JPS58161064A - Image processing and playback device - Google Patents
Image processing and playback deviceInfo
- Publication number
- JPS58161064A JPS58161064A JP57042646A JP4264682A JPS58161064A JP S58161064 A JPS58161064 A JP S58161064A JP 57042646 A JP57042646 A JP 57042646A JP 4264682 A JP4264682 A JP 4264682A JP S58161064 A JPS58161064 A JP S58161064A
- Authority
- JP
- Japan
- Prior art keywords
- digital
- signal
- circuit
- analog
- classification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 9
- 238000000605 extraction Methods 0.000 claims description 19
- 238000006243 chemical reaction Methods 0.000 claims description 16
- 241000190020 Zelkova serrata Species 0.000 claims 1
- 230000008929 regeneration Effects 0.000 claims 1
- 238000011069 regeneration method Methods 0.000 claims 1
- 210000004369 blood Anatomy 0.000 abstract description 9
- 239000008280 blood Substances 0.000 abstract description 9
- 230000002159 abnormal effect Effects 0.000 abstract description 7
- 238000001514 detection method Methods 0.000 abstract description 4
- 210000004027 cell Anatomy 0.000 description 25
- 210000000265 leukocyte Anatomy 0.000 description 23
- 238000000034 method Methods 0.000 description 6
- 239000000872 buffer Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 210000000601 blood cell Anatomy 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1468—Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Image Analysis (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Image Processing (AREA)
- Television Signal Processing For Recording (AREA)
- Closed-Circuit Television Systems (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は画像II&SS生装置に孫装置特櫃胞などのl
iIiglを光学的に拡大し、撮像管などの光電変換素
子を介して2次元的な電気信号に変換した後、細胞の種
me判別する細胞形態分類装置に適用するIli儂処理
再生鋏置装関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides an image II & SS generation device with a special cell, etc.
After optically enlarging the iIigl and converting it into a two-dimensional electrical signal via a photoelectric conversion element such as an image pickup tube, the Ili processing reproduction scissors device is applied to a cell morphology classification device that distinguishes the cell type. .
従来、仁のような細胞形態分類用の1儂処理装置Fi、
たとえば各種細胞中から、がん細胞を抽出する細胞診断
装置、白血球の出穂頻度や、異常白血球の検出1分類を
行なう血液儂自動分類装置等に適用されてきた。Conventionally, a one-person processing device Fi for cell morphology classification such as Jin,
For example, it has been applied to cell diagnostic devices that extract cancer cells from various types of cells, and automatic blood cell classification devices that detect and classify white blood cell heading frequency and abnormal white blood cells.
最近、これらの装置で#′i標本中の細胞や白梅球を光
学顕微鏡により拡大した後、撮像管等の光電変換素子管
用いてアナログ信号に変換し、このアナログ信号をデジ
タル信号に変換して記憶装置に格納すると同時にこのデ
ジタル信号に基づき細胞や白血球の特徴會抽出し分類含
むない、このときの分類結果がたとえば不明球や異常球
のような特定の場合のみデジタル信号を別の記憶装置、
たとえば磁気テープ等の外11A記憶装置に、分類結果
や白血球名と共に格納する方式が試みられている。Recently, these devices have been used to magnify cells and white plum bulbs in #'i specimens using an optical microscope, convert them into analog signals using a photoelectric conversion element tube such as an image pickup tube, and then convert these analog signals into digital signals and store them. At the same time as storing it in the device, the characteristics of cells and white blood cells are extracted and classified based on this digital signal.Only when the classification result is specific, such as unknown cells or abnormal cells, the digital signal is stored in another storage device.
For example, attempts have been made to store classification results and white blood cell names in an external 11A storage device such as a magnetic tape.
