JPS58158165A - Food refrigeration - Google Patents
Food refrigerationInfo
- Publication number
- JPS58158165A JPS58158165A JP4115482A JP4115482A JPS58158165A JP S58158165 A JPS58158165 A JP S58158165A JP 4115482 A JP4115482 A JP 4115482A JP 4115482 A JP4115482 A JP 4115482A JP S58158165 A JPS58158165 A JP S58158165A
- Authority
- JP
- Japan
- Prior art keywords
- food
- temperature
- center
- points
- cold air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 235000013305 food Nutrition 0.000 title claims abstract description 50
- 238000005057 refrigeration Methods 0.000 title abstract description 4
- 238000000034 method Methods 0.000 claims abstract description 29
- 238000007710 freezing Methods 0.000 claims abstract description 24
- 230000008014 freezing Effects 0.000 claims abstract description 24
- 239000013078 crystal Substances 0.000 claims abstract description 20
- 230000008569 process Effects 0.000 claims abstract description 19
- 238000001816 cooling Methods 0.000 claims abstract description 17
- 239000002775 capsule Substances 0.000 claims abstract description 16
- 238000004781 supercooling Methods 0.000 claims abstract description 4
- 238000010583 slow cooling Methods 0.000 claims description 3
- 235000013372 meat Nutrition 0.000 abstract description 21
- 230000015572 biosynthetic process Effects 0.000 abstract description 10
- 241000251468 Actinopterygii Species 0.000 abstract description 7
- 150000004676 glycans Chemical class 0.000 abstract description 5
- 229920001282 polysaccharide Polymers 0.000 abstract description 5
- 239000005017 polysaccharide Substances 0.000 abstract description 5
- 239000000243 solution Substances 0.000 abstract description 5
- 108010010803 Gelatin Proteins 0.000 abstract description 3
- 229920000159 gelatin Polymers 0.000 abstract description 3
- 239000008273 gelatin Substances 0.000 abstract description 3
- 235000019322 gelatine Nutrition 0.000 abstract description 3
- 235000011852 gelatine desserts Nutrition 0.000 abstract description 3
- 235000013311 vegetables Nutrition 0.000 abstract description 3
- 238000002347 injection Methods 0.000 abstract 1
- 239000007924 injection Substances 0.000 abstract 1
- 230000003449 preventive effect Effects 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 32
- 210000004027 cell Anatomy 0.000 description 13
- -1 lipid amino acids Chemical class 0.000 description 9
- 241000519695 Ilex integra Species 0.000 description 8
- 239000004698 Polyethylene Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 229920000573 polyethylene Polymers 0.000 description 8
- 241000209094 Oryza Species 0.000 description 7
- 235000007164 Oryza sativa Nutrition 0.000 description 7
- 239000000796 flavoring agent Substances 0.000 description 7
- 235000019634 flavors Nutrition 0.000 description 7
- 238000004321 preservation Methods 0.000 description 7
- 235000009566 rice Nutrition 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 235000020637 scallop Nutrition 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 241000237503 Pectinidae Species 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- 238000010257 thawing Methods 0.000 description 5
- 210000000689 upper leg Anatomy 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 241000884009 Hyporhamphus unifasciatus Species 0.000 description 4
- 241001600434 Plectroglyphidodon lacrymatus Species 0.000 description 4
- 238000007664 blowing Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 241000861914 Plecoglossus altivelis Species 0.000 description 3
- 235000013339 cereals Nutrition 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 244000144730 Amygdalus persica Species 0.000 description 2
- 241001474374 Blennius Species 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 2
- 102100022624 Glucoamylase Human genes 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 241000017667 Hemiramphidae Species 0.000 description 2
- 241000237509 Patinopecten sp. Species 0.000 description 2
- 241000861915 Plecoglossus Species 0.000 description 2
- 235000006040 Prunus persica var persica Nutrition 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 230000009088 enzymatic function Effects 0.000 description 2
- 235000013611 frozen food Nutrition 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 210000003470 mitochondria Anatomy 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- 235000015277 pork Nutrition 0.000 description 2
- 229910001414 potassium ion Inorganic materials 0.000 description 2
- 210000003705 ribosome Anatomy 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000002407 ATP formation Effects 0.000 description 1
- 241000270722 Crocodylidae Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005138 cryopreservation Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- LNNWVNGFPYWNQE-GMIGKAJZSA-N desomorphine Chemical compound C1C2=CC=C(O)C3=C2[C@]24CCN(C)[C@H]1[C@@H]2CCC[C@@H]4O3 LNNWVNGFPYWNQE-GMIGKAJZSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 235000014102 seafood Nutrition 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Freezing, Cooling And Drying Of Foods (AREA)
Abstract
Description
【発明の詳細な説明】
木発明け、食品、特に魚介類や蓄肉その他の生鮮食料品
、あるいけ鮨、ももその他の砕理食品な畏期に渡って保
存するための冷凍保存方法に関する。DETAILED DESCRIPTION OF THE INVENTION This invention relates to a frozen preservation method for preserving foods, particularly seafood, meat and other fresh foods, raw sushi, peaches and other crushed foods over a period of time.
本出願へけ、既に特願昭5’、Fl−146084号に
て従来の冷凍食品の概念を破る新しい冷N保存方法を提
案している。本発明t’jこの出動の発明を基本にさら
に研究を重ね、新しい実験緒果および理論によりかさ幻
たもの弔、生鮮食品は個体レベルでは死であっても細胞
レベルでは必イしもW−にでけいない2い5観点より分
子生物学の理論を導入17て全< % L、い冷?Il
保存方法をを成したもの′r−ある。In connection with this application, we have already proposed a new cold N preservation method that breaks the conventional concept of frozen foods in Japanese Patent Application No. 146084, 1973. The present invention has been further researched based on this invention, and new experimental results and theories have revealed that even though fresh foods may be death at the individual level, they are not necessarily fatal at the cellular level. Introducing the theory of molecular biology from 2 and 5 points of view 17 All < % L, Is it cold? Il
There is a method of preservation.
−tttわ誂一般に食品の冷凍保存は、できる眼り、伜
速に冷却し低温4?存することがよいと貴女られている
が、従来の冷?jp保存技術は生鮮食品を生のない一伊
の物体であるという概念でとら憂、物理的111面より
見た実験的手法によって遺り出されて来ている。ところ
がこのような従来技術に、につでは食品のf質を防ぐ本
質的な冷凍保存方法は到底得られない。-ttt In general, food can be stored frozen at a low temperature of 4? You say that it is good to have cold water, but is it cold? Preservation techniques have been developed based on the concept that fresh foods are inanimate objects, and are based on experimental methods viewed from a physical perspective. However, with these conventional techniques, it is impossible to obtain an essential frozen preservation method that prevents food from becoming defective.
