[go: up one dir, main page]

JPS58157186A - Gas laser device - Google Patents

Gas laser device

Info

Publication number
JPS58157186A
JPS58157186A JP3985482A JP3985482A JPS58157186A JP S58157186 A JPS58157186 A JP S58157186A JP 3985482 A JP3985482 A JP 3985482A JP 3985482 A JP3985482 A JP 3985482A JP S58157186 A JPS58157186 A JP S58157186A
Authority
JP
Japan
Prior art keywords
electrode
waveguide
electrode plate
mirror
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3985482A
Other languages
Japanese (ja)
Other versions
JPH047111B2 (en
Inventor
Katsuji Takasu
高須 克二
Yasuaki Nanaumi
七海 靖明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP3985482A priority Critical patent/JPS58157186A/en
Publication of JPS58157186A publication Critical patent/JPS58157186A/en
Publication of JPH047111B2 publication Critical patent/JPH047111B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/0315Waveguide lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • H01S3/073Gas lasers comprising separate discharge sections in one cavity, e.g. hybrid lasers
    • H01S3/076Folded-path lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To contrive high output and high stabilization and a method wherein, in a gas laser device, a plurality of wave guides wherein both end parts are opened which are surrounded by electrode base side wall surfaces, electrode plates and dielectric plates are formed, then reflection mirrors, total reflection mirrors and semi-transmitting mirrors are provided on the end parts of these wave guides, next a high frequency voltage is impressed between the electrode base and the electrode plate resulting in a discharge, thus a light is excited in the wave guide, and the device is constituted so as to generate a laser light accordingly, and a cooling means is performed. CONSTITUTION:The wave guides 34a-34d are filled with CO2, Ar, Ne, etc. An RF electric field is impressed between the electrode base 31 and the electrode plates 32a-32d, and accordingly the RF discharge is generated in the four wave guides 34a-34d, then the light generated thereat is reflected by each mirror 21-23d and resonated in the wave guides, thereby a laser is excited and outputted. Finally, cooling is performed by providing cooling water holes 31a in the electrode base 31.

Description

【発明の詳細な説明】 〔発110技術分野〕 本発明は導波路形のガスレーデ装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION [110 Technical Field] The present invention relates to a waveguide type Gaslade device.

〔発明oPI術的背景と間馳点〕[Invention oPI technical background and gaps]

4M絡路形スレーデ装置は近年、を遣に開発されるよう
Kなプて来意小蓋で^出カ0レーデ装置であシ、籍にC
01(炭績ガス)レーデとしての応用が期11i1れて
いる。
In recent years, the 4M circuit type Slade device has been developed in recent years, and is a 0-output device.
01 (coal-fired gas) has been applied as a fuel in the 11th year.

CO,レーデO応用分野には大気伝搬を利用した通信、
計鉤、レーダ等がある。これらの分野への応用において
は広帯域のy(連続発振)動作や繰夛返えしの早い・ヤ
ルス動作が要求iれることか多い。しかし通常のCO□
レーデでは増幅帯域はと、グツ暢による5 0 kKM
x程度しがない。
CO, REDE O application fields include communication using atmospheric propagation,
There are gauge hooks, radar, etc. Applications to these fields often require broadband y (continuous oscillation) operation and fast repeatable oscillation operation. However, normal CO□
In Rede, the amplification band is 50 kKM by Gutsunobu.
It's only about x.

CO,レーデを広帯域化するにはガス圧力を嶌くすると
とKよる衝突拡がシ(約5 MHz/Torr) t′
利用すれば良いのであるが、通常のCO2レーデでは高
圧力の放電を得ることが非常に困−である。
To widen the band of CO and LED, if the gas pressure is increased, the collision spread due to K (approximately 5 MHz/Torr) t'
However, it is very difficult to obtain a high pressure discharge with a normal CO2 radar.

このような問題の解決策として提案されたのが導波路形
ガスレーデ装置である。
A waveguide-type Gaslade device has been proposed as a solution to these problems.