しかしながら、このような装置の自動化が進むに従い特
定の標本のみ含分類終了後、目視により再検したいとい
う要望が強まっており、このような従来方式では細胞や
白血球1個当りに必要なメモリ容量が大きいため、結果
的に配憶保存可能な俤本数が少ないという欠点があった
。However, as the automation of such devices progresses, there is a growing desire to include only specific specimens and visually reexamine them after classification, and such conventional methods require a large amount of memory per cell or white blood cell. As a result, there was a drawback that the number of files that could be stored and stored was small.
また、上述のような方式において標本中の細胞や白血球
f#?デジタル信号に変換した後、分類を行ない、分類
結果が特定の細胞や不明球の場合のみこのデジタル信号
管アナログ信号に変換しVTR等の記憶装置に格納する
方式が公開されている。In addition, in the method described above, cells in the specimen and leukocytes f#? A method has been disclosed in which after converting into a digital signal, classification is performed, and only when the classification result is a specific cell or an unknown sphere, the signal is converted into a digital signal tube analog signal and stored in a storage device such as a VTR.
しかし、このような方法においてもVTRの解偉度が低
いため再検時の画質が悪く再検しにくいという欠点があ
る。すなわち、この方法は1儂表示装置に送られるテレ
ビ信号を一担デジタル信号に変換し九後、特定の細胞や
不明球の場合のみアナログ信号に変換しVTRのビデオ
・トラックに記憶すると共に検体番号や分類結果、各血
球の種類を音声トランクに記憶するものである。しかし
ながら、このような方法では特定の細胞や不明球と判別
したときには次の画面が撮像されておシ画儂情報と判別
情報音同期させながら記憶することができない。However, even with this method, there is a drawback that the resolution of the VTR is low, so the image quality upon re-examination is poor and it is difficult to re-examine. That is, this method first converts the television signal sent to the display device into a digital signal, and then converts it into an analog signal only in the case of specific cells or unknown spheres, stores it in the video track of the VTR, and records the specimen number. The results of the classification and the type of each blood cell are stored in the audio trunk. However, in such a method, when a specific cell or an unknown sphere is determined, the next screen is captured and the image information and discrimination information cannot be stored in synchronization with sound.
また、特定の細胞や不明球のデジタル画像信号管判別情
報と共に磁気テープ等の外部記憶装置に格納する方法も
試みられているが、このような方法におiても特定の細
胞や不明球が出現したときの1画面全てのテレビ信号管
デジタル信号に変換して記憶する必要がある。一方、1
画面のテレビ信号tデジタル傭号に変換する場合、たと
えば11m1面の分解能を標本上の0.25μに相当す
るものとし、全体會横320、縦240に分割すると画
面全体は標本上の横80μ、縦60μ會撮像することに
なシフ6800絵素に分解される。In addition, methods have been attempted in which digital images of specific cells and unknown spheres are stored together with signal tube identification information in an external storage device such as magnetic tape. It is necessary to convert and store the television signal tube digital signal of the entire screen when it appears. On the other hand, 1
When converting a TV signal on a screen to a digital code, for example, if the resolution of one 11m surface is equivalent to 0.25μ on the specimen, and if the whole screen is divided into 320 horizontally and 240 vertically, the entire screen will be 80μ horizontally on the specimen. It is divided into 6800 picture elements by taking an image of 60μ vertically.
さらにテレビ信号は色の原色赤、緑、青信号からなり各
色を8ビツトのデジタル信号に変換すると1信号当り7
6800バイトの記憶容置とな漬ため1画面全体の記憶
容tは3倍の2304007<イトが必要となる。Furthermore, television signals consist of the primary color red, green, and blue signals, and when each color is converted to an 8-bit digital signal, each signal has 7 bits.
Since the storage capacity is 6800 bytes, the storage capacity t for one entire screen is tripled to 2304007 bytes.
しかし、標本の中には特定の細胞や不明球等が多数出現
するものもあり、前述の111iii面の記憶容itt
考えると記憶装置に格納できる検体数が少なくなる。However, in some specimens, a large number of specific cells or unknown spheres appear, and the memory capacity of the above-mentioned 111iii surface is
When you think about it, the number of samples that can be stored in the storage device decreases.