一般的には生命体が自己と同じものを再生産しうる機能
を生、その機能を失ったものを死と呼ぶが、生命体が秩
序たったS能(運動、呼吸、発芽1体温の憬持、外敵に
対する防#など)を失った場合1個体レベル”’(−に
丁死と判断できても細胞1/ベルて゛け必ずしも死と判
断で−きたい。細胞は細胞質からなり細胞膜でPま幻で
いる。細胞核は染色体を含み遺伝子情替を伝えるメッセ
質は種々の可溶性物質(代謝物質つWIf)ル溶かし込
ん弔いるとともに多くの微aS造を含ん弔いる(例憂げ
呼吸酵素を含2.ATPの生産の鳩で・おるミトコンド
リアやタンパク質を成の埴であるリボゾームなど)。こ
のような細胞lノベル″′r−Nた坦合タンパク質の立
体ei造、細胞内イオン濃度および脂質の変化等がlI
H胞の活性に影響することがすこぶる大−f−ある。細
胞の生成のメカニズムは、酵素の働き′″r−加種類た
まりのアミノ酸に分解された物質を、細胞内のDNAの
遺伝子情報にしたがい、リボゾームと呼ばわる工場のよ
うtr トころて゛、ミトコンドリアで作られるエネル
ギATPを使いながら、1’lNAの働λ手とtで再び
脂質のアミノ酸の檜成rJる立体構造物を作り上けると
いうもので[らこの立体i$構造物結合がペプチド結合
であり、組上げらねた、4
物質がタンハク質に仲ならない。ヂ験によると。Generally speaking, a living organism has the ability to reproduce the same thing as itself, and when that function is lost, it is called death. , defense against foreign enemies, etc.), even if it can be determined that the cell is dead at the level of 1 individual, it cannot necessarily be determined that the cell is dead if the cell level is 1. The cell nucleus contains chromosomes, and the message substances that convey genetic information dissolve various soluble substances (metabolites (WIF)), and also contain many micro-AS structures (for example, respiratory enzymes are included). 2. Mitochondria, which are responsible for the production of ATP, and ribosomes, which are responsible for the formation of proteins, etc.).These cell novel studies include the three-dimensional structure of r-N-carrying proteins, the intracellular ion concentration, and the lipid content. Changes etc. are lI
It has a very large effect on the activity of H follicles. The mechanism of cell production is the action of enzymes that decompose substances into amino acids, which accumulate in r-additives, and transfer them to mitochondria, which act like factories called ribosomes, according to the genetic information in the DNA within the cell. While using the energy ATP generated, a three-dimensional structure of lipid amino acids is again created with the λ hand of 1'lNA and t. , I didn't put it together, 4. Substances are not compatible with substances.According to my experience.
このオブジェのような立体*遺物を押し仁がすと酵素の
働きが無くなり、元の構造に戻すと再び酵素の働きをす
゛ることか明確になった。It became clear that when a three-dimensional *relic like this object was pushed away, the enzyme's function disappeared, and when it was returned to its original structure, the enzyme's function resumed.
また生産活動けそ幻ぞ幻の動植物に応じた達嬶tt濡度
、夾分、カス組成、圧力および光等を得ることに1って
行なわ幻るが、特に水分、温度およびカス組成の9化は
生命活動に非常に大きな影響をJ5女る、さらV細胞膜
を自由に通過し2で移動する自由水はナトリウムイオン
駒カリウムイオンの電解質濃度をf身、生体反応の明害
要図を生じさせることも重要である。In addition, production activities are carried out to obtain the wetness, impurities, waste composition, pressure, light, etc. that correspond to the fantastic animals and plants, but in particular, the changes in moisture, temperature, and waste composition are carried out. In addition, free water that freely passes through cell membranes increases the electrolyte concentration of sodium ions and potassium ions, giving rise to the light and damage diagram of biological reactions. It is also important that
こハらの諸点を勘案すると、分子生物学的にげ保存すべ
き食品を−y℃程度の低温で酵素の活性を抑制しつつ自
由水、結合水ともに未凍結の状態を作り出すことが埋憩
であるが、こわは物理的に不可能である。・そこで食品
中の自由水、結合水の凍結を歩然に伴う冷凍保存におい
ては、これらの氷結晶かペプチド結合の継手を切ること
なく、タンパク質の立体!S造を押し抹けることなく、
また目山水、結合水が移動しないように凍結させること
が理想となる。また立体構造物のすぐそばに*分がない
と解凍したとき別の脂質と結合しやすく、そうすると酵
素の働きがなくなることから、氷結晶が微細均一に食品
中に分布していることも必要である。Taking these points into consideration, the solution is to suppress the activity of enzymes at temperatures as low as -y℃ for molecular biological preservation of foods, and to create an unfrozen state for both free water and bound water. However, this is physically impossible.・Therefore, in cryopreservation, which involves freezing the free water and bound water in foods, it is possible to preserve the three-dimensional structure of proteins without cutting these ice crystals or peptide bond joints. Without being able to crush S-zo,
It is also ideal to freeze the Meyama water and bound water so that they do not move. In addition, if there is no * in the immediate vicinity of the three-dimensional structure, it is likely to bond with other lipids when thawed, and the enzyme will no longer function, so it is necessary that the ice crystals be distributed evenly in the food. be.
木発開け、このようか解析に基き、氷結晶が微細でペプ
チド結合の継手を9ることがfrいか極めて少なく、[
2かも水分の移動を防止しながら食品中に絢−に氷結晶
を形成千きる方法を開発したもので、基本的には冷凍保
存すべき食品の外胛面に氷結カプセルを形成するととも
に食品中心温度をOr〜3℃前稜とするように冷却する
氷結カプセル形成1稈:Hいて最大氷結晶生成帯を難凍
状糾で通過させる過冷却状態を作り出し、食品中心温度
を一6℃jJ下とするように冷却する過冷却工程;食品
の外周温度と中心素度とを均衡させるように冷却する緩
慢冷却工程:および食品中に氷結晶を形成するJ5に冷
却する氷結工程を含にr−なりている。Based on this kind of analysis, the ice crystals are so fine that it is extremely rare for them to form peptide bond joints.
