. The oscillation wavelength of the C02 laser beam (10.6 μm)
It cannot be used in the infrared light range including .

しかしながら、CO2レーザーは高出力連続波発振レー
ザーとして加工用、医学用(レーザーメス)等の分野で
近年その有用性が高まってきており、かようなC02レ
ーザー光のごとき赤外線を効率よく伝送できる可撓性導
光路の開発が望まれるところである。
However, in recent years, CO2 lasers have become increasingly useful as high-power continuous wave oscillation lasers in fields such as processing and medicine (laser scalpels), and it has become possible to efficiently transmit infrared rays such as CO2 laser light. The development of flexible light guides is desired.

赤外線を伝送する方法の1つとして、鏡を利用する多関
節法が提案されている。この方法に(2) よれば、適当な長さの多数の剛直な金属製パイプを回転
自在な関節で連結して関節部にて自由に曲折可能とし、
各関節部内部に鏡を配設することによってパイプ内を直
進してきた光は曲折した関節部においてパイプの曲折方
向に光を反射できろようになっている。しかしこの多関
節法においては、光軸調整の困難さ、熱膨張や振動によ
る光軸のずれの発生、操作性の悪さなどの問題点があり
、必ずしも満足すべきものとは七 圏えない。
As one method of transmitting infrared rays, a multi-joint method using mirrors has been proposed. According to this method (2), a large number of rigid metal pipes of appropriate length are connected by rotatable joints, and can be bent freely at the joints.
By arranging a mirror inside each joint, the light traveling straight through the pipe can be reflected in the bending direction of the pipe at the bent joint. However, this multi-joint method has problems such as difficulty in adjusting the optical axis, misalignment of the optical axis due to thermal expansion and vibration, and poor operability, and is not necessarily satisfactory.

そこで本発明は、赤外線を効率よく伝送することができ
、しかも優れた可撓性を有し、取り扱いが容易な導光路
を提供することを目的としてなされたものである。
SUMMARY OF THE INVENTION Therefore, the present invention has been made with the object of providing a light guide path that can efficiently transmit infrared rays, has excellent flexibility, and is easy to handle.

すなわち本発明は、筒状中空体からなる導光ユニットの
中空部内面を鏡面とし、この導光ユニットの軸線方向に
複数の導光ユニットを連続配列し、この導光ユニット配
列全体を可撓性外被で被覆してなることを特徴とする赤
外線用導光路である。
That is, in the present invention, the inner surface of the hollow part of a light guide unit made of a cylindrical hollow body is mirror-finished, a plurality of light guide units are continuously arranged in the axial direction of this light guide unit, and the entire light guide unit arrangement is made flexible. This is an infrared light guide path characterized by being covered with an outer cover.

(3) 以下、図面に示す実施例を参照して本発明をさらに説明
する。
(3) The present invention will be further described below with reference to embodiments shown in the drawings.

第1図〜第3図は、本発明の基本となる実施例を示すも
のであって、第1図には中空円筒パイプからなる1個の
導光ユニット1が図示されている。この導光ユニットの
中空部2の内面には鏡面3が形成されている。導光ユニ
ット1の材質としては、銅、アルミニウム、銀、金、鉄
等の金属あるいはこれらの合金等を使用することができ
る。導光ユニツ)Iの中空部内面に鏡面3を形成する方
法としては、金属製中空円筒パイプの内面を研摩して鏡
面とする方法、あるいは金属製中空円筒パイプの内面を
研摩したのち研摩面に蒸着、メッキなどによって金属反
射面を形成する方法等が採用できる。金属反射面を形成
する場合には、中空円筒パイプの材質と反射面の材質と
を異種の金属とすることもできる。
1 to 3 show a basic embodiment of the present invention, and FIG. 1 shows one light guide unit 1 made of a hollow cylindrical pipe. A mirror surface 3 is formed on the inner surface of the hollow portion 2 of this light guide unit. As the material of the light guide unit 1, metals such as copper, aluminum, silver, gold, iron, or alloys thereof can be used. The method of forming the mirror surface 3 on the inner surface of the hollow part of the light guide unit (I) is to polish the inner surface of a metal hollow cylindrical pipe to make it a mirror surface, or to polish the inner surface of the metal hollow cylindrical pipe and then to the polished surface. A method of forming a metal reflective surface by vapor deposition, plating, etc. can be adopted. When forming a metal reflective surface, the material of the hollow cylindrical pipe and the material of the reflective surface can be made of different metals.