本発明の目的は、全標本の分類終了後、特定の細胞や不
明球の再検を可能とし、再検0T舵な検体数fr増加さ
せつると共に、信頼性の向上する1lii偉処理再生装
置を提供するにある。An object of the present invention is to provide a processing and reproducing device that enables reexamination of specific cells and unknown spheres after the classification of all specimens, increases the number of specimens required for reexamination, and improves reliability. It is in.
本発明は、分類時におけるデジタル画像信号は白血球儂
より僅かに大きい画面情報のみで良いことケ確認し、特
定の細胞や不明球のデジタル画像信号の記憶に必要な記
憶容tを減少させるようにしたものである。The present invention confirms that the digital image signal at the time of classification requires only screen information slightly larger than that of white blood cells, and reduces the storage capacity t required to store the digital image signal of specific cells and unknown cells. This is what I did.
以下、本発明の実施例1第1図乃至第4図によシ説−明
する。なお、以下で説明する実施例はパターンwt#&
技術會用いて白血球の分類全行なう血液像自動分@飯置
會対象としている。Embodiment 1 of the present invention will be explained below with reference to FIGS. 1 to 4. Note that the embodiment described below uses the pattern wt# &
The technical meeting will be used to automatically classify white blood cells in blood images @Iioki meeting.
第1図において、光学顕微鏡lにより血液塗抹標本上の
血液像は光学的に拡大され、多数の半導体素子倉1次元
に配列したイメージセンサ3上に濃淡儂として撮像され
る。光学顕微鏡1上の標本扛、マ1クロコンピユータ1
2からの指令によりマイクロコンピュータ會内蔵したデ
ジタル制御回路7およびステージ駆動回路6會介して走
査される。In FIG. 1, a blood image on a blood smear is optically magnified by an optical microscope 1, and is imaged in gradation on an image sensor 3 having a large number of semiconductor elements arranged in one dimension. Specimen pick up on optical microscope 1, macro computer 1
Scanning is performed by a command from 2 via a digital control circuit 7 and a stage drive circuit 6 built into the microcomputer.
このとき血液塗抹標本上の血液像はイメージ七723上
に光の濃淡部管形成しアナログ信号に変換され友後、白
血球検出回路5に導かれる。At this time, the blood image on the blood smear forms a light gray area on the image 723, is converted into an analog signal, and is then guided to the white blood cell detection circuit 5.
白血球が光学顕微鏡lの視野内に入ると、白血球検出回
路5からの指令によりデジタル制御回路7おIびステー
ジ駆動回路6によシ光学願黴鏡lの視中央部で停止する
よう制御され、自動焦点がとられる。When white blood cells enter the field of view of the optical microscope 1, the digital control circuit 7 and the stage drive circuit 6 are controlled by the command from the white blood cell detection circuit 5 to stop them at the center of the field of view of the optical microscope 1. Auto focus is taken.
このときの白血球像は、制御ユニットを含むテレビカメ
ラ2撮像される。テレビカメラ2のアナログ1儂信号は
アナログ−デジタル変換回路4およびマルチプレクサ回
路13に導かれる。マルチプレクサ回路13の出力信号
はマイクロコンピュータ12からの文字用信号と共にマ
ルチプレクサ回路14に導かれ、マイクロコンピュータ
12からの指令によりカラーモニタ15には血液像と文
字表示が切り換えて表示できるようになっている。A white blood cell image at this time is captured by a television camera 2 including a control unit. The analog signal from the television camera 2 is guided to an analog-to-digital conversion circuit 4 and a multiplexer circuit 13. The output signal of the multiplexer circuit 13 is guided to the multiplexer circuit 14 together with the character signal from the microcomputer 12, and the color monitor 15 can switch between a blood image and a character display according to a command from the microcomputer 12. .