2) A method has been developed to form ice crystals in foods while preventing the movement of moisture.Basically, it forms ice capsules on the outer surface of foods to be frozen and freezes them. Form a frozen capsule by cooling the temperature to a temperature of Or~3°C.Create a supercooled state in which the maximum ice crystal formation zone is passed through the maximum ice crystal formation zone with hard-to-freeze dregs, and reduce the core temperature of the food to -6°C below. A supercooling process in which the food is cooled so that the outer temperature and the center temperature are balanced; a slow cooling process in which the food is cooled to balance the outer temperature and the center temperature; It has become.
月下各工程について説明する。Each step under the moon will be explained.
1)氷結カプセル形成工程
氷結カプセルは食品の外周部を強固trカプセルで眸定
することfより1食品の凍結時膨圧のp影−を除く目的
をP−もので、細胞檜成体の間隙を固定什[極小間隙の
存在割合を多イして、最大氷結晶生成帯を通運する際の
自由水、結合水の凍結を防ぎ、あるいは糠結永結晶を微
細化する可能性を高めるものである。またこの工程は食
品中心温度を最大氷結晶生成帯(−1℃〜−5℃)の直
前、すなわ¥0℃〜3℃前後に重下げる目的を持つ。1) Freezing capsule formation process Freezing capsules are made by forming a solid tr capsule around the outer periphery of the food. Fixing agent [Increasing the proportion of extremely small gaps to prevent free water and bound water from freezing when transported through the zone of maximum ice crystal formation, or to increase the possibility of refining nuka crystals. . This process also has the purpose of significantly lowering the temperature at the center of the food to just before the maximum ice crystal formation zone (-1°C to -5°C), that is, around 0°C to 3°C.
この氷結カプセル形成工程は、好tt<け−25’t〜
−45℃の冷風を10〜40分間食品の外周部に吹き付
けることによって達成される。This freezing capsule forming step is preferably
This is achieved by blowing -45°C cold air around the outer periphery of the food for 10 to 40 minutes.
この際食品によっては外周部に適宜水分を補給する。冷
却温度が一25℃以上では外周部氷1iN 4% カ3
00μIIl〜900μ惰の大きさKなり細胞を破壊す
る。また−45℃hl下では外周温度と中心温度の差が
大きくたり浸透圧の差による巨由水の8iIr)lが生
じpHを変女ろおそわがある、この工程においては中心
温度と外周温度との差をできるだけ少なくし、本分が中
央剖から外周に移動するのを防止しtrがら中心温度を
Oで〜3r前後にする、氷結カプセルによる外周固定と
内剖一部凍結により内圧が高まり、けざま水が甲定され
て雛沫状態が作りWlされる。At this time, depending on the food, moisture is appropriately added to the outer periphery. When the cooling temperature is 125°C or higher, the outer peripheral ice is 1 iN 4%.
A size K of 00 μII to 900 μII destroys cells. In addition, under -45℃HL, there is a large difference between the outer temperature and the center temperature, and the difference in osmotic pressure causes large water to be generated, which may cause the pH to change.In this process, the center temperature and the outer temperature The inner pressure is increased by fixing the outer periphery with a freezing capsule and freezing a part of the internal organs, which minimizes the difference in temperature and prevents the main body from moving from the central part to the outer periphery. Kezama water is established and a state of droplets is created and Wl is performed.
2)堝冷却工程
最大氷結晶生成帯(−1℃〜−5℃)を難棟状態で通過
させる過冷却状態を作り出すものである。すなわも自由
水、V含水ともにできるだけ凍結しないように冷却条件
を定めるものであるが、好ましくけ一50℃〜−90℃
の冷風を1n〜30分間吹き付けるとよい。−50℃貝
上では過冷却状態がつくれずに結氷し、また−90℃卦
J下ではゴネルギが無駄になる。この壷冷却工程げコツ
プの水に一70℃〜−90℃の冷風を吹き付は急冷する
と一7′C′〜−1(l ℃にたっても凍結せず、パ/
ヨツクをふえると一挙に凍結する増徴を利用するもの弔
、細胞内の自由水、結合水は未凍結の状態で最大氷結晶
生成帯を通過141食品の中心温度は一6℃以下となる
。2) Basin cooling process This process creates a supercooled state that allows the ice to pass through the maximum ice crystal formation zone (-1°C to -5°C) with difficulty. In other words, the cooling conditions are set so that both free water and V-containing water do not freeze as much as possible, preferably between 50°C and -90°C.
It is best to blow cold air for 1 to 30 minutes. At -50℃, the supercooled state cannot be created and it freezes, and at -90℃, gonery is wasted. This jar cooling process involves blowing cold air at a temperature of 170°C to -90°C onto the water in the pot.
When the ice is increased, the free water and bound water in the cells pass through the zone of maximum ice crystal formation in an unfrozen state, and the core temperature of the food becomes 16°C or less.
3)緩慢冷却工程
食品中心温度が一6T〜−10℃位になったとき、浸透
圧の差によって再び食物の中心部より外周部に自由水が
移動してpHの肇化が起きないように、またタンパク質
のアミノ酸のすぐそばが水利状態であるようにするため
、中心部と外周部の温度差を小さくする工程であって、
好ましくは−251:〜−45℃の冷風を10〜40分
間吹き付けて行なう。−25℃以上では温度伝達時間が
かかり過ぎて温度均衡が遅れる。また−45℃DI下″
C′は外周部と中心部の温度差が拡がり好ましくない。3) Slow cooling process When the temperature at the center of the food reaches about 16T to -10℃, the difference in osmotic pressure causes free water to move from the center of the food to the outer periphery, preventing pH change. In addition, in order to ensure that the amino acids in the protein are in a state of water availability, it is a process that reduces the temperature difference between the center and the outer periphery.
Preferably, cold air at -251°C to -45°C is blown for 10 to 40 minutes. If it is -25°C or higher, the temperature transfer time is too long and temperature equilibrium is delayed. Also under -45℃DI''
C' is not preferable because the temperature difference between the outer circumference and the center increases.
