[go: up one dir, main page]

JPS58158918A - Manufacture of metal nitride thin film - Google Patents

Manufacture of metal nitride thin film

Info

Publication number
JPS58158918A
JPS58158918A JP4011082A JP4011082A JPS58158918A JP S58158918 A JPS58158918 A JP S58158918A JP 4011082 A JP4011082 A JP 4011082A JP 4011082 A JP4011082 A JP 4011082A JP S58158918 A JPS58158918 A JP S58158918A
Authority
JP
Japan
Prior art keywords
thin film
nitride thin
metal nitride
substrate
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4011082A
Other languages
Japanese (ja)
Inventor
Shuichi Kanamori
金森 周一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4011082A priority Critical patent/JPS58158918A/en
Publication of JPS58158918A publication Critical patent/JPS58158918A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a metal nitride thin film of low specific resistance and small internal stress easily, by a method wherein negative D.C. bias is applied to a substrate and hydrogen is added to nitrogen/argon mixing gas. CONSTITUTION:A chamber 1 is evacuated and hydrogen gas is introduced therewithin through a gas inlet port 8 until attaining a prescribed partial pressure. Nitrogen is introduced until attaining a prescribed partial pressure, and then argon is introduced until attaining total pressure of prescribed value. Discharging is started and a metal nitride thin film is deposited. Prescribed D.C. bias voltage is applied to a substrate 6 from a bias power source 7. In this constitution, a metal nitride thin film having low specific resistance and small internal stress can be obtained easily. If the thin film is used as part of electrode of IC, for example, as a diffusion barrier, parts being execellent in heat-resisting property and reliability can be obtained in high yield.

Description

【発明の詳細な説明】 不発911は比抵抗が小さく、かつ内部応力の小さい金
属窒化物薄膜の製造方法に関するものである〇 一般にチタン、モリブデン、タンタル勢の高融点金属の
電化物は、きわめて高い融点と嵩い機械的硬度會有し、
熱的、化学的vc%安定でめるために、 qr1m装置
9部品の機械的・熱的保睡換として使用さ・れ%最近で
はさらに半導体集槍關絡の高耐熱電極材料の一つとして
実用化されつつめる。
Detailed Description of the Invention: Fudo 911 relates to a method for manufacturing metal nitride thin films with low resistivity and low internal stress. In general, electrified materials of high-melting point metals such as titanium, molybdenum, and tantalum have extremely high It has a high melting point and high mechanical hardness,
In order to achieve thermal and chemical VC% stability, it is used as a mechanical and thermal insulation for the nine parts of the QR1M device.Recently, it has also been used as one of the high heat-resistant electrode materials for semiconductor integration. It will be put into practical use.

金w4菫化物薄1at−半導体集積回路の電極材料とし
て用いる場合、比抵抗か低いことが第1の栄件である。
When using gold W4 sulfuride thin 1at as an electrode material for semiconductor integrated circuits, the first priority is low resistivity.

一般vcチタン、ジルコニウムなどの窒化物はバルクで
比較すると%tとの金属元素よりも比抵抗が小さくなる
ことが知られている。しかし、電極材料に用いる厚・さ
@ 100〜数100OAの薄膜でに、棟々の散乱機構
のため比抵抗は一般に高くなる傾向があり、これ’k”
’Fけることが一つの1賛な技術となって−る〇 例えは、チタン、モリブデン、タンタル等の窒化物薄a
aを、窒素・アルゴン混合ガス中の反応性スパッタリン
グにより得る場合、窒素分圧。
It is known that general VC nitrides such as titanium and zirconium have a lower specific resistance than metal elements with %t when compared in bulk. However, in thin films with a thickness of 100 to several 100 OA used as electrode materials, the specific resistance generally tends to be high due to the scattering mechanism of the ridges.
An example is a thin film of nitride such as titanium, molybdenum, tantalum, etc.
When a is obtained by reactive sputtering in a nitrogen/argon mixed gas, the nitrogen partial pressure.