アナログ−デジタル変換回路4は特徴抽出回路11から
の同期信号によりアナログ画儂信号會デジタル画儂信号
に変換する。この変換信号は特徴抽出回路11?介して
Iii儂紀憶回路9に格納される。また、特徴抽出回路
11か゛らの同期信号はテレビカメラ2およびデジタル
−アナログ変換回路lOに供給される。1儂記憶回路9
のデジタル画gI!信号は特徴抽出回路11に取り込ま
れ分類に必賛な特徴音が求められる。このとき分類結果
が不明球や異常球であればマイクロコンピュータ12は
lli儂紀憶回路9のデジタル画像信号を検体誉号や判
別情報と共にたとえば磁気テープ等を用いた外部記憶装
置8に格納し、同時に次の白血球検出指令管デジタル制
御回路7に発する。The analog-to-digital conversion circuit 4 converts the analog image signal into a digital image signal in response to the synchronization signal from the feature extraction circuit 11. Is this converted signal the feature extraction circuit 11? The data is stored in the memory circuit 9 via the memory circuit 9. Further, the synchronization signal from the feature extraction circuit 11 is supplied to the television camera 2 and the digital-to-analog conversion circuit IO. 1me memory circuit 9
Digital painting gI! The signal is taken into a feature extraction circuit 11, and characteristic sounds required for classification are obtained. At this time, if the classification result is an unknown ball or an abnormal ball, the microcomputer 12 stores the digital image signal of the LLI memory circuit 9 together with the specimen honor code and discrimination information in an external storage device 8 using, for example, a magnetic tape. At the same time, the next white blood cell detection command tube digital control circuit 7 is issued.
このようにして所要検体数の分類が終了すると結果がプ
リンタ等の出力装置16に打ち出される。When the classification of the required number of specimens is completed in this manner, the results are outputted to an output device 16 such as a printer.
分類終了後標本再検1行なうときは、マイクロコンピュ
ータ12からの指令により外部記憶装置8からデジタル
111g1信号が読み出されFmfll記憶回路9およ
びデジタル−アナログ変換回路10會介シテマルチプレ
クナ回路13.14が切換えられる。When performing sample re-examination 1 after classification is completed, the digital 111g1 signal is read out from the external storage device 8 in response to a command from the microcomputer 12, and the Fmfll storage circuit 9, digital-to-analog conversion circuit 10, and output multiplexer circuit 13.14 are read out from the external storage device 8. Can be switched.
前述のテレビカメラ2からのアナログ信号はアナログ−
デジタル変換回路4會介して特徴抽出回路11からの同
期信号によりデジタル画像信号に交換され特徴抽出囲路
!lに導かれる0%微抽出回路11では第3図に示すよ
うに、先ずテレビ画面29全体の濃度分布の特徴音から
の白血球の中心位置を求める。The analog signal from the TV camera 2 mentioned above is analog -
The synchronization signal from the feature extraction circuit 11 is exchanged into a digital image signal via the digital conversion circuit 4, and the feature extraction circuit is completed! As shown in FIG. 3, the 0% fine extraction circuit 11 guided by the 0% fine extraction circuit 11 first finds the center position of white blood cells from the characteristic sound of the concentration distribution of the entire television screen 29.
一方、この白血球の中心位&1基に白血球像より僅かに
広い特徴抽出視野30が設定される。特徴抽出視野30
が設定されると特徴抽出囲路11からの同期信号に基づ
き%像抽出視野30のアナログ1儂信号がアナログ−デ
ジタル変換回路4を介してデジタル画像信号に変換され
lji儂記憶回路9に格納される。特徴抽出回路11は
1儂記憶回路9のデジタル画像信号により白血球の分m
e行なう。結果が不明球や異常球であれば外部記憶装a
18にはマイクロコンピュータ12からの指令にまり画
儂紀憶回路9のデジタル画像信号が格納される。On the other hand, a feature extraction visual field 30 that is slightly wider than the white blood cell image is set at the center of this white blood cell. Feature extraction field of view 30
When is set, the analog signal of the image extraction field of view 30 is converted into a digital image signal via the analog-to-digital conversion circuit 4 based on the synchronization signal from the feature extraction circuit 11, and is stored in the image storage circuit 9. Ru. The feature extraction circuit 11 extracts the number of white blood cells based on the digital image signal of the single storage circuit 9.