第2図は、第1図に示しだ導光ユニット1をその軸線4
方向に多数連接配列し、この配列全(4) 体を柔軟材料からなる外被5で連続的に被覆して本発明
の導光路を組立てた状態を示している。
FIG. 2 shows the light guide unit 1 shown in FIG. 1 along its axis 4.
The light guide of the present invention is shown assembled by arranging a large number of light guides in a continuous manner in the direction and continuously covering the entire array (4) with an outer sheath 5 made of a flexible material.

゛ 外被6の柔軟材料としては、ポリエチレン、ポリプ
ロピレン、ブタジェン、イソプレンゴム、シリコーンゴ
ム、ポリテトラフルオライドなどの高分子物質や金属布
などが使用できる。第2図に示したように、個々につい
ては剛直な導光ユニットであるが、多数の導光ユニット
1,1がそれらの長手方向端面で互いに対向接触した状
態で柔軟な外被6内部に連続して配列された構造とする
ことによって、全体では屈曲自在な可撓性のある一連の
導光路が形成されることになる。
゛ As the flexible material for the outer cover 6, polymeric substances such as polyethylene, polypropylene, butadiene, isoprene rubber, silicone rubber, polytetrafluoride, metal cloth, etc. can be used. As shown in FIG. 2, each light guiding unit is rigid, but a large number of light guiding units 1, 1 are connected to each other inside the flexible outer cover 6 with their longitudinal end faces facing each other and in contact with each other. By arranging the light guides in such a structure, a series of flexible light guide paths that can be bent as a whole is formed.

第3図は、第2図の一連の導光路において、各導光ユニ
ット1が直線的に配列している状態の断面を示している
。導光路の光入射部Aから光伝送中空部2に入射した光
りは中空部内面の鏡面3で反射を繰り返しながら出射部
Bへ伝送され、ここから導光路外部へ出射される。
FIG. 3 shows a cross section of the light guide units 1 arranged linearly in the series of light guide paths shown in FIG. 2. Light entering the light transmission hollow part 2 from the light incidence part A of the light guide is transmitted to the output part B while being repeatedly reflected by the mirror surface 3 on the inner surface of the hollow part, and is emitted from there to the outside of the light guide.

第4図は、第3図の導光路が屈曲された状態を示してお
り、このような状態においても、入射部Aから入射しだ
光りは鏡面3により反射を繰り返し、出射部Bへと伝送
される。しかしながら導光ユニット1を第1図のごとき
中空円筒パイプとする限り、導光路屈曲部における隣り
合う導光ユニットの対向端面間には若干の空隙6(第4
図)が生じることは避けられず、また隣り合う導光ユニ
ットの軸線がずれる可能性もあり、これらはいずれも導
光路の光透過損失の原因となる。
FIG. 4 shows a state in which the light guide shown in FIG. 3 is bent. Even in this state, the light incident from the entrance part A is repeatedly reflected by the mirror surface 3 and transmitted to the exit part B. be done. However, as long as the light guide unit 1 is a hollow cylindrical pipe as shown in FIG.
(Figure) is unavoidable, and there is also a possibility that the axes of adjacent light guide units may deviate, both of which cause light transmission loss in the light guide path.

そこで第5図に示しだように、導光ユニット11の光入
射部側端面および光出射部側端面をそれぞれ凹型テーパ
ー面12および凸型テーパー面13とし、かような導光
ユニット11を順次連接することによって、導光路屈曲
部における隣り合う導光ユニットの対向端面間に生ずる
空隙の間隔をできるだけ小さくでき、さらには隣り合う
導光ユニットの軸線のずれ発生を防止することができる
Therefore, as shown in FIG. 5, the end face on the light incidence part side and the end face on the light output part side of the light guide unit 11 are made into a concave tapered surface 12 and a convex tapered surface 13, respectively, and such light guide units 11 are successively connected. By doing so, it is possible to minimize the gap between the opposing end surfaces of adjacent light guide units in the bent portion of the light guide path, and furthermore, it is possible to prevent the axes of adjacent light guide units from being misaligned.