導波路形ガスレーデ装置Fi放電管径が約l■と小さい
なめ、高圧力連続放電が可能となシ、最近ではl GH
z 4度の高帯域化されたCO2レーデが得られている
。を九、この導波路形ガスレーデ装置は管径を小さくし
たことkより通常形に比べて嵩い利得が得られ、小置、
高出力レーデ装置としても期待されている。
The waveguide type gaslade device Fi has a small discharge tube diameter of about 1, and is capable of high-pressure continuous discharge.Recently, 1 GH
A high band CO2 lede of z 4 degrees has been obtained. Nine, this waveguide-type gaslade device has a smaller tube diameter, so a larger gain can be obtained compared to the normal type, and it is possible to
It is also expected to be used as a high-power radar device.

従来の導波路形ガスレーデの大部分のものに使用されて
いる基本のレーデ励起方法はレーデ導波路の両端近くに
設けられた一対0IEIi間で装置の長平方向に沿って
直流放電を生じさせることにより行っている。
The basic Rade excitation method used in most of the conventional waveguide-type gas Rades is to generate a DC discharge along the longitudinal direction of the device between a pair of 0IEIi provided near both ends of the Rade waveguide. Is going.

このような装置では約I Q kV 4度の比較的大き
な直流励起電圧並びKこのために必要な電圧源、上記の
電圧を発生させるための電気回路とを必要とする。
Such a device requires a relatively large DC excitation voltage of approximately I Q kV 4 degrees, the necessary voltage source K for this purpose, and an electrical circuit for generating said voltage.

また、前述の長手方向の電気的放電においてはカノード
障下領域中で生ずる様々な効果がいくつかの問題をひき
起こす。
Also, in the aforementioned longitudinal electrical discharge, the various effects occurring in the cathode obstruction region cause several problems.

即ち、第1にカソード・スー母、タリングにょ   ′
ってカソードは損傷され、装置の寿命が短くなる点で6
9、またカソード降下電圧中での高電場にレーデ・ガス
を解離することである。
That is, firstly, the cathode mother, Talingyo'
This will damage the cathode and shorten the life of the device.
9. It is also possible to dissociate the Rede gas in the high electric field in the cathode drop voltage.

史にカソード降下電圧が比較的高いので投入電力のかな
シの部分を消費し、動作効率を低下させる。また、^正
電源、電流しギ、レータ。
Historically, the cathode drop voltage is relatively high, which consumes a significant portion of the input power and reduces operating efficiency. Also, the positive power supply, current generator, and regulator.

安定抵抗などのようなハードウェアも必要となるが、こ
れは放電維持電圧が高く、また、放電管のインピーダン
スが負になるためである。
Hardware such as stabilizing resistors is also required because the discharge sustaining voltage is high and the impedance of the discharge tube is negative.

一方、従来のパルス的横方向放電励起においては励起パ
ルス期間はアークの発生を防止するために十分短くしな
ければならず、また、大型   □で高価な・譬ルス発
生用のネットワークを必要とする欠点があった。
On the other hand, in conventional pulsed lateral discharge excitation, the excitation pulse period must be short enough to prevent arcing, and a large and expensive network for generating pulses is required. There were drawbacks.

これらの鐘点を克服するため、レーデ発振の方向と画直
な方向に電圧を印加して放電させる横方向励起導波路形
ガスレーデ装置がすでに考案されている。
In order to overcome these problems, a lateral excitation waveguide type gas Rade device has already been devised, which applies a voltage in a direction perpendicular to the direction of Rade oscillation to cause discharge.

仁の場合、陰極と陽極の間の距離が十分短かくなるので
、上述したような長平方向の放電のような高電圧は不要
となる。
In the case of nickel, the distance between the cathode and the anode is sufficiently short, so a high voltage such as the above-mentioned discharge in the horizontal direction is not required.

一方、放電の形式も従来の直流放電やノタルス放電の他
にRF (ラジオ周波数)放電励起方式■ものも考案さ
れている。
On the other hand, in addition to the conventional DC discharge and notarus discharge, RF (radio frequency) discharge excitation type has also been devised.

