[go: up one dir, main page]

JPS58161256A - Processing method of manganese dioxide for cell - Google Patents

Processing method of manganese dioxide for cell

Info

Publication number
JPS58161256A
JPS58161256A JP57043888A JP4388882A JPS58161256A JP S58161256 A JPS58161256 A JP S58161256A JP 57043888 A JP57043888 A JP 57043888A JP 4388882 A JP4388882 A JP 4388882A JP S58161256 A JPS58161256 A JP S58161256A
Authority
JP
Japan
Prior art keywords
manganese dioxide
added
conductive agent
mno2
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57043888A
Other languages
Japanese (ja)
Inventor
Kenichi Yokoyama
賢一 横山
Hiroshi Sasama
笹間 拓
Yoshio Uetani
植谷 慶雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP57043888A priority Critical patent/JPS58161256A/en
Publication of JPS58161256A publication Critical patent/JPS58161256A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the heavy load discharge characteristic by pressure compressing MnO2 added with auxiliary conductive agent thereby reducing the porous volume in a particle. CONSTITUTION:Auxiliary conductive agent of approximately 20-60wt% of entire auxliary conductive agent required for positive pole agent is added in MnO2, then pressure compressed to reduce the porous volume in MnO2 particle. Then the residual auxiliary conductive agent and binder are added to mold the positive pole agent. Since the pressure compressed MnO2 particle and the auxiliary conductive agent will contact sufficiently, the conductivity will be improved. Consequently the heavy load discharge characteristic at high current density in a cell employing said positive pole agent is improved.

Description

【発明の詳細な説明】 法に関する。[Detailed description of the invention] Regarding the law.

乾電池用の正極活物質としては、電解二酸化マンガンが
好用されているが、電解二酸化マンガンはすぐれた電池
性能を発揮するものの、高価格であるという問題がある
Electrolytic manganese dioxide is often used as a positive electrode active material for dry batteries, but although electrolytic manganese dioxide exhibits excellent battery performance, it has the problem of being expensive.

そこで、低価格の天然二酸化マンガンを加熱還元し、つ
いで酸処理することによって、電解二酸化マンガンより
も低価格で、かつすぐれた電池性能を発揮する化学処理
二酸化マンガンを得ることが提案されている。
Therefore, it has been proposed to heat-reduce low-cost natural manganese dioxide and then treat it with acid to obtain chemically treated manganese dioxide, which is lower in price than electrolytic manganese dioxide and exhibits superior battery performance.

しかし、この二酸化マンガンは天然二酸化マンガンを加
熱還元し、酸処理することによって得られるものである
ため、粒子内部に大きな空孔が多数存在し、その空孔容
積は電解二酸化マンガンに比べて非常に大きい。
However, since this manganese dioxide is obtained by heating and reducing natural manganese dioxide and treating it with acid, there are many large pores inside the particles, and the pore volume is much larger than that of electrolytic manganese dioxide. big.

そのため、しまりがよく、かつ欠けのない正極合剤の成
形体を作製し、しかも良好な電池特性を得るには、多量
の電解液で正極合剤を湿潤しなければならず、その結果
、電池内への二酸化マンガンの充填量は電解二酸化マン
ガンの場合より大幅に減少し、放電容量が低下するとい
う問題がある。
Therefore, in order to produce a compact and chip-free positive electrode mixture molded body and to obtain good battery characteristics, it is necessary to wet the positive electrode mixture with a large amount of electrolyte, and as a result, the battery The amount of manganese dioxide filled into the battery is significantly smaller than that of electrolytic manganese dioxide, resulting in a problem of lower discharge capacity.