この場合、テーパー面12.13の頂角は、入射部側1
8よりも出射部側1念の方を鋭角とすることが望ましく
、これによって第6図に示したように1つの導光ユニッ
ト11の出射部側凸型テーパー而13を別の導光ユニッ
ト11の入射部側凹型テーパー而12に順次嵌合させて
、回転、屈曲自在に配列することができる。
In this case, the apex angle of the tapered surface 12.13 is
It is desirable to make the exit part side 1 angle more acute than the exit part side 1 angle than the exit part side 1 angle, and thereby, as shown in FIG. By sequentially fitting into the concave taper 12 on the incident side side, it is possible to arrange them so as to be rotatable and bendable.

第1図および第5図に示した導光ユニットの光伝送中空
部2はいずれも、導光ユニット軸線今に対して垂直な断
面の中空部形状が円形であるが、円形以外にも任意の多
角形とすることができる。例えば、第7図に示した導光
ユニット21のように、光伝送中空部22の断面形状を
偏平な長方形とした場合には、直線偏光を伝送すること
ができろ。
The light transmission hollow part 2 of the light guiding unit shown in FIGS. Can be polygonal. For example, when the cross-sectional shape of the light transmission hollow part 22 is a flat rectangle like the light guide unit 21 shown in FIG. 7, linearly polarized light can be transmitted.

さらには第8図に示しだように、導光ユニット軸線4に
対して垂直な断面の光伝送中空部形状が相似形の導光ユ
ニッ)31.31を製作し、導光路出射部Bに近くなる
程中空部断面積が大きくなるように導光ユニットを配列
することによって、導光路全体としての光伝送効率を向
上させることができる。
Furthermore, as shown in FIG. 8, a light guide unit (31, 31) having a similar shape of the light transmission hollow section in the cross section perpendicular to the light guide unit axis 4 is manufactured, and a light guide unit (31, 31) is manufactured near the light guide exit part B. By arranging the light guide units so that the cross-sectional area of the hollow portion becomes large, it is possible to improve the light transmission efficiency of the light guide as a whole.

上記したいずれの実施例においても、導光路を用いて光
伝送を行なうに際しては、通常、光伝送中空部にN2.
Arなどの不活性気体を光入射部より流入して、光伝送
中空部内面の冷却や塵埃の付着防止を行なう。
In any of the embodiments described above, when performing optical transmission using a light guide path, the optical transmission hollow section is usually filled with N2.
An inert gas such as Ar is introduced from the light incidence part to cool the inner surface of the light transmission hollow part and prevent dust from adhering to it.

以下に本発明の導光路を用いて行なった光伝送実験結果
について説明する。外径5關、内径3mm、長さJOm
mの第1図に示したごとき形状のアルミニウム製中空円
筒パイプを導光ユニットとして使用した。中空部内面を
カーボランダムおよび酸化セリウムで研摩して鏡面とし
だ導光ユニット100個を内径5 amのポリエチレン
チューブ内に挿入配列し、第3図に示したような一連の
導光路を作製した。この導光路にCOレーザー光(波長
10.6μm、連続波)を入射出力30Wで入射させ、
導光路が直線の場合と900わん曲した場合とについて
出射出力を測定した結果は次の通りであった。
The results of an optical transmission experiment conducted using the light guide of the present invention will be described below. Outer diameter 5mm, inner diameter 3mm, length JOm
An aluminum hollow cylindrical pipe having a shape as shown in FIG. 1 was used as a light guiding unit. The inner surface of the hollow part was polished with carborundum and cerium oxide to give a mirror surface, and 100 light guiding units were inserted and arranged in a polyethylene tube having an inner diameter of 5 am to produce a series of light guiding paths as shown in FIG. A CO laser beam (wavelength 10.6 μm, continuous wave) is input into this light guide with an input power of 30 W.
The results of measuring the output output when the light guide path was straight and when the light guide path was curved by 900 degrees were as follows.