窒素・アルゴン混合ガス圧力葡増加させると窒化物薄膜
の元素組成、II中の不純物の影41により比抵抗は増
加するため、通常は放電が持続でさゐ厳小の圧力に設定
される。−1fc5さらに比抵抗を一トけるために基板
に負の直流バイアス電圧を印加する仁とが、きわめて効
果的でろる〇第1図に、基板に負のバイアス電圧を3印
加したスパッタリンク装置の概略図であり11は真9チ
ヤンバ、2は排気系、3はチタン、モリブデン、タンタ
ル等の金員ターゲット、4はじゃへい板、5/Ii高周
波電隊回路、6に基板、7にバイアス電源、8はガス導
入口である。第2図は窒化チタン薄膜の場合の換の比抵
抗とwa円に発生した内部応力について基板バイアスの
効果を示したグラフであるOPは比抵抗、#は内部応力
を示す。このテークは窒素分圧2.8 m Torr 
When the pressure of the nitrogen/argon mixed gas is increased, the resistivity increases due to the elemental composition of the nitride thin film and the shadow of impurities in II, so the pressure is usually set at a very low level while the discharge continues. -1fc5 It is extremely effective to apply a negative DC bias voltage to the substrate in order to further reduce the resistivity. Figure 1 shows a sputter link device in which three negative bias voltages are applied to the substrate. This is a schematic diagram. 11 is a true 9 chamber, 2 is an exhaust system, 3 is a metal target such as titanium, molybdenum, tantalum, etc., 4 is a barrier plate, 5/Ii high frequency electric circuit, 6 is a board, and 7 is a bias power supply. , 8 is a gas inlet. FIG. 2 is a graph showing the effect of substrate bias on the specific resistance and internal stress generated in the wa circle in the case of a titanium nitride thin film. OP indicates the specific resistance, and # indicates the internal stress. This take has a nitrogen partial pressure of 2.8 m Torr.
.

窒素・アルゴン混合ガス圧力16.8 mTorr 、
高絢波電力400W(84合である。
Nitrogen/argon mixed gas pressure 16.8 mTorr,
High power wave power 400W (84 degrees).

このように、基板バイアス印加は窒化チタン薄膜の比抵
抗P低減に対してきわめて効果的であるが、反面膜内に
着しい内部応力σが発生するために、7牛導体素子を製
造するwiAにウェハのそりにより微細パターンの形成
が由離となること、膜か犀い場合にはクラックやはがれ
が発生するなど、看しい障杏の原因となっていた。
As described above, applying a substrate bias is extremely effective in reducing the resistivity P of the titanium nitride thin film, but on the other hand, it generates a large internal stress σ in the film, so it is difficult to apply This has caused problems such as warpage of the wafer, which causes the formation of fine patterns to become unbalanced, and cracks and peeling of the film when the film is rough.

本発明は以上の問題t−解決するために、冨素・アルゴ
ン混合ガス中にざらに水素を添加し、かつ基板に直流バ
イアスを印加することt特徴としたものでめる。
In order to solve the above-mentioned problems, the present invention is characterized by adding hydrogen roughly into the amine/argon mixed gas and applying a direct current bias to the substrate.

すなわち上記の目的を連敗するために、本発明に窒化物
か導電性を有する金属窒化物薄膜を基板バイアスに負の
バイアス電圧を印加して反&ら性スパッタ法で形成する
金楓、i!化物amの製造方法において、Mg、アルゴ
ン混合ガスに水嵩km加した雰囲気で形成することを特
徴とする金属窒化物薄膜の製造方法上発明の要旨とする
ものでおる。
That is, in order to continuously defeat the above-mentioned purpose, the present invention has been proposed to form a nitride or a conductive metal nitride thin film by applying a negative bias voltage to the substrate and using an anti-rotational sputtering method, i! The gist of the invention is a method for producing a metal nitride thin film, which is characterized in that the method for producing a metal nitride thin film is formed in an atmosphere in which a volume of water km is added to a mixed gas of Mg and argon.

次V(一本発明の実施fi4j′を説明する。実施例は
一つの91+ボであって1本発明の精神會逸脱しない範
囲において、1111I々の変更あるいは改良を行いう
ダことは云う萱でもない0 本発明でに、窒素・アルゴン混合ガス中に水素を冷加す
ることt特徴とする。
The following V (an embodiment of the present invention will be described).The embodiment is a 91+ board, and it goes without saying that various changes or improvements may be made without departing from the spirit of the present invention. No 0 The present invention is characterized by cooling hydrogen in a nitrogen/argon mixed gas.