eLet's do it. If the result is an unknown ball or an abnormal ball, use external storage device a.
18 stores digital image signals from the image memory circuit 9 according to instructions from the microcomputer 12.
さらに外部記憶装置8およびデジタルアナログ変換回路
10i1不明球や異常球などの標本再検を可能とする亀
のであシ、第2図のような構成である。第2図において
、1儂記憶回路9は高速のICメモリ回路17および出
力用バッファ18および19からなり、マイクロコンピ
ュータ12からの指令により分類動作中はバッファ19
を導通させて七き特徴抽出回路11にデジタル画儂信号
會供給している。一方、標本再検時はバッファ181導
通させ外部記憶装置8からのデジタル画像信号管デジタ
ルーアナログ変換回路lOへ供給している。Furthermore, an external storage device 8 and a digital-to-analog conversion circuit 10i1 are configured as shown in FIG. 2 to enable reexamination of specimens such as unknown balls and abnormal balls. In FIG. 2, the one-time storage circuit 9 consists of a high-speed IC memory circuit 17 and output buffers 18 and 19. During the sorting operation, the buffer 19 is
is made conductive to supply a digital image signal to the seven feature extraction circuit 11. On the other hand, when re-examining the specimen, the buffer 181 is turned on and the digital image signal from the external storage device 8 is supplied to the digital-to-analog conversion circuit IO.
外部記憶装置8からのデジタル画像信号は、特徴抽出囲
路11からの垂直同期信号に同期し垂直ブランキング期
間にマイクロコンピュータ12からの指令により11i
i偉記憶回路9に読み込まれる。The digital image signal from the external storage device 8 is synchronized with the vertical synchronization signal from the feature extraction circuit 11 and is processed by the microcomputer 12 during the vertical blanking period.
The information is read into the internal storage circuit 9.
バッファ18からのデジタルaij#信号は特徴抽出口
1811からの水平同期信号に同期しながら色の3原色
赤、緑、青信号用の高速デジタル−アナログ変換器2G
、21.22會介してアナログ画像信号に変換されアナ
ログ再生回路26,27゜28に導かれる。アナログ再
生回路26,27゜28では、特徴抽出回路11の同期
信号に基づき再生用同期信号を作成する再生同期回路2
5からの制御信号により特徴抽出視野30のみ會表示す
るアナログ画偉信号管合成し、アナログスイッチ23に
供給する。アナログスイッチ24にはテレビカメラ2か
らのアナログIii儂信号が供給され、マイクロコンピ
ュータ12からの指令によりカラ−モニタ15に再検用
の白血球像が表示される。The digital aij# signal from the buffer 18 is synchronized with the horizontal synchronization signal from the feature extraction port 1811 and is sent to a high-speed digital-to-analog converter 2G for the three primary color red, green, and blue signals.
, 21 and 22, the signal is converted into an analog image signal and guided to analog reproduction circuits 26, 27 and 28. In the analog reproduction circuits 26, 27 and 28, a reproduction synchronization circuit 2 generates a reproduction synchronization signal based on the synchronization signal of the feature extraction circuit 11.
5, an analog image signal tube for displaying only the feature extraction field of view 30 is synthesized and supplied to the analog switch 23. An analog signal from the television camera 2 is supplied to the analog switch 24, and a white blood cell image for reexamination is displayed on the color monitor 15 according to a command from the microcomputer 12.