この方式では一般に30 MH+s〜3 GHz程度の
周波数が用(つられておシ、移動度の小さい陽イオンは
電界によって移動することがほとんどなので、上述のス
ノ譬、タリンダが起ζらない、tた、陽空間電荷も生じ
ないので、カノード障下による電力消費もなく、高効率
のレーず放電が得られる。
In this method, a frequency of about 30 MHz+s to 3 GHz is generally used. Since no positive space charge is generated, there is no power consumption due to cathode failure, and highly efficient laser discharge can be obtained.

ところで、一般に一し−デ出力しレーザ謀質の長さにほ
ぼ比例する。
By the way, in general, the output power is approximately proportional to the length of the laser beam.

従って、レーデ装置全体の長さを6まシ長くすることな
くその出力を更に大きくする念めには、複数の導波路を
反射鏡で折シ返えして直列に結ぶ屈折形の方式が考えら
れている。
Therefore, in order to further increase the output without increasing the overall length of the RADE device by 600 degrees, a refractive type system is considered in which multiple waveguides are folded back with a reflecting mirror and connected in series. It is being

このような方式の一つとして第1図に示すよりな2.形
款電が丁でに考えられている。
One such method is 2. shown in FIG. The shape of the electric wire has been carefully thought out.

即ち、2形に光路が屈折するように出力ミラー1、全反
射ミラー2、折シ返えしミラー3を配設し、とnらミラ
ーに2シ形成さnる反射光路部分に導波路4を設けるも
ので、導波路4中に励起光が与えられるとこの光は各ミ
ラー間を反射さnて共振され、レーデが励起さnて最後
に・・−7ミラーによる出力ミラー1t−通って外部ヘ
レーデ光5が出力される仕組みとなっている。
That is, an output mirror 1, a total reflection mirror 2, and a folding mirror 3 are arranged so that the optical path is refracted in two shapes, and a waveguide 4 is provided in the reflection optical path portion formed by the two mirrors. When excitation light is applied to the waveguide 4, this light is reflected between each mirror and resonates, and the radar is excited and finally... -7 mirrors pass through the output mirror 1t. The structure is such that an external Herede light 5 is output.

しかしながら、この方法は空間の利・用事が悪く、従っ
て、冷却効率も悪くなるので、4波路形レーデの%黴で
ある小型、高効率と言うメリ、トを活かしiflない、 ま友、折υ返えしミラー3の反射方向員整も峻し区。
However, this method makes poor use of space and therefore has poor cooling efficiency, so it is not possible to take advantage of the advantages of the four-wave path type radar, such as its small size and high efficiency. The reflection direction of the return mirror 3 is also very sharp.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に―みて成されたもので、RF放電横
励起導波路形のものにおいて、小mu牢な構造を持ち、
かつ大出力で^安定な、しかもめんどうな調整も不安な
ガスレーデ装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and has a small structure in the form of an RF discharge horizontal excitation waveguide.
The purpose of the present invention is to provide a gaslede device that is stable with a large output, and that does not require troublesome adjustment.

〔発明の概要〕[Summary of the invention]