不発明の実施に用いられる装置1には第1図に示すもの
であり1図においてlは真空チャンバ、2は排気糸、3
は金属ターゲット、4にじゃへい板、5は高周波を源回
路、6に基板、7はバイアス電#A18はガス導入口、
9は流量調節弁1示す。手順は、1丁チャンバ1内を排
気抜水*にガス導入口8に設けられた流量@動弁91r
調節することにより、所定の分圧になるまで尋人する。
The apparatus 1 used to carry out the invention is shown in FIG. 1, where l is a vacuum chamber, 2 is an exhaust line, and 3 is a
is a metal target, 4 is a barrier plate, 5 is a high frequency source circuit, 6 is a substrate, 7 is a bias voltage #A18 is a gas inlet,
Reference numeral 9 indicates the flow control valve 1. The procedure is to exhaust the inside of the chamber 1 and drain the water * by adjusting the flow rate provided at the gas inlet 8 @ valve 91r.
By adjusting, the pressure is increased until the predetermined partial pressure is reached.

つづいて窒素t−四様KF9F足の分圧になる様に導入
し、最後にアルゴン會、使用する装置によって定められ
ている全圧力か用足の圧力となる貰で導入したのち、放
電葡開始させ、金lj4窒化物薄膜會堆積させる0この
とき、基板には所定の負の′@流バイアス電圧會印加し
ておく。
Next, nitrogen is introduced so that the partial pressure of KF9F is reached, and finally, argon is introduced at the full pressure determined by the equipment used, or after the pressure is reached, the discharge begins. At this time, a predetermined negative current bias voltage is applied to the substrate.

第3図は、窒化チタン薄II會、窒素分圧2.8m T
orr 、水素分圧1 h 4 m Torr sアル
ゴン−窒素・水素混合〃ス圧力16.8 m Torr
 e高周波電力400Wq)条件により形成させたとき
の験比抵抗。
Figure 3 shows titanium nitride thin II chamber, nitrogen partial pressure 2.8mT
orr, hydrogen partial pressure 1 h 4 m Torr, argon-nitrogen/hydrogen mixture pressure 16.8 m Torr
e Experimental specific resistance when formed under the condition of high frequency power (400 Wq).

内部応力の基板バイアス依存性を示したものでおる0第
3図より、水1g添加によジ比抵抗、内部応力ともに小
さな領域が、バイアス電圧−旬V〜−30Vに存在する
ことがわかる。
From FIG. 3, which shows the dependence of internal stress on substrate bias, it can be seen that when 1 g of water is added, a region in which both resistivity and internal stress are small exists at a bias voltage of -V to -30V.

第4凶は、水素分圧と窒素分圧の比を変化させたときの
比抵抗、内部応力が急増する臨界バイアス電圧を示す。
The fourth problem is the critical bias voltage at which the resistivity and internal stress suddenly increase when the ratio of hydrogen partial pressure to nitrogen partial pressure is changed.

斜am分が内省とも低い領域であり、水素分圧と窒素分
圧の比で0.5付近に最適値が存在することを示す。東
用上分圧比としては0.25〜0.75の範囲が好まし
い。
Introspection shows that the oblique am component is in a low region, and the optimum value exists around 0.5 for the ratio of hydrogen partial pressure to nitrogen partial pressure. The preferred upper partial pressure ratio is in the range of 0.25 to 0.75.

水素添加ycよp、比抵抗ならひyc P3部応カが低
下する憤域か広がる原因については、現在のところIだ
よくわかってない。一般に反応性スパッタリンダにより
薄@管形成す°る場合、スパッタリングガス(Ar 、
 N雪など)ないしはスパッタ雰曲気中に含まれる微量
の酸素が膜中に不純物として喉り込まれ易く、これらが
薄膜の物理的特性を大きく変えることが知られている。
Hydrogen addition is yc, and resistivity is yc.At present, the cause of the decline in P3 response and its widening range is not well understood. Generally, when forming a thin tube using a reactive sputtering cylinder, sputtering gas (Ar,
It is known that trace amounts of oxygen (N snow, etc.) or oxygen contained in the sputtering atmosphere are easily absorbed into the film as impurities, and that these greatly change the physical properties of the thin film.