直  線      23W       77%90
°わん曲   20W     67%*透過効率: 」二記の実験結果かられかるように、9o0わん曲時に
おいても透過効率は直線時に比べて10%程度しか低下
せず、可撓性のある赤外線用導光路として十分に評価す
べきデータが得られた。
Straight line 23W 77%90
°Curved 20W 67%*Transmission efficiency: As can be seen from the experimental results described in section 2, even when curved at 9o0, the transmission efficiency decreases by only about 10% compared to when it is straight, making it suitable for flexible infrared rays. Data that should be sufficiently evaluated as a light guide path was obtained.

以上説明したように、本発明は、中空部内面を鏡面とし
た筒状中空導光ユニットをその軸線方向に沿って可撓性
外被内に連続して配列するという簡単な構成によって、
優れた可撓性を有し、しかも赤外線を効率よく伝送する
ことができる導光路を提供できるものであって、特にC
O2レーザーの可撓性導光路として有用なものである。
As explained above, the present invention has a simple configuration in which cylindrical hollow light guiding units whose hollow inner surfaces are mirror-finished are continuously arranged in a flexible jacket along the axial direction of the units.
A light guide having excellent flexibility and capable of efficiently transmitting infrared rays can be provided, and in particular C.
It is useful as a flexible light guide for an O2 laser.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の導光路を構成する導光ユニットの1つ
の実施例を示す斜視図;第2図は第1図の導光ユニット
から構成した導光路を示す斜視図;第3図は第2図の長
手方向断面図;第4図は第3図の導光路が屈曲された状
態を示す断面図;第5図は導光ユニットの別な実施例を
示す斜視図;第6図は第5図の導光ユニットから構成し
た導光路を示す断面図;第7図は導光ユニットのさらに
別な実施例を示す斜視図;および第8図は本発明の導光
路の別な実施例を示す断面図である。 1、、11.21.3.1・・導光ユニット、2゜22
・・中空部、3・・・鏡面、4・・・導光ユニット軸線
、5・・・可撓性外被、12・・・凹型テーパ一端面、
13・・・凸型テーパ一端面。。
FIG. 1 is a perspective view showing one embodiment of a light guide unit that constitutes the light guide path of the present invention; FIG. 2 is a perspective view showing a light guide path configured from the light guide unit of FIG. 1; Fig. 2 is a longitudinal sectional view; Fig. 4 is a sectional view showing the light guide path in Fig. 3 bent; Fig. 5 is a perspective view showing another embodiment of the light guide unit; Fig. 6 is a sectional view showing a bent state of the light guide path; A sectional view showing a light guide path constructed from the light guide unit shown in FIG. 5; FIG. 7 a perspective view showing yet another embodiment of the light guide unit; and FIG. 8 a further embodiment of the light guide path of the present invention. FIG. 1,, 11.21.3.1...Light guide unit, 2゜22
...Hollow part, 3...Mirror surface, 4...Light guide unit axis, 5...Flexible outer cover, 12...Concave taper one end surface,
13... Convex taper one end surface. .

Claims (1)