以上の説明から明らかなように、本発明によれば次のよ
うな幼果が得られる。すなわち、本発明においては不明
球や異常球が出現したとき、白血球近傍のみのデジタル
画儂信号會記憶するため白血球1個当りの記憶容置が少
なくてすむという利点がある。As is clear from the above description, according to the present invention, the following young fruit can be obtained. That is, in the present invention, when an unknown cell or an abnormal cell appears, the digital image signal of only the vicinity of the white blood cell is stored, so there is an advantage that the storage capacity per white blood cell can be reduced.
すなわち、白血球近傍の横32μ、縦32μの画面のみ
を表示することになるため、表示画面性、16384絵
素に分割される。したがって白血球1個当りの記憶容置
は49152バイトで済み。That is, since only a 32μ horizontal by 32μ vertical screen near the white blood cells is displayed, the display screen is divided into 16,384 picture elements. Therefore, the storage capacity for each white blood cell is only 49,152 bytes.
大幅に減少できる。この結果、外部記憶装置へのデジタ
ル1偉信号の格納會効率よく行なえる効果がある。can be significantly reduced. As a result, the digital 1 signal can be efficiently stored in the external storage device.
なお、実施例は白血球の分類を行なう血液償自動分類装
置に適用した場合について述べ九が、がん細胞郷を検出
する細胞診断装置にも適用できる。Although the embodiment described above is applied to an automatic blood cell sorting device for classifying white blood cells, the present invention can also be applied to a cell diagnostic device for detecting cancer cells.
第1図は本発明全適用した血液像自動分*装置の構成図
、第2図は本発明の主要部の構成図、第3図は本発明の
詳細な説明図、第4図は動作原理1に説明するためのタ
イミング図である。Fig. 1 is a block diagram of an automatic blood image separation* apparatus to which the present invention is fully applied, Fig. 2 is a block diagram of the main parts of the present invention, Fig. 3 is a detailed explanatory diagram of the present invention, and Fig. 4 is the principle of operation. 1 is a timing diagram for explaining FIG.
Claims (1)
ら被測定対象物の2次元的光信号をアナログ信号に変換
する光電変換手段と、この光電変換手段からのアナログ
信号をデジタル信号に変換するアナログ−デジタル変換
手段と、このアナログ−デジタル変換手段からのデジタ
ル情報を2次元的に格納する第1の記憶手段と、この第
1の記憶手段からのデジタル1号に基づいて被測定対象
物の%徴を抽出する手段と、この特徴抽出手段からの結
果に基づいて前起第1の記憶手段のデジタル情報の中で
特定の被測定対象物のみのデジタル情報會格納する#I
2の記憶手段と、#I2の記憶手段に格納された特定の
被測定対象物のデジタル信号fr再生する手段とを備え
九本のにおいて、前記特徴抽出手段からの同期信号に基
づきアナログ−デジタル変換手段からのデジタル信号の
うち、被測定対象物近傍のデジタル信号のみf第1の記
憶手段に格納する手段と、第2の記憶手段から絖み出さ
れたデジタル信号管再生用アナログ信号に変換するデジ
タル−アナログ変換手段とを設け、このデジタル−アナ
ログ変換手段からの被測定対象物のみの再生用アナログ
信号を前記特徴抽出手段からの同期信号に基づき一画面
のアナログ信号に変換し九後、表示すること管特徴とす
る1欅処理再生装置。1. A photoelectric conversion means that converts the two-dimensional optical signal of the object to be measured into an analog signal while attaching the sample tube to be measured and moving it under the optical microscope, and converting the analog signal from this photoelectric conversion means into a digital signal. An analog-to-digital conversion means for converting, a first storage means for two-dimensionally storing the digital information from the analog-to-digital conversion means, and an object to be measured based on the digital number 1 from the first storage means. A means for extracting a percent characteristic of an object, and a means for storing digital information of only a specific object to be measured among the digital information in a first storage means based on the result from the feature extracting means.