即ち、本発明は上記目的を連成するために冷却手段を有
するプロ、り状の電極ペースの対向する少なくとも一対
の側壁面にそれぞれ電極板を離間して配設すると共にこ
の電極板と前記側壁面との間には適宜間隔で対向する誘
電体11設けて電極ペース貴壁面及び電極板及び−電体
板で包囲された両端部の開口される複数の導波路を形成
し、これら導波路O端部には反射光軸の一方をその導波
路の軸に一致させてそれぞn反射鏡を設け、且つ反射鏡
の他方の反射光軸は結ぶべき導波路の反射鏡に光軸を一
致させて各導波路【直列的に結び普え直列的に結ばnた
導波路の両端に絋一方に一1反射鏡を、を友、他方には
半透過鏡を設け、更に前記反射鏡社同一端季 部の対となるものを同一保体に保持させて配設する構成
とし、各反射鏡の位置が狂いにくいようにし、また冷却
手段によって冷却を行うことにJC放電によ為発熱の影
響を受けに<〈シて高出力、高安定化を図る。
That is, in order to achieve the above-mentioned object, the present invention provides electrode plates that are spaced apart from each other on at least one pair of opposing side wall surfaces of a professional tape-shaped electrode paste having a cooling means, and that the electrode plate and the side A dielectric body 11 is provided facing the wall surface at an appropriate interval to form a plurality of waveguides with openings at both ends surrounded by the electrode plate and the electrode plate and the electric plate. A reflecting mirror is provided at each end with one of the reflecting optical axes aligned with the axis of the waveguide, and the optical axis of the other reflecting mirror is aligned with the reflecting mirror of the waveguide to be connected. At both ends of each waveguide connected in series, one reflector is placed on one side, a semi-transparent mirror is placed on the other side, and the reflector is placed at the same end. The configuration is such that pairs of seasonal parts are held and arranged in the same carrier to prevent the position of each reflecting mirror from being easily misaligned, and cooling is performed using a cooling means to avoid the effects of heat generation due to JC discharge. In order to achieve high output and high stability.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について第2図〜第8図を#照
しながら@明する。
Hereinafter, one embodiment of the present invention will be explained with reference to FIGS. 2 to 8.

第2図は本発明の一実施例におけるレーデ共振tNを構
成するミラーの配置構造を示すもので69、本発明の中
心的概念である折)返えし方法を説明する分解斜視図で
ある。
FIG. 2 shows the arrangement structure of the mirrors constituting the Rade resonance tN in one embodiment of the present invention, and is an exploded perspective view 69 for explaining the folding method which is the central concept of the present invention.

本装置においては各ミラーは仮想直方体の長手肯におけ
る各@*の位置に互いに平行に配置さnる導波路内の光
路Ll  * L’S  * L’S  e L4を直
列に結合するような配置関係となるよう前記各稜線の両
端部に投けられる。
In this device, each mirror is arranged parallel to each other at each @* position in the longitudinal direction of the virtual rectangular parallelepiped, and is arranged so as to connect the optical paths Ll * L'S * L'S e L4 in series in the n waveguide. It is thrown at both ends of each said ridgeline so that it is in a relationship.

即ち、図において2JFiハーフンラー等による出力ミ
ラーでTo!り、一部の光を反射し、一部の光を通過さ
せる。22は全反射ミラーであり、これら出力ミラー2
1及び全反射ミラー22は結ばれた導波路で形成される
光路全体におけるその両端に配設される。11h、13
に、2J@は折シ返えしず2−で、光路t−屈折させる
ものであシ、これらのうち、JJaは光路Llとり。
That is, in the figure, the output mirror by 2JFi Hunler etc. is To! reflects some light and allows some light to pass through. 22 is a total reflection mirror, and these output mirrors 2
1 and the total reflection mirror 22 are arranged at both ends of the entire optical path formed by the connected waveguides. 11h, 13
In addition, 2J@ is not refracted but 2-, and the optical path t is refracted, and among these, JJa is the optical path Ll.

とt結び、筐九、21bは光路り、とり、とt結び、2
1eは光路LsとL4とを結ぶように設けである。この
折シ返見しミラーJJa。
and t-connection, 21b is the optical path, and t-connection, 2
1e is provided to connect the optical paths Ls and L4. This folded back mirror JJa.

JJb、jJcは一対の反射fllを一体の保持台に互
いに正確に直角を威すようKm定してToり、反射鏡の
位置は結ぶべき2つの光路の光軸位置としである。
JJb and jJc are set at Km so that the pair of reflection fllls are placed on an integral holder at exactly right angles to each other, and the position of the reflection mirror is the optical axis position of the two optical paths to be connected.