そこで本発明者らは前記二酸化マンガンを加圧圧縮する
ことによってその粒子内空孔容積を減少させ、電解液を
吸収しすぎる欠点を解消するとともに、さらに進んで前
記のごとき化学処理二酸化マンガンのみならず、他の二
酸化マンガンすなわち電解二酸化マンガン、化学二酸化
マンガン、天然二酸化マンガンなども粒子内空孔容積を
減少させることによって、それぞれ電池に要求される使
用条件に適応した特色のある電池特性を発揮する二酸化
マンガンが得られることを見出し、それについて別途特
許出願をした。
Therefore, the present inventors have solved the problem of absorbing too much electrolyte by reducing the volume of pores inside the particles by pressurizing the manganese dioxide, and have also proceeded further by reducing the volume of pores inside the particles by pressurizing the manganese dioxide. However, other manganese dioxides, such as electrolytic manganese dioxide, chemical manganese dioxide, and natural manganese dioxide, each exhibit unique battery characteristics that suit the usage conditions required for the battery by reducing the volume of pores inside the particles. He discovered that manganese dioxide could be obtained and filed a separate patent application for it.

ところで、上記の加圧圧縮による粒子内空孔容積の減少
により、電解液の吸収量が減少して電池内への二酸化マ
ンガンの充填量が向上し、軽負荷放電では放電時間が長
くなるなどの特色ある効果が発揮されるが、一方では加
圧圧縮により二酸化マンガン粒子の固着が起り、電導助
剤との接触が不充分となって電流密度の高い重負荷放電
では放電特性が必らずしも満足すべきものにはならない
By the way, due to the reduction in the volume of pores inside the particles due to the above-mentioned pressurized compression, the amount of electrolyte absorbed decreases and the amount of manganese dioxide filled into the battery increases, causing problems such as a longer discharge time during light load discharge. A distinctive effect is exhibited, but on the other hand, pressure compression causes manganese dioxide particles to stick, resulting in insufficient contact with the conductive additive, resulting in poor discharge characteristics in heavy load discharges with high current density. is not satisfactory either.

そのため、本発明者らはそのような重負荷特性の改良を
もはかるべく鋭意研究を重ねた結果、二酸化マンガンを
加圧圧縮して粒子内空孔容積を減少させるにあたり、二
酸化マンガンに導電助剤を添加しておくときは、二酸化
マンガンと導電助剤との接触が充分に保たれ、導電性が
向上して重負荷特性が改良されることを見出し、本発明
を完成するにいたった。
Therefore, the present inventors have conducted intensive research to improve such heavy load characteristics, and as a result, when compressing manganese dioxide under pressure to reduce the volume of pores inside the particles, the present inventors added a conductive additive to manganese dioxide. It was discovered that when manganese dioxide is added to the conductive additive, sufficient contact between the manganese dioxide and the conductive additive is maintained, the conductivity is improved, and the heavy load characteristics are improved, and the present invention has been completed.

加圧圧縮に際し−C二酸化マンガンに添加する導電助剤
としては、正極合剤中に配合することを必要とされる導
電助剤の全量であってもよいが、全量を添加するよりは
むしろその一部を添加し、残りは合剤調製時に添加する
方が好ましい。そして、加圧圧縮に際して二酸化マンガ
ンに添加する導電助剤としては、正極合剤中に必要とさ
れる全導電助剤中の20〜60%(重量%、以下同様)
が好ましい。これは加圧圧縮に際して添加する導電助剤
が前記範囲より少ないときは後に添加する導電助剤との
接触が充分に保てず、また逆に前記範囲より多いときは
鎖状構造の変形、電解液の保液能力の低下などの影響を
受けていない導電助剤の量が少なくなって放電持続時間
の低下が生じるからである。
The conductive additive added to the -C manganese dioxide during pressure compression may be the entire amount of the conductive additive required to be blended into the positive electrode mixture, but rather than adding the entire amount, It is preferable to add a portion and the rest at the time of preparing the mixture. The conductive additive added to manganese dioxide during pressurization is 20 to 60% (by weight, the same applies hereinafter) of the total conductive additive required in the positive electrode mixture.
is preferred. This is because if the amount of the conductive agent added during pressurization is less than the above range, sufficient contact with the conductive agent added later cannot be maintained, and conversely, if the amount is more than the above range, the chain structure may be deformed and electrolysis may occur. This is because the amount of the conductive auxiliary agent, which is not affected by a decrease in the liquid retaining ability, decreases, resulting in a decrease in discharge duration.