4)氷結工程
ぶl上の各工程を経て難凍状態にある食品中の水分を物
理的に凍結せしめ、氷結晶をペプチド結合の継手を切る
ことのない10μ情台の大きさとするとともに、食品中
に均一に分布させる工程である。こねは二段階に分けて
行なうことが好ましい。すなわも最初は遺冷却状絆の食
品を一挙に凍結させて食品中心温度を瞬時に一10℃以
下とするもので、好ましくけ一30r〜−90℃の冷風
を1ρ〜30分間吹き付けて行なう。−50℃p1上で
は当該食品を一挙に低濡塘に持込むことができず、一度
に花が咲いたような好ましい結氷が得られfrい。また
−90℃hl下としても結氷の微細化の効##は増大せ
ずゴえルギが無駄になる。4) Freezing process Physically freezes the water in the food, which is in a hard-to-freeze state through each of the above steps, and makes the ice crystals into a size of 10 μm without cutting the joints of peptide bonds. This is the process of uniformly distributing it inside. It is preferable to knead in two stages. In other words, the first step is to freeze the frozen food all at once to bring the temperature at the center of the food down to 110°C or less, preferably by blowing cold air at a temperature of 30°C to -90°C for 1° to 30 minutes. . At -50°C p1, the food cannot be brought to a low wet volume all at once, and it is difficult to obtain favorable freezing that looks like a flower blooming all at once. Further, even if the temperature is -90°C, the effect of making the ice finer does not increase, and the ice is wasted.
次げ脂質との結合が強い未凍結の水分をゆりくり凍結し
て!質を防止する工程である。Next, slowly freeze the unfrozen water that has strong bonds with lipids! This is a process that prevents quality.
これは好ましくは一25℃〜−45℃の冷風を10〜4
0分間吹き付けることKよって達成され、中心温度が一
18℃以下になったとき氷結工程を終了して保存状態と
する。−25℃p1上の冷却温度では結氷に時間がかか
り鍋ぎて冷凍サイクルが長くなり設備の利用序が#もて
コストが上がる。また−45℃月下としても、W!1質
との結合力の強い水分の結氷については顕著な微細化の
効果は得られT′エネルギの無駄になる。This is preferably done by blowing cold air at -25℃ to -45℃ for 10 to 4 hours.
This is achieved by spraying for 0 minutes, and when the center temperature falls below 118°C, the freezing process is completed and the storage state is achieved. At a cooling temperature above -25°C, it takes a long time to freeze, which makes the refrigeration cycle longer, which makes it difficult to use the equipment and increases costs. Also, even under the moon at -45℃, W! Regarding the freezing of water that has a strong binding force with one substance, a remarkable effect of miniaturization can be obtained, but the T' energy is wasted.
套1上の各工程を経て冷i保存された食品を真空解凍、
自然解凍等によって解凍すると、タンパク質の立体fl
l造小枝とのMに微細にちらばりていた10μ票台の氷
結晶がとけ、再びタンパク質との水利状・11iv!に
戻る。これによってカリウムイオン、ナトリウムイオン
の電解質濃度も7化せず1分子生物学的に見て生細胞の
ような活性状態に復元することができる。Vacuum thaws food that has been cold-preserved after going through each process on the tube.
When thawed by natural thawing, etc., the three-dimensional fl of the protein
The ice crystals on the 10μ scale that were minutely scattered in the M with the l-shaped twigs melted, and the water usage condition with the protein was again 11iv! Return to As a result, the electrolyte concentration of potassium ions and sodium ions does not change to 7, and can be restored to an active state similar to that of a living cell from a single molecule biological perspective.
pJ下実施例につき木登一方法の効果を舘明する。The effects of the Kito Hajime method will be demonstrated using the examples below.
〈実施例1〉
冷却用ボックス内温度15℃(常温)雰胛り下におイテ
105I×10cNx3m#テ3ooI!ノ豚モモ肉3
(I!を長さ40511X巾21151 X深さ5cm
ノステンレスル皿の中に1aIのスペーサーをおいて
固足し、これに植物多糖類又はゼラチンを含むバラケ剤
液を注入して肉片の上下1a++のカブリの出来るよう
浸漬させてから一35℃の冷風を25分間吹付けて、肉
片の表面に強固t「カプセルを形威させながら中心温度
が3℃になるよらセットした。次に−fiFtTの冷風
を吹付け、前工程で内部圧の高まり等によってはざま水
の問定化が進み11I凍状態にある計食品を過冷却状鰐
として更Vrlf夢状郭を増幅し最大氷結黒牛ぽ帯を、
―速に逆溝せしぬたところ中心温度は一6℃になった。<Example 1> Inside the cooling box, the temperature was 15°C (room temperature) and the size was 105I x 10cN x 3m. Pork thigh meat 3
(I! length 40511 x width 21151 x depth 5 cm
A 1aI spacer is placed in a nostalgic dish, and a baling agent solution containing vegetable polysaccharide or gelatin is injected into it, and the meat pieces are immersed until the top and bottom 1a++ are fogged, and then cooled at -35°C. was sprayed on the surface of the meat piece for 25 minutes, and the temperature was set so that the center temperature reached 3℃ while forming the capsule. As the question of the water progresses, 11I transforms the food in the frozen state into a supercooled crocodile, further amplifying the Vrlf dream shape and making the maximum frozen black beef belt,
-I quickly turned around and the temperature at the center was -6 degrees Celsius.
しかるのち冷風を一35℃に切換えて25分間吹付は外
周と中心温度の均衡を図りながら・緩慢に冷却したとこ
ろ中心温度が一8℃になった。次に冷風を一65℃に切
換え15分間冷却し、計食品の中心温度を−13でにし
たところ10μ漢台の大きさの自由水の結晶が食品中に
万遍にできた。次に冷風を一35℃に切り替身て30+
間冷却し。After that, the cold air was switched to -35°C and was blown for 25 minutes while trying to balance the temperature at the outer periphery and the center.When cooling slowly, the temperature at the center became 18°C. Next, the cold air was switched to -65°C and the food was cooled for 15 minutes to bring the temperature at the center of the food to -13°C. Free water crystals of 10 μm size were formed all over the food. Next, switch the cold air to -35℃ and set it to 30+
Cool for a while.
結合水と脂質の凍結固定をを了したところ中心温度は一
加℃となった。その後、−18℃の通常の冷凍庫に移し
て、6ケ月保存した。After the freeze-fixation of bound water and lipids was completed, the center temperature was 1°C. Thereafter, it was transferred to a regular freezer at -18°C and stored for 6 months.
別r同量の豚モモ肉3pずつを一35℃のエアーフ11
−ジング、エアブラストフリージングで24時間処理捗
厚さ40μ漢のポリエチレン袋f旬み一18″Cの通常
の冷凍Wに6ケ月間保存して対照区とした。Separately, add the same amount of pork thigh meat (3 pieces each) to an air fryer at 35°C.
The samples were treated with air blast freezing for 24 hours and then stored in a 40μ thick polyethylene bag in a 18"C regular freezer bag for 6 months to serve as a control.