また、基板バイアス印加も、この不純物の膜中への混入
に少なからず影会していることも第2図Vこ示す窒化チ
タンの結果の−IPIlがらりかがえる。従って、一つ
の可能性として強い還元作用【七する水素の添加か、こ
の膜中への不純物混入の慨構に対してam例らかの鋤き
tしているものと考えられる0第3図は電化チタンの場
合に見られた水素添加のガであるが、同様の効果は、他
の導電性含有する金IF4窒化物薄膜の場合にも期待さ
れるものである〇 以上aQQしたように、本発明によれば反応性スパッタ
リングにおいて基板に負のILRバイアスを印加し、か
つ窒素・アルゴン混合ガス中に水素全添加することによ
り、比抵抗が低くかつ円S応力の小さな金^窒化物博換
を容易に得ることができ、この薄膜を半導体集積回路の
電極の一部に、例えは拡散障壁層として使用丁Cば、耐
熱性ならびに信頼性に優れた部品か歩留りよく経隣的に
実現することができる。
Furthermore, the -IPIl results for titanium nitride shown in FIG. 2V clearly indicate that the application of substrate bias has a considerable effect on the incorporation of impurities into the film. Therefore, one possibility is that the addition of hydrogen, which has a strong reducing effect [7], is considered to be a measure against the contamination of impurities into the film, as shown in Figure 3. This is a result of hydrogenation seen in the case of electrified titanium, but a similar effect is also expected in the case of other conductive gold IF4 nitride thin films. According to the present invention, in reactive sputtering, by applying a negative ILR bias to the substrate and adding all hydrogen to the nitrogen/argon mixed gas, a gold^nitride compound with low resistivity and small circular S stress is produced. If this thin film is used as a part of the electrode of a semiconductor integrated circuit, for example as a diffusion barrier layer, it will be possible to produce components with excellent heat resistance and reliability in a high-yield manner. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスパッタリング装置の概略図、第2図は窒化チ
タン薄膜を高周波反応性スパッタリング法により形成し
た場合の襞の比抵抗と内部応力について基板バイアス効
果上水すグラフ、@3図に水軍・窒素・アルゴン混合ガ
ス中で同じく形成した窒化チタン薄膜の比抵抗と内部応
力についての基板バイアス効果を示すグラフ、第4図に
水素分圧と窒素分圧の比1jt変化させたとさの比抵抗
、内部応力が急増する臨界バイアス電圧上水すグラフで
ある。 l・・・・・・A空チャンバ、2・−・・・・排気糸%
 3・・・・・・金楓ターケット、4・・・・・・しや
へい板、5・・・・・・高周波m源ta路、6・・・・
・・基板、7・・・−・・バイアス電源、8・・・・・
カス導入口、9・・・・・・流量−動弁特許出願人 日
本電信電話公社 第4図 水lA鱈し1免分反 第2図 #−坂ハ4イ又t/E(v) 第3図 、is−ノ(イヱズ5噂芝力巳(v)
Figure 1 is a schematic diagram of the sputtering equipment, Figure 2 is a graph of the substrate bias effect and the internal stress of folds when a titanium nitride thin film is formed by high frequency reactive sputtering, and Figure 3 is a graph of the substrate bias effect. A graph showing the substrate bias effect on the specific resistance and internal stress of a titanium nitride thin film similarly formed in a nitrogen/argon mixed gas. It is a graph showing a critical bias voltage at which internal stress increases rapidly. 1...A empty chamber, 2...Exhaust thread%
3...Gold maple target, 4...Shiyahei plate, 5...High frequency m source ta path, 6...
...Substrate, 7...-Bias power supply, 8...
Waste inlet, 9... Flow rate - Valve patent applicant Nippon Telegraph and Telephone Public Corporation Figure 4 Water lA cod 1 division Figure 2 # - Sakaha 4 I Mata t/E (v) No. Figure 3, is-no (Izu 5 Rumor Rikimi Shiba (v)

Claims (1)