加圧圧縮に際して二酸化マンガンに添加する導電助剤は
、正極合剤に配合するものと同様のものでよく、たとえ
ばアセチレンブラック、りん状黒鉛、カーボンブラック
々どが用いられる。
The conductive additive added to the manganese dioxide during pressurization may be the same as that added to the positive electrode mixture, such as acetylene black, phosphorous graphite, carbon black, etc.

加圧圧縮はたとえば互いに反対方向に回転する2本のロ
ールの間隙に二酸化マンガンを供給してロールで加圧圧
縮するか、あるいはプレスで加圧圧縮すればよい。加圧
圧縮時の圧力としては、使用する二酸化マンガンの種類
や、どの程度の粒子内空孔容積を有する二酸化マンガン
を得ようとするかなどによっても異なるが、ロールで加
圧圧縮するときは通常1〜2 t/(m 、またプレス
で加圧圧縮するときは通常1〜10 t/cm2が好ま
しい。
For example, the pressure compression may be performed by supplying manganese dioxide into the gap between two rolls rotating in opposite directions and compressing the material using the rolls, or by using a press. The pressure during pressurization varies depending on the type of manganese dioxide used and how much pore volume of manganese dioxide is desired to be obtained, but when pressurizing with rolls, it is usually 1 to 2 t/(m), and usually 1 to 10 t/cm2 when compressing with a press.

加圧圧縮した二酸化マンガンは鱗片状ないしはフレーク
状をしているので、電池の正極活物質として用いるには
粉砕してもとの微粉末状にしておくことが好ましい。
Pressurized and compressed manganese dioxide is in the form of scales or flakes, so it is preferable to grind it into the original fine powder form for use as a positive electrode active material for batteries.

本発明において粒子内空孔容積は水銀圧入法で測定され
るものをいい、通常、加圧圧縮前の二酸化マンガンの粒
子内空孔容積は、空孔径40〜75000xの積算で、
電解二酸化マンガンは約0.15cm3/y、化学二酸
化マンガンは約0.55 (m3.夕、化学処理二酸化
マンガンは約0.4 cm’/ys天然二酸化マンガン
は約0.88 cm3/9であり、加圧圧縮により粒子
内空孔容積をどの程度にまで減少させるかは、使用する
二酸化マンガンの種類や、電池に要求される特性などに
よっても異なるが、化学二酸化マンガン、化学処理二酸
化マンガン、などでは通常、電解二酸化マンガンなみに
粒子内空孔容積を減少させることが目標とされる。
In the present invention, the intra-particle pore volume is measured by mercury intrusion method, and usually, the intra-particle pore volume of manganese dioxide before pressure compression is the sum of the pore diameters of 40 to 75,000x.
Electrolytic manganese dioxide is about 0.15 cm3/y, chemical manganese dioxide is about 0.55 cm3/y, chemically treated manganese dioxide is about 0.4 cm'/ys, natural manganese dioxide is about 0.88 cm3/9 The extent to which the intraparticle pore volume is reduced by pressure compression varies depending on the type of manganese dioxide used and the characteristics required for the battery, but chemical manganese dioxide, chemically treated manganese dioxide, etc. Generally, the goal is to reduce the intraparticle pore volume to the same level as electrolytic manganese dioxide.

つぎに実施例をあげて本発明を説明する。Next, the present invention will be explained with reference to Examples.