本発明及対照区の冷凍肉を3℃で真空解凍し、解凍時の
ドリップ、肉色、肉の柔軟度、凍V@片に、J″る細胞
破壊度を顕微儒下で観艷し、さらにフライパン、でφい
て風味試験に供し表1の試験紳果を得た。本発明方法に
よる冷凍保存肉は冷凍6ケ月移も元と同鍍の品質ですぐ
れた保存効果を示すことが理解されよう。The frozen meat of the present invention and the control group was thawed under vacuum at 3°C, and the drips during thawing, the meat color, the softness of the meat, and the degree of cell destruction in the frozen V @ pieces were observed under a microscope. The meat was roasted in a frying pan and subjected to a flavor test, yielding the test meat shown in Table 1.It can be seen that the frozen preserved meat produced by the method of the present invention exhibits an excellent preservation effect with the same quality as the original even after being frozen for 6 months. .
(iD A ニドリップ量は元の肉片ttK対するチで
示す。(The amount of iDA Nidrip is shown in q against the original meat piece ttK.
B:肉色は生鮮時を5声とし、僅かVf合4点、壱−変
色した商品価値限界
3点、商品価値trL 2点、1点とする。B: Flesh color is 5 points when fresh, 4 points for slight Vf, 3 points for commercial value limit for discoloration, 2 points for commercial value trL, and 1 point.
0;肉の柔軟度は生鮮時を5点、僅かに軟化離水4点、
や\離水し神品価値
限界3点、商品価値たし2点、1声
とする。0; Meat softness is 5 points when fresh, 4 points for slightly softened syneresis,
Ya\Release water, divine value limit 3 points, commercial value 2 points, 1 voice.
D;細胞破壊度は生鮮肉に比べて一部が僅かに破壊1漬
、や\破壊21:fi、かなり破壊3点、強度の破壊4
点、5
点とする。D: Compared to fresh meat, the degree of cell destruction is slightly broken (1), or 21 (fi), quite broken (3 points), and strong (4 points).
Points, 5 points.
E;風味は生鮮肉を5点とし、僅かff風味低下4点、
や\風味低下3声、商
品価値限界2点、商品価値tr L、 1点とする。E: Flavor is 5 points for fresh meat, slight ff flavor loss 4 points,
\ Flavor decrease 3 points, product value limit 2 points, product value tr L, 1 point.
〈実施例2〉
冷却用ボックス内温度15″C(常連)雰囲気下で活魚
鮎(体]i50,9 ) ハマf−(同1.IKr)各
3匹を延髄打撃によりPI3殺し、鮎にステンレス金網
上で魚体を回1しながら植物多糖類又f”Xゼラチンを
含むバラケ剤を振りかけ、ハマチはそのままステンレス
の朋の上に乗せ−35での冷風で30f+冷却し鮎の表
面に厚さ1a++の強固な氷結カプセル、ハマチは麦皮
を含む皮下脂質(15a++ の氷結カプセルを形成
させたところ両者とも忙中心潟度は2℃となった。そ、
の後−75℃の冷風を2′1f+間吹付けて鮎の中心温
度を一8″C,ハマチを一6″Cとした。次に冷風を一
35℃に戻して30分間吹付は外周と中心温度との差な
平均化せしめたのち冷風を再び一75℃として15分間
吹つけ、中心温度が鮎−18″r、・・〜高℃になった
とき冷風を一35℃に戻して305+間吹きつけ、中心
温#−23℃としたのも一18℃の通常の′°冷凍庫に
移して1年間保存した。<Example 2> Live fish ayu (body) i50,9) Hama f- (same 1.IKr) in a cooling box temperature of 15''C (regular) atmosphere, three PIs were killed by medullary blow, and the ayu were treated with stainless steel. While turning the fish body on a wire mesh, sprinkle a separating agent containing vegetable polysaccharide or f" When yellowtail was formed into a solid frozen capsule of subcutaneous lipids (15a++) containing barley skin, the center lagoon of both was 2°C.
After that, cold air at -75°C was blown for 2'1f+ to bring the center temperature of the sweetfish to 18"C and the yellowtail to 16"C. Next, the cold air was returned to -35°C and blown for 30 minutes to average out the difference between the outer circumference and center temperature, and then the cold air was returned to -75°C and blown for 15 minutes until the center temperature was -18"r... When the temperature reached -35°C, cold air was blown for 305+ minutes to bring the center temperature to -23°C, which was then transferred to a regular freezer at -18°C and stored for one year.
別に同蒙゛の鮎とハマチ63匹ずつV同様に即殺し一3
5℃のエアーフリージング、エアープラストフリージン
グ及びコンタクトフリージングで24@間処理後厚さ4
0μmのポリエチレン袋に包み一1ドでの通常の冷凍庫
に1年間&存して対照区とした。Separately, 63 sweetfish and yellowtail were killed instantly like V.
Thickness 4 after 24 @ treatment with air freezing, airplast freezing and contact freezing at 5℃
It was wrapped in a 0 μm polyethylene bag and kept in a normal freezer for 1 year to serve as a control.
次に木を明及対照区の冷凍魚を3℃で真空解神し解凍時
のト°リップ、肉色、肉の柔軟度。Next, the frozen fish from the wood and control groups was thawed under vacuum at 3°C, and the trips, flesh color, and flexibility of the meat upon thawing were measured.
魚体中央背側皮膚より5mm深さの肉片の凍結切片によ
る細胞破壊度を顕微−下に観察し2、さらに鮎は塩溶と
しハマチは刺身として風味試験に律したところ本発明に
よる冷凍魚は解凍後生鮮魚と同様であった。P2けその
試験結果を示すものである。The degree of cell destruction was observed under a microscope using a frozen section of a piece of meat at a depth of 5 mm from the central dorsal skin of the fish body2.Furthermore, sweetfish was subjected to a flavor test using salt solution and yellowtail was used as sashimi.The frozen fish according to the present invention was thawed. It was similar to fresh fish. This shows the results of the P2 Keso test.