2 storage means, and a means for reproducing the digital signal fr of a specific object to be measured stored in the storage means #I2; Among the digital signals from the means, means for storing only the digital signals near the object to be measured in the first storage means, and converting the digital signals extracted from the second storage means into analog signals for reproducing the digital signal tube. A digital-to-analog conversion means is provided, and the analog signal for reproducing only the object to be measured from the digital-to-analog conversion means is converted into one screen of analog signals based on the synchronization signal from the feature extraction means, and then displayed. 1. Keyaki processing and regeneration equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57042646A JPS58161064A (en) | 1982-03-19 | 1982-03-19 | Image processing and playback device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57042646A JPS58161064A (en) | 1982-03-19 | 1982-03-19 | Image processing and playback device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58161064A true JPS58161064A (en) | 1983-09-24 |
Family
ID=12641771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57042646A Pending JPS58161064A (en) | 1982-03-19 | 1982-03-19 | Image processing and playback device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58161064A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60162955A (en) * | 1984-02-03 | 1985-08-24 | Hitachi Ltd | Blood cell automatic analyzer |
JPH01123153A (en) * | 1987-10-06 | 1989-05-16 | Cell Analysis Syst Inc | Method and apparatus for determining nuclelo-protein |
JP2004323336A (en) * | 2003-04-28 | 2004-11-18 | Matsushita Electric Ind Co Ltd | Instrument for observing protein crystal |
-
1982
- 1982-03-19 JP JP57042646A patent/JPS58161064A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60162955A (en) * | 1984-02-03 | 1985-08-24 | Hitachi Ltd | Blood cell automatic analyzer |
JPH058380B2 (en) * | 1984-02-03 | 1993-02-02 | Hitachi Ltd | |
JPH01123153A (en) * | 1987-10-06 | 1989-05-16 | Cell Analysis Syst Inc | Method and apparatus for determining nuclelo-protein |
JP2004323336A (en) * | 2003-04-28 | 2004-11-18 | Matsushita Electric Ind Co Ltd | Instrument for observing protein crystal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070159533A1 (en) | Image filing method, digital camera, image filing program and video recording player | |
KR20000009742A (en) | Specific character appearing section detecting system | |
US5387928A (en) | Electronic endoscope system having both still and moving images | |
US3908078A (en) | Method and apparatus for digital recognition of objects particularly biological materials | |
JP4105809B2 (en) | Appearance inspection method and appearance inspection apparatus | |
US20020097388A1 (en) | Multi-spectral imaging system and method for cytology | |
US3963350A (en) | Apparatus for selectively segmenting red and white blood corpuscles contained in blood smear | |
JPS58161064A (en) | Image processing and playback device | |
JPS59158685A (en) | Still picture reproducing device | |
JPH023137B2 (en) | ||
JPH04156212A (en) | Automatic inspection method for overhead lines | |
JPH0357241A (en) | Automatic visual inspection equipment | |
JPH0575349B2 (en) | ||
JPS5852560A (en) | Automatic cell form classifying device provided with high speed video tape recorder device | |
RU2122733C1 (en) | Device for automated classification of blood corpuscles | |
US4853770A (en) | Video system for viewing microscopic specimens | |
JPH10274652A (en) | Object identification device | |
JP2003179811A (en) | Image compositing device | |
JPH07111630A (en) | Moving image editing device and cut integrating method | |
Roos et al. | Low-cost two-dimensional digital image acquisition subsystem for high-speed microscopic motion detection | |
JPH06337898A (en) | Moving picture editor | |
JPH06138119A (en) | Automatic cell classifying and analyzing apparatus | |
JP3539581B2 (en) | Particle image analysis method | |
JP3538918B2 (en) | Image data collecting apparatus and method | |
US4750210A (en) | Method and apparatus for finding objects within a visual display |