実施例 マンガンアンモニウムカルバメートから炭酸マンガンを
経て得られた水銀圧入法による空孔径40Aまでの積算
粒子内空孔容積が0.55 Cm3/9である化学二酸
化マンガン100部(重量部、以下同様)にアセチレン
ブラックを7部の割合で混合した混合物を5 rpmで
互いに反対方向に回転する2本のロールの間隙に供給し
、1.7 t/cmの荷重をかけて上記混合物を加圧圧
縮した。加圧圧縮後、粉砕してもとの微粉末状にした。
Example 100 parts (parts by weight, the same shall apply hereinafter) of chemical manganese dioxide having an integrated internal pore volume of 0.55 Cm3/9 with a pore size of up to 40 A by the mercury intrusion method obtained from manganese ammonium carbamate through manganese carbonate. A mixture of 7 parts of acetylene black was supplied to a gap between two rolls rotating in opposite directions at 5 rpm, and the mixture was compressed under pressure by applying a load of 1.7 t/cm. After pressurizing and compressing, it was ground into the original fine powder form.

この混合物の一部を採取し二酸化マンガンを分離してそ
の粒子内空孔容積を水銀圧入法により測定したところ、
空孔径4゜Aまでの積算で0.25 cm3/pであっ
た。
A part of this mixture was taken, manganese dioxide was separated, and the pore volume inside the particles was measured by mercury intrusion method.
The cumulative value was 0.25 cm3/p up to a pore diameter of 4°A.

上記のようにアセチレンブラックを添加して加圧圧縮し
た二酸化マンガンを用いて第1表に示す組成の正極合剤
を調製し、SUM−1形の乾電池Aを組み立て、2Ω連
続放電の放電持続時間を調べた。その結果を第2表に示
す。
A positive electrode mixture having the composition shown in Table 1 was prepared using manganese dioxide which had been pressurized and added with acetylene black as described above, and a SUM-1 type dry battery A was assembled, and the discharge duration of 2Ω continuous discharge was I looked into it. The results are shown in Table 2.

なお上記乾電池Aにおいて、加圧圧縮時に二酸化マンガ
ンに添加したアセチレンブラックは、正極合剤中に加え
られた全アセチレンブラック(すなわち加圧圧縮時に加
えられたものと正極合剤の調製時に加えられたものとの
合計)の48%に相当する。そして第1表中のアセチレ
ンブラックの量は加圧圧縮時に添加したものと合剤調製
中に添加されたものとの合計で示されている。
In the above dry battery A, the acetylene black added to manganese dioxide during pressure compression is the total acetylene black added to the positive electrode mixture (i.e., the amount added during pressure compression and the amount added during preparation of the positive electrode mixture). This corresponds to 48% of the total. The amount of acetylene black in Table 1 is the sum of the amount added during pressurization and the amount added during preparation of the mixture.

比較のため、前記と同様の化学二酸化マンガンを加圧圧
縮することなくそのまま正極活物質として用いた乾電池
13および前記と同様の化学二酸化マンガンをアセチレ
ンブラックを添加することなく加圧圧縮して正極活物質
として用いた乾電池Cを組み立て、それらの20連続放
電での放電持続時間を測定した結果を第2表に示す。な
お乾電池B、Cとも乾電池A同様にSLIM−1形であ
り、それらの正極合剤組成は放電効率を最良に発揮させ
るという観点から決定されていて第1表に示すとおりで
ある。
For comparison, a dry battery 13 in which the same chemical manganese dioxide as above was used as a positive electrode active material without being pressurized and compressed, and a positive electrode active material in which the same chemical manganese dioxide as above was pressurized and compressed without adding acetylene black. Table 2 shows the results of assembling the dry cell C used as the material and measuring the discharge duration in 20 consecutive discharges. Note that, like dry battery A, both dry batteries B and C are of the SLIM-1 type, and their positive electrode mixture compositions were determined from the viewpoint of maximizing discharge efficiency, and are as shown in Table 1.