(註)A、B、O,D、 Eけ表1のそれらと同じ
〈実施例3〉
冷却用ボックス内温度15℃(常温)雰胛箆下で水揚げ
直後′f)8gのサヨリ、37gの活ホタテ貝柱の各3
個ずつを伺わも巾15倒×長さ3051 X 9 サ3
essのステンレス!uバットの中ニ入れ植物多糖類
とかゼラチン又はアルコールを含有するバラケ剤液を注
入して完全に液中に浸漬させ、−35℃の冷風をか分間
吹付は強固な結晶による氷結カプセルを彰成させて該食
品を外側より固定した。このとき中心温度げ3℃であっ
た。その後−65℃の冷風で10分間會速に冷却したと
ころ中心温度はサヨリ、ホタテ貝とも一10℃にかった
。さらに冷風を一35℃に戻し15分間吹付けて外周と
中心温度の差を縮めた後再び一65℃の冷風で10分間
冷却し中心温度を共K −IFI tとした。その後、
−35℃冷風を15分間吹付は中心温度を−かでとした
のも40μ愼厚さのポリエチレン袋に@み一18℃の通
常の冷凍庫に8伊月間保存した。(Note) A, B, O, D, and E are the same as those in Table 1 <Example 3> Immediately after landing in a cooling box at 15°C (room temperature) under an atmosphere of 8 g of halfbeak, 37 g of halfbeak 3 each of live scallops
Each piece is 15cm wide x 3051cm long x 9cm x 3cm
ess stainless steel! Fill the u-vat with a breaking agent solution containing plant polysaccharides, gelatin, or alcohol, completely immerse it in the solution, and blow cold air at -35°C for a minute to form frozen capsules with solid crystals. The food was then fixed from the outside. At this time, the center temperature was 3°C lower. Thereafter, when the shells were cooled for 10 minutes with cold air at -65°C, the center temperature of both halfbeaks and scallops was -10°C. Furthermore, cold air was returned to -35°C and blown for 15 minutes to reduce the difference between the outer periphery and the center temperature, and then cooled again with -65°C for 10 minutes to bring the center temperature to K - IFI t. after that,
-35°C cold air was blown for 15 minutes to bring the center temperature to -35°C, and the sample was stored in a 40 μm thick polyethylene bag in a regular freezer at 18°C for 8 months.
別に同量のサヨリ、ホタテ貝柱各3個をそ埋徒厚さ40
μ懸のポリエチレン袋に何み−1と℃の冷凍庫内に8伊
月間保存して対照区とした。Separately, fill the same amount of halfbeak and 3 scallops each to a thickness of 40 mm.
The samples were stored in a μ-sized polyethylene bag in a freezer at -1°C for 8 months to serve as a control.
次f本発閑及び対照区のサヨリおよびホタテ貝柱を3℃
で真空解凍17、解凍時のドリップ、肉色、肉の柔1度
、魚体中央ff1ll紳直下の肉片(す:3+1 )及
び貝柱中心部(ホタテ貝柱)の肉片の凍結切片による細
胞破壊度を顕eH1f:下で観察I’llさらにサヨリ
は$11身として貝柱はフライパンでバタ燐としてWL
味試験に俳し表3の試験結果を得たが本発明による冷神
品は解凍後においても生鮮品と区別かつかかい程の裏品
質を保っていた。Next, halfbeaks and scallops in the quiet and control plots were harvested at 3°C.
Vacuum thawed at 17, drips during thawing, meat color, meat tenderness 1 degree, degree of cell destruction by frozen sections of meat pieces just below the center of the fish body (S: 3 + 1) and the center of the scallop (scallop scallop) were observed eH1f. : Observe below I'll also add halfbeak to $11 and fry the scallops in a frying pan.
A taste test was conducted, and the test results shown in Table 3 were obtained, indicating that even after thawing, the chilled products according to the present invention were distinguishable from fresh products and maintained a comparable quality.
(註)A、B、O,D、には表1のそれらと同じ
〈ツ施例4〉
冷却用ボックス内温度2n’C(常温)浮塵65チ雰囲
気下fマグロにぎりずしく40.jil)及びのりまき
ずしく 300 fj )各3伊ずつを何れもステンレ
ス珈の上におき、−35℃の冷風を30分間吹付けて冷
凍庫内部の9間の9気中の水分とすし表伊の遊離水とを
米飯の1粒1粒の表面及びマグロ、のりのe11i+に
凝結させ各々独立した強固な氷VカプセルシY成させる
と中心温度0℃になった。その後−75℃の冷風を2f
+′f+間吹付けて命速に冷却[−だところ中心温If
が一8′Cとt「つた。次に一35℃の冷風を30分間
吹付は緩慢に温度を陸下させて外周と中心v度の均衡な
]す、中心温度を一11″Cとtだ。そこで−挙に自由
水を凍結させるために一75℃の冷風を15分間吹付け
ると中心温度が−17’i” Kなった。ミセル状のV
合の固い水分を凍結させるためψK −3!’; ′C
の冷風で30分間冷却し中心温度が一23℃K trり
たとき40μ愼厚のポリエチレン袋に卯み一18℃の通
常の冷凍庫内に移して1年間保存しまた。(Note) A, B, O, and D are the same as those in Table 1 <Example 4> Temperature inside cooling box 2n'C (room temperature) Floating dust 65cm Under atmosphere f Tuna barely 40. Place 3 pieces of each of 300 fj) and 300 fj) on a stainless steel plate and blow cold air at -35°C for 30 minutes to remove the moisture in the 9 air inside the freezer and remove the sushi surface. When the free water condensed on the surface of each grain of cooked rice, tuna, and seaweed e11i+ to form independent strong ice capsules, the center temperature reached 0°C. After that, -75℃ cold air is applied for 2f.
Cool to life speed by spraying for +'f+ [- center temperature If
Next, blow cold air at -35°C for 30 minutes to bring the temperature down slowly to balance the outer periphery and the center. is. Then, in order to freeze the free water, we blew cold air at -75℃ for 15 minutes, and the center temperature became -17'i'' K.The micellar V
ψK −3 to freeze solid water at the same time! ';'C
Cooled with cold air for 30 minutes, and when the center temperature reached 123°C, it was placed in a 40μ thick polyethylene bag and transferred to a regular freezer at 18°C for one year.
別に同量のマグロにぎりずしとのりまきすしを和艇に包
みそれぞれ3個1群として一35℃のエアーフリージン
グ、J了−プラスFフリージング及びコンタクトフリー
ジングで24時間処理後40μ情の厚さのポリエチレン
袋に包んで一18℃の通常の冷神庫に移し1年間保存し
て対照区とした。Separately, the same amount of tuna nigiri sushi and norimaki sushi were wrapped in a Japanese boat and each group of 3 pieces was treated with air freezing at -35°C, Jyo-Plus F freezing and contact freezing for 24 hours, and then dried at a temperature of 40 μm. It was wrapped in a polyethylene bag and transferred to a regular cold storage room at -18°C and stored for one year to serve as a control.