【特許請求の範囲】 1 筒状中空体からなる導光ユニットの中空部内面を鏡
面とし、この導光ユニットの軸線方向に複数の導光ユニ
ットを連続配列し、この導光ユニット配列全体な可撓性
外被で被覆してなることを特徴とする赤外線用導光路。 2 前記導光ユニットの軸線に対して垂直な断面におけ
る前記中空部形状は円形または多角形である特許請求の
範囲第1項記載の導光路。 3 前記導光ユニットの光入射側端面および光出射側端
面なそれぞれ凹型および凸型のテーパー面とし、1つの
導光ユニットの凸型テーパ一端面を別の導光ユニットの
凹型テーパ一端面に順次嵌合させて回転、屈曲自在に配
列させた特許請求の範囲第1項ないし第2項記載の導光
路。 4、 前記光出射側凸型テーパ一端面の頂角を前(1) 配光入射側凹型テーパ一端面の頂角よりも鋭角とした特
許請求の範囲第3項記載の導光路。
[Claims] 1. The inner surface of the hollow part of a light guide unit made of a cylindrical hollow body is made into a mirror surface, and a plurality of light guide units are continuously arranged in the axial direction of this light guide unit, and the entire light guide unit arrangement is An infrared light guide path characterized by being covered with a flexible outer covering. 2. The light guide path according to claim 1, wherein the shape of the hollow portion in a cross section perpendicular to the axis of the light guide unit is circular or polygonal. 3. The light-incidence side end face and the light-output side end face of the light guide unit are concave and convex tapered surfaces, respectively, and one convex taper end face of one light guide unit is sequentially connected to one concave taper end face of another light guide unit. The light guide path according to claim 1 or 2, wherein the light guide path is fitted and arranged so as to be rotatable and bendable. 4. The light guide path according to claim 3, wherein the apex angle of one end surface of the convex taper on the light output side is made more acute than the apex angle of the one end surface of the concave taper on the light distribution input side.
JP56114489A 1981-07-23 1981-07-23 Optical waveguide for infrared ray Pending JPS5816205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56114489A JPS5816205A (en) 1981-07-23 1981-07-23 Optical waveguide for infrared ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56114489A JPS5816205A (en) 1981-07-23 1981-07-23 Optical waveguide for infrared ray

Publications (1)

Publication Number Publication Date
JPS5816205A true JPS5816205A (en) 1983-01-29

Family

ID=14639028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56114489A Pending JPS5816205A (en) 1981-07-23 1981-07-23 Optical waveguide for infrared ray

Country Status (1)

Country Link
JP (1) JPS5816205A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449903U (en) * 1987-09-23 1989-03-28
US4929052A (en) * 1988-02-17 1990-05-29 Medical Laser Uit of Heriot-Watt University of Research Park Flexible guides for infra-red energy
JPH0580216A (en) * 1991-09-19 1993-04-02 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide and optical circuit module using same
JP2013254365A (en) * 2012-06-07 2013-12-19 Hochiki Corp Smoking testing machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449903U (en) * 1987-09-23 1989-03-28
US4929052A (en) * 1988-02-17 1990-05-29 Medical Laser Uit of Heriot-Watt University of Research Park Flexible guides for infra-red energy
JPH0580216A (en) * 1991-09-19 1993-04-02 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide and optical circuit module using same
JP2013254365A (en) * 2012-06-07 2013-12-19 Hochiki Corp Smoking testing machine

Similar Documents

Publication Publication Date Title
US4740047A (en) Fiber for lateral beaming of laser beam
US5707368A (en) Contact tip for laser surgery
JPH0373844B2 (en)
US6687436B2 (en) Optical fiber with numerical aperture compression
JPS6125113A (en) Multi-directional non-image projection radiation converter
US5859868A (en) Solid-state laser device which is pumped by light output from laser diode
JPH07281053A (en) Fiber optic coupler
US5036834A (en) Illuminating light introducing device for endoscope
EP0105706B1 (en) Flexible dielectric waveguide for high efficiency middle ir wavelength transmission
JP2016517636A (en) Laser equipment
JPH0222926B2 (en)
JPS5816205A (en) Optical waveguide for infrared ray
JP2004195552A (en) Lens assembly part for laser welding
US20060285798A1 (en) Bent side-firing laser
KR101144720B1 (en) Optical Fiber with Reflective Grooves
US4929052A (en) Flexible guides for infra-red energy
US8343044B2 (en) Light guide for endoscopes
AU625273B2 (en) Fibre optic assembly
JP3186161B2 (en) Endoscope illumination optics
JP2004513386A (en) Apparatus for providing an image of a remote object accessible only through a finite diameter opening
JPH05288967A (en) Optical fiber for laser input
JP2019171851A (en) Waveguide for plastic welding, assembly for plastic welding, welding method, and manufacturing method of waveguide
EP3648696A1 (en) Optical fibers and associated systems
JP2002182126A (en) Illuminating optical system for light guide and endoscope
JPS60185908A (en) Coupling structure of photoconductor