このような構成とする仁とにより導波路内の光路中に励
起光が与えられるとその光は各ミラーによシ反射されて
出力ミラー21と全反射ミラー22との間で共振され、
レーデ光束LBとして出力ミラー21よp外部へ出射さ
れる。
When excitation light is applied to the optical path in the waveguide with such a structure, the light is reflected by each mirror and resonates between the output mirror 21 and the total reflection mirror 22,
The light is emitted from the output mirror 21 to the outside as a Rade light beam LB.

また、このような構成としたことによp光路は直方体の
各軟線位置を辿る形となるため、全体の大きさが同じな
ら第1図で示した2形光路に比べ光路はよ)長くとれ、
しかも光路形成するために占有する空間O利用事も高く
なる。
Also, with this configuration, the p-light path follows each soft line position of the rectangular parallelepiped, so if the overall size is the same, the light path can be made much longer than the 2-shape light path shown in Figure 1. ,
Moreover, the usage of the space O occupied for forming the optical path also increases.

第3図は本装置における導波路本体の構成を示している
0図において11#iアル<ニウムなどの金属プロ、り
で形成され九電極ペースであり、こO1偽ペース1iF
i内部に長手方向に伸び且つ外部へ連通する冷却水通水
孔31aが設けである。32畠、31b、31@、32
dは電極ペースJ1の長手方向外面に所定間at−持っ
て平行に配設された電極板であり、この電極@ J x
 a〜724は電極ペース31と園材質の金am体で形
成されている。電極板は電極ペースJ1の対向すゐ貴面
にそれぞれ二枚、互いに喝関して配設され、電極ペース
31との間には−にうき、クー、などのプロ、り状の誘
電体板33へ32b 、IJ@、jJd 、33・、3
Jfを法むことによりてこれら電極ペース31及び電極
&J J a 〜J J d 、−電体板J J a 
〜J J fにより包囲されて形成される四本の方形の
9関は$[*J4a、J4b、j4t、J4dt形成す
る、この場合、この導波路J4a〜S4−は断面が1平
方オリメートル程度であシ、この導波路34a−Jnd
内にレーデ媒質であるガス例えばC02やアルゴン、ネ
オンなどが充填される。
Figure 3 shows the configuration of the waveguide body in this device.
A cooling water passage hole 31a extending longitudinally inside the tube and communicating with the outside is provided. 32 Hatake, 31b, 31@, 32
d is an electrode plate arranged parallel to the outer surface of the electrode pace J1 in the longitudinal direction with a predetermined distance at, and this electrode @ J x
A to 724 are formed of the electrode paste 31 and a gold plate made of a metal material. Two electrode plates are disposed on the opposite side of the electrode plate J1, and in contact with each other. to 32b, IJ@, jJd, 33., 3
By subtracting Jf, these electrode paces 31 and electrode &J J a ~ J J d , - electric body board J J a
The four rectangular nine gates surrounded by ~J Yes, this waveguide 34a-Jnd
The interior is filled with a gas such as CO2, argon, neon, etc., which is a Rede medium.

tた、導波路14a〜844の内壁は十分に研磨されて
おり、場合によってはレーデの利得を高めるために錦電
体などO薄膜をコーティングしても良い。
In addition, the inner walls of the waveguides 14a to 844 are sufficiently polished, and may be coated with an O thin film such as a tin electric material in order to increase the radar gain depending on the case.

尚、各電極板jja〜32櫨にはその背面にHP電界を
加えるためOt価コネクタ15が設けられている。
Incidentally, each of the electrode plates jja to 32 is provided with an Ot value connector 15 on the back surface thereof in order to apply an HP electric field.