次に本発明及び対照区の冷凍ずしを室瀞25℃で1時間
放曾して自然解凍し、指失でおさえた時の形状のくずれ
(F71;ぷ人の老仕、β什による脆さに起因)、米粒
相互の粘着性、米飯のグルコアミラーゼ法による糊化度
(α化度)の維持、食べたときの食感、すしの含pなど
から品質保持性を試験し、表4の結果を得たが、本発甲
による冷凍ずしは1年移も生鮮品に近い品質を・維持し
ていた。Next, the frozen sushi of the present invention and the control group were left in a room at 25°C for 1 hour to thaw naturally, and when pressed with a finger, the shape of the sushi collapsed (F71; Quality retention was tested based on factors such as stickiness between rice grains, maintenance of gelatinization degree (gelatinization degree) by the glucoamylase method of cooked rice, texture when eaten, and P content of sushi.Table 4 However, the frozen sushi produced by this method maintained a quality close to that of fresh food even after one year of transfer.
(註)A:指圧の時の形状のくずれ:生鮮すしと同等5
点、生鮮すしよりも僅かに
くずれる4点、生鮮オしより少しく
ずれ易い3点、もろくて商品価値な
し2点、1廃。(Note) A: Deformation during shiatsu: Same as fresh sushi 5
4 points, which crumble slightly more than fresh sushi, 3 points, which crumble a little more easily than fresh sushi, 2 points, which are brittle and have no commercial value, and 1 waste.
P;米粒相互の粘滑性:生鮮すしと同等5点、生鮮オし
より隣かに弱い4虚、
生鮮ヤしより少し弱い3A、もろくて粘着性なし2点、
1点。P; Slipperiness of rice grains: 5 points, same as fresh sushi, 4 points weaker than fresh rice, 3A, slightly weaker than fresh palm, 2 points brittle and not sticky.
1 point.
C;グルコアミラーゼf!:にJろ糊化度:農芸イヒ学
会誌、48.6fi3(1974) による。C; glucoamylase f! :NiJro gelatinization degree: According to Agricultural Science Society Journal, 48.6fi3 (1974).
D;食べた時の食感:生鮮すしと回答5点、生鮮オし、
より僅かに劣る4声。D: Texture when eating: 5 points for fresh sushi, 5 points for fresh sushi,
4 voices, slightly inferior.
生鮮オしより少し劣る3点1食感士 食用にたえない2点、1点。3 points, 1 food taster, slightly inferior to fresh Oshi 2 items that are not edible, 1 item.
E;すしの色p:マグロの色、のりの色が生鮮すしと同
等5A、生鮮すしよ
り僅かに劣る4点、生鮮オしより少
し劣る3点、食用にた★ない2点。E: Color of sushi P: Color of tuna and seaweed are 5A, the same as fresh sushi, 4 points slightly inferior to fresh sushi, 3 points slightly inferior to fresh sushi, 2 points not edible.
1点。1 point.
〈実施例5〉
冷却用ボックス内添度22℃(常温)濁度65チ雰囲気
下↑約100gののしもち3個を伺わもステン1/ス板
の上におき、−35℃の冷風を30分間吹付けて冷凍°
庫内の9間の空箆中の水分ともち表面の遊離水とにより
表部3諺を凝結させて強固なカプセルを形成し、各中心
温度を3でとする。その伊、−60℃の冷風をy分間吹
付けて急速冷却しまたところ中心itは−In ℃とな
った。次い″l’−5Fit冷廊に切りか全緩慢に30
f+間冷却lて外周と中心温度の差を少なくしたのも@
に−60”(’の冷風で15分間弁冷し、単一多糖類f
のα化し、?−jセル状の構造を破壊することなく保有
水の1晶を完成させた。中心温度t%でとt・つた。再
度づ5Vの冷風r切り替★30分間冷却t、て中心温度
を一23rにしたのち40/ja厚さのポリエチレン袋
に@Jみ一18℃の通常の冷凍庫内に移して1年間保存
し、た。<Example 5> Addition level in cooling box: 22°C (room temperature), turbidity: 65° Under an atmosphere ↑ Three Noshimochi weighing about 100g were placed on a stainless steel plate, and cold air at -35°C was blown. Spray and freeze for 30 minutes °
Moisture in the 9-room empty space in the warehouse and free water on the surface of the rice cake condense the surface portion to form a strong capsule, and each center temperature is set at 3. At that time, cold air at -60°C was blown for y minutes to rapidly cool it down, and the temperature at the center it became -In°C. Next, switch to ``l'-5Fit cooling corridor and slowly turn it on for 30 minutes.
The difference between the outer periphery and the center temperature was also reduced by cooling during f+.
-60"(') for 15 minutes with cold air, and the single polysaccharide f
Is it alpha? -j One crystal of retained water was completed without destroying the cellular structure. When the center temperature was t%, it was t. Switch to 5V cold air again★Cool for 30 minutes to bring the center temperature to -23R, then transfer to a 40/ja thick polyethylene bag and store it in a regular freezer at 18℃ for 1 year. Ta.
別に同量のもも3mを1群として一35℃のエアーフリ
ージング、:rアーブラストフリージング及びコンタク
トフリージング”l’−24時間処理後40μ愼厚さの
ポリエチレン袋に包み、−18℃の通常の冷凍庫内に移
して1年間保存し対照区とし、た。Separately, the same amount of thighs (3 m) were air frozen at -35°C as a group, then air-frozen at -35°C. After 24 hours of treatment, wrapped in a polyethylene bag with a thickness of 40 μm, They were transferred to a freezer and stored for one year as a control.
次に本発明及び対照区の冷凍もちを1J温25℃で1時
間放置して自然解凍し、損失で押え゛た時の形状の変形
と復塵性、生のま\食べたときの食感、色調、風味など
から品質保持特性を試験し1表5の結果を得たが本発明
による冷凍も¥け1年後生鮮かつきたてのももに近い甚
品質を維持した。Next, the frozen rice mochi of the present invention and the control group were left to thaw naturally at 1J temperature of 25°C for 1 hour, and the shape deformation and dust recovery property when pressed due to loss, and the texture when eaten raw. We tested the quality retention characteristics in terms of color tone, flavor, etc., and obtained the results shown in Table 5. Even after freezing according to the present invention, the quality of the thighs remained extremely close to that of freshly cooked thighs after one year.
0rt) A ;指圧時の形状の変形と復元性:生鮮な
ものと同等5点、生鮮なものより
僅かに劣る4点、生鮮なものより少
し劣る3点、明確に劣る2A、1点。0rt) A; Shape deformation and restorability during acupressure: 5 points equivalent to fresh, 4 points slightly inferior to fresh, 3 points slightly inferior to fresh, 2A, clearly inferior, 1 point.