【特許請求の範囲】[Claims] 窒化物が導電性を有丁ゐ金属電化物薄at基板バイアス
に負のバイアス電圧會印加して反応性スパッタ法で形成
する金l141!!化物薄膜の製造方法にお−て、i!
素、アルゴン混合ガスに水素を添加した雰囲気で形成す
ることt−特徴とする金属窒化物薄膜の製造方法。
The nitride has conductivity and is formed by reactive sputtering by applying a negative bias voltage to the thin metal electrified substrate. ! In the method for producing a compound thin film, i!
1. A method for producing a metal nitride thin film, characterized in that the film is formed in an atmosphere in which hydrogen is added to a mixed gas of hydrogen and argon.
JP4011082A 1982-03-16 1982-03-16 Manufacture of metal nitride thin film Pending JPS58158918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4011082A JPS58158918A (en) 1982-03-16 1982-03-16 Manufacture of metal nitride thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4011082A JPS58158918A (en) 1982-03-16 1982-03-16 Manufacture of metal nitride thin film

Publications (1)

Publication Number Publication Date
JPS58158918A true JPS58158918A (en) 1983-09-21

Family

ID=12571713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4011082A Pending JPS58158918A (en) 1982-03-16 1982-03-16 Manufacture of metal nitride thin film

Country Status (1)

Country Link
JP (1) JPS58158918A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193441A (en) * 1985-02-20 1986-08-27 Mitsubishi Electric Corp Method of forming metal thin film and therefor device
JPS61269804A (en) * 1985-05-23 1986-11-29 松下電器産業株式会社 Manufacture of dielectric film
JPS6351630A (en) * 1986-08-21 1988-03-04 Sanken Electric Co Ltd Method of forming electrode for silicon substrate
JP2007308808A (en) * 2007-08-23 2007-11-29 Canon Anelva Corp Sputtering method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193441A (en) * 1985-02-20 1986-08-27 Mitsubishi Electric Corp Method of forming metal thin film and therefor device
JPS61269804A (en) * 1985-05-23 1986-11-29 松下電器産業株式会社 Manufacture of dielectric film
JPS6351630A (en) * 1986-08-21 1988-03-04 Sanken Electric Co Ltd Method of forming electrode for silicon substrate
JPH0581050B2 (en) * 1986-08-21 1993-11-11 Sanken Electric Co Ltd
JP2007308808A (en) * 2007-08-23 2007-11-29 Canon Anelva Corp Sputtering method
JP4719195B2 (en) * 2007-08-23 2011-07-06 キヤノンアネルバ株式会社 Sputtering method

Similar Documents

Publication Publication Date Title
US20060251872A1 (en) Conductive barrier layer, especially an alloy of ruthenium and tantalum and sputter deposition thereof
US3879746A (en) Gate metallization structure
US5670823A (en) Integrated circuit barrier structure
US5173449A (en) Metallization process
JP2002500704A (en) Tunable tantalum and tantalum nitride thin films
JPH02296334A (en) Wiring structure and its formation method
JPH0316132A (en) Aluminum wiring and manufacture thereof
US4853346A (en) Ohmic contacts for semiconductor devices and method for forming ohmic contacts
JPS58158918A (en) Manufacture of metal nitride thin film
US3794516A (en) Method for making high temperature low ohmic contact to silicon
EP0402061B1 (en) Metallization process
KR100365061B1 (en) Semiconductor device and semiconductor device manufacturing method
JPH0799739B2 (en) Method for forming metal thin film
JPH0193149A (en) Semiconductor device
JPH10125627A (en) Method for manufacturing semiconductor device and method for forming refractory metal nitride film
JPH07258827A (en) Thin metallic film and its formation and semiconductor device and its production
JPS629667B2 (en)
Nagano Electrical resistivity of sputtered molybdenum films
JPH05263226A (en) Thin film formation method
JP2001342560A (en) Sputtering target
JP2707305B2 (en) Thin film forming method, semiconductor device obtained by the method, and method of manufacturing the same
JP4046407B2 (en) Sputtering method and wiring formation method
JPS627263B2 (en)
JPH05279846A (en) Target for sputtering and formation of sputtered tion film
Igarashi et al. High-reliability copper interconnects through dry etching process