第1表   正極合剤組成 第1表および第2表に示す結果より明らかなように、加
圧圧縮していない二酸化マンガンを用いた場合は乾電i
Bで示されるように良好な放電効率を得るには多量の電
解液を加えなければならず、その結果、二酸化マンガン
の充填量が低下して放電容量が低下する。これに対して
加圧圧縮した二酸化マンガンを用いた場合は乾電池A、
Cに示されるように電解液が少なくてすむが、アセチレ
ンブラックを添加せずζこ加圧圧縮した二酸化マンガン
を用いた乾電池Cの場合は本発明の方法により処理した
二酸化マンガンを用いた乾電池Aの場合に比べて重負荷
特性が劣っている。
Table 1 Positive electrode mixture composition As is clear from the results shown in Tables 1 and 2, when manganese dioxide that has not been compressed under pressure is used, dry electricity
As shown by B, a large amount of electrolyte must be added to obtain good discharge efficiency, resulting in a decrease in the amount of manganese dioxide filling and a decrease in discharge capacity. On the other hand, when pressurized compressed manganese dioxide is used, dry battery A,
As shown in C, a small amount of electrolyte is required, but in the case of dry cell C using pressure-compressed manganese dioxide without adding acetylene black, dry cell A using manganese dioxide treated by the method of the present invention The heavy load characteristics are inferior to that of .

Claims (1)

【特許請求の範囲】[Claims] 1、二酸化マンガンを加圧圧縮して粒子内空孔容積を減
少させるにあたり、二酸化マンガンに導電助剤を添加し
ておくことを特徴とする二酸化マンガンの処理方法。
1. A method for treating manganese dioxide, which comprises adding a conductive additive to manganese dioxide before pressurizing and compressing the manganese dioxide to reduce the intraparticle pore volume.
JP57043888A 1982-03-19 1982-03-19 Processing method of manganese dioxide for cell Pending JPS58161256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57043888A JPS58161256A (en) 1982-03-19 1982-03-19 Processing method of manganese dioxide for cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57043888A JPS58161256A (en) 1982-03-19 1982-03-19 Processing method of manganese dioxide for cell

Publications (1)

Publication Number Publication Date
JPS58161256A true JPS58161256A (en) 1983-09-24

Family

ID=12676237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57043888A Pending JPS58161256A (en) 1982-03-19 1982-03-19 Processing method of manganese dioxide for cell

Country Status (1)

Country Link
JP (1) JPS58161256A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217622A (en) * 1975-07-11 1977-02-09 Toshiba Ray O Vac Dry element battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217622A (en) * 1975-07-11 1977-02-09 Toshiba Ray O Vac Dry element battery

Similar Documents

Publication Publication Date Title
JP2000503467A (en) Zinc anode for electrochemical cells
JPH07272715A (en) Alkaline manganese battery
US3536537A (en) Method of making electrode having improved gas-recombination properties
US2865974A (en) Negative plates and the production thereof
US3306781A (en) Depolarizer mixture and molded bodies
JP3341693B2 (en) Active material powder for electrode of silver oxide battery, electrode material and production method thereof
JPS58161256A (en) Processing method of manganese dioxide for cell
JPS6010557A (en) Method of filling active substance in porous fibrous plaque
JPH03743B2 (en)
JPH10228899A (en) Positive electrode mixture for alkaline batteries
JPH09180708A (en) Alkaline dry cell
JPS6040667B2 (en) Manufacturing method of nickel electrode
JPH0897101A (en) Electrode material
JPS58161255A (en) Processing method of manganese dioxide for cell
JPS62140359A (en) Electrode for cell
CN114639836B (en) Preparation process of alkaline zinc-manganese battery
US6887621B1 (en) Electrode capable of storing hydrogen and a method for the production of the same
JPS58161257A (en) Processing method of manganese dioxide for cell
JPS58161258A (en) Processing method of manganese dioxide for cell
JP2581362B2 (en) Electrodes for alkaline storage batteries
JPS60254564A (en) Nickel positive electrode for alkaline storage battery
JP2525320B2 (en) Positive electrode for alkaline secondary battery
JPH09102441A (en) Electric double layer capacitor
JP2867458B2 (en) Alkaline battery
JP2530281B2 (en) Alkaline storage battery