B;生で食べた時の食感:生鮮なもちと同等5廃、生鮮
なもちより僅かに劣
る4点、生鮮なもちより少し劣る3
点、明確に劣る2点、1点。B: Texture when eaten raw: 5 points, same as fresh mochi, 4 points slightly inferior to fresh mochi, 3 points slightly inferior to fresh mochi, 2 points clearly inferior, 1 point.
C:色枦:生鮮なもち”と同hIF5点、生鮮なもちよ
り僅かに劣る4点、生鮮な
ももより少し劣る3点、明1hIF劣る2点、1点。C: Iromochi: Same hIF as "Fresh Mochi" with 5 points, slightly inferior to Fresh Mochi (4 points), slightly inferior to Fresh Momo (3 points), bright 1 hIF inferior to 2 points, 1 point.
D;風味:生鮮なももと同等5廃、生鮮なもちより僅か
に劣る4点、生鮮か
もちより少し、劣る3点、明確に劣る
2点、1点。D: Flavor: 5 points equal to fresh peach, 4 points slightly inferior to fresh mochi, 3 points slightly inferior to fresh mochi, 2 points clearly inferior, 1 point.
特許出願人 ジブコム株式会社 同伏埋人 三 浦 邦 夫Patent applicant: JIBCOM Co., Ltd. Same buried person Kunio Miura
Claims (1)
成するとともに食品中心温度を0℃〜3℃前後とするよ
うに冷却する氷結カプセル形成工程:Iaいて最大氷結
晶生放帯を離凍状態f通鍋させる鍋冷却状態を作りff
1L、、食品中心温度を一6℃p1下とするように冷却
する過冷却工程;食品の外周gA度と中心温度とを均衡
させるように冷却する緩慢冷却工8:および食品中に氷
結晶を形成するように冷却する氷結工程を含む食品の冷
凍保存方法、(1) Freezing capsule forming process in which a frozen capsule is formed on the outer circumferential surface of the food to be stored frozen and cooled so that the food center temperature is around 0°C to 3°C: Ia and the maximum ice crystal release zone is released. Condition f Creates a pot cooling condition for passing the pot ff
1L, a supercooling process in which the food core temperature is cooled to -6°C p1 below; a slow cooling process 8 in which the food is cooled to balance the outer gA degree temperature with the center temperature; and ice crystals are added to the food. A method for freezing food, including a freezing step, in which the food is cooled to form
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4115482A JPS5941391B2 (en) | 1982-03-16 | 1982-03-16 | How to freeze food |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4115482A JPS5941391B2 (en) | 1982-03-16 | 1982-03-16 | How to freeze food |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58158165A true JPS58158165A (en) | 1983-09-20 |
JPS5941391B2 JPS5941391B2 (en) | 1984-10-06 |
Family
ID=12600498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4115482A Expired JPS5941391B2 (en) | 1982-03-16 | 1982-03-16 | How to freeze food |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5941391B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0387166A (en) * | 1989-09-29 | 1991-04-11 | Besuto F Kk | Method for freeze-storage of food |
JPH0553491U (en) * | 1991-12-27 | 1993-07-20 | ダイエー食品工業株式会社 | Food freezing equipment |
EP1249171A3 (en) * | 2001-04-09 | 2004-02-04 | Unilever Plc | Freezing vegetables |
US7524521B2 (en) * | 2001-12-13 | 2009-04-28 | Morinaga Milk Industry Co., Ltd. | Method of preserving food in a supercooled state |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0470681U (en) * | 1990-10-30 | 1992-06-23 |
-
1982
- 1982-03-16 JP JP4115482A patent/JPS5941391B2/en not_active Expired
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0387166A (en) * | 1989-09-29 | 1991-04-11 | Besuto F Kk | Method for freeze-storage of food |
JPH0553491U (en) * | 1991-12-27 | 1993-07-20 | ダイエー食品工業株式会社 | Food freezing equipment |
EP1249171A3 (en) * | 2001-04-09 | 2004-02-04 | Unilever Plc | Freezing vegetables |
US7524521B2 (en) * | 2001-12-13 | 2009-04-28 | Morinaga Milk Industry Co., Ltd. | Method of preserving food in a supercooled state |
Also Published As
Publication number | Publication date |
---|---|
JPS5941391B2 (en) | 1984-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Balachandran | Post-harvest technology of fish and fish products | |
JP2000072610A (en) | Germicide, its production, toothphase, sterilizing water, sterilization of food, sterilization and preservation of seed, food containing baked scallop shell and its production | |
GB2526494A (en) | Method for improving, by using power-variable ultrasonic waves, frozen fish fillets treated by means of salt-water immersion process | |
CN103564617A (en) | Micro-ice crystal freeze-preservation freezing aid for animals and plants and application method thereof | |
Rawdkuen et al. | Assessment of protein changes in farmed giant catfish (Pangasianodon gigas) muscles during refrigerated storage | |
JPS58158165A (en) | Food refrigeration | |
CN109105462A (en) | Micro-freezing fresh-keeping process for fish products | |
JPS6291170A (en) | Method for freezing and preservation of food | |
CN106857790A (en) | A kind of method of the fluidisation ice preservation butterfish of bamboo vinegar liquid antistaling agent | |
Liu et al. | Quality changes of prepared weever (Micropterus salmoides) by base trehalose solution during repeated freeze‐thaw cycles | |
CN105994577A (en) | Processing method of thick-shelled mussels | |
JPS584904B2 (en) | Freezing preservation method of raw nori leaves | |
RU2453129C2 (en) | Method for production of preserves in flavoured oil | |
KR20130083331A (en) | Immersion coolant containing natural material | |
Oliveira et al. | Salting and drying of cod | |
JP4332646B2 (en) | Antifreeze protein derived from fish | |
SU1692492A1 (en) | Method of preparation canned fish liver | |
JPS62201565A (en) | Method for putting large-sized food in cold storage | |
WO2004082378A1 (en) | Method of inhibiting freeze concentrating of substance in wet material, method of inhibiting deactivation of physiologically active substance, and process for producing lyophilizate or frozen matter having component homogeneously diffused therein | |
JP2003339338A (en) | Processing of fruits and vegetables | |
JPS623785A (en) | Storage of active cell and fresh tissue | |
JPH07203909A (en) | Preparation of mass of bound herring spawn | |
EP1347689A2 (en) | Method of freezing salted meat products | |
CN102177959B (en) | Seaweed protein bacteriostatic agent and application of the seaweed protein bacteriostatic agent | |
JPS6236165A (en) | Production and preservation of ground fish meat by partial freezing method |