仁のような構成において放電を励起させるためのRF電
界は電極ペースJ1と電極板IIa〜Jjdとの関に印
加される。これKより上記4つの導波路J 4 a −
J 4−内にIF放電が生じ、そのと自発生する光が導
波路の端部に設けらnた前述O各ずラー21〜114に
よシ反射され導波路内で共振されてレーデが励振され出
力される。放電により発生する熱によル導波路本体構成
部材は加熱され、熱膨張によってミラー21〜2J−の
各光軸と導波路34a〜34−の中心軸とのずれが生じ
た夛、或いは共振器長が変化してレーデ出力に変動が生
ずる。
An RF electric field for exciting a discharge in the cylindrical configuration is applied between electrode pace J1 and electrode plates IIa-Jjd. From this K, the above four waveguides J 4 a −
An IF discharge occurs within the waveguide, and the self-generated light is reflected by the aforementioned lasers 21 to 114 provided at the end of the waveguide, resonates within the waveguide, and excites the radar. and output. The waveguide main body constituent members are heated by the heat generated by the discharge, and the optical axes of the mirrors 21 to 2J- and the central axes of the waveguides 34a to 34- are misaligned due to thermal expansion. As the length changes, fluctuations occur in the radar output.

この変動を少なくするために本装置においては電極ペー
ス11に冷却水通水孔31*t−設け、ここに冷却水(
他の冷媒でも良い)t−通水させ、冷却を行うようにし
ている。従って、放電による熱は効率風〈奪われる九め
熱11彊は抑えられ、これKよって前記レーデ出力変動
は抑制されるので、高安定のレーデ出力が得られる。
In order to reduce this fluctuation, in this device, a cooling water passage hole 31*t- is provided in the electrode space 11, and the cooling water (
(Other refrigerants may also be used) Water is passed through the tank for cooling. Therefore, the heat caused by the discharge is suppressed by the efficient wind, and this suppresses the variation in the radar output, so that a highly stable radar output can be obtained.

第5wJは第3図O構成から成る導波路本体をガス封入
用外筺41に固定した場合の断面図を示したものである
5wJ shows a cross-sectional view of the waveguide main body having the structure shown in FIG.

外Wi41の内部に酸100Torr@度のレーデ・ガ
スt−刺入する。4Iに封じ切amガス・レーデ   
・鉄量の場合、ガスの資質やクリーン・ア、グなどによ
って寿命が左右される。tた、ガス刺入容器の容積が小
さいと簾電による発熱によって内部の温度が上昇し、レ
ーデ管内部のガス密度分布が変化し、出力の減少を招く
Inject 100 Torr of acid into the inside of Wi41. Am gas lede sealed in 4I
- In the case of iron content, the lifespan is affected by the quality of the gas, cleanliness, etc. On the other hand, if the volume of the gas injection container is small, the internal temperature will rise due to the heat generated by the blind electricity, and the gas density distribution inside the lede tube will change, resulting in a decrease in output.

こOような影響を小さくするためにガス封入用外筐41
は第5図の如くパ、7ア空関を大きくとっである。
In order to reduce such effects, the outer casing 41 for gas filling is
As shown in Figure 5, the P and 7 A air barriers are set large.

上記の外筐41に固定畜れた第3図の如きレーデ導波路
本体の両端に菖4wJに示す如く光路を屈折させるiツ
ー1ウント4フ、4jを装着し友ものが本装置の全体の
構造となる。
At both ends of the radar waveguide main body as shown in Fig. 3, which is fixed to the outer casing 41, the i21 and 4j, which refract the optical path as shown in the irises 4wJ, are attached. It becomes a structure.

72−マウント42.41内には第2図で示した如き光
路上を反射して共振するように菖2図で説明した出力ミ
ラー11、全反射iラーxx、折返しミラー13*、1
3b、11−がマウントされ、導波路141〜144内
O光路を光が反復して通過で亀るようにしである。また
、ミラー1ウント4x、4111Cdそれぞれ適宜なる
場所に過水用の孔44m、44に、41@。
72 - Inside the mount 42.41 are the output mirror 11, total reflection mirror xx, and folding mirrors 13* and 1, which were explained in FIG. 2 so as to reflect and resonate on the optical path as shown in FIG.
3b and 11- are mounted so that the light repeatedly passes through the O optical path within the waveguides 141 to 144. In addition, holes for overwatering 44m, 44, and 41@ are provided at appropriate locations for Mirror 1 und 4x and 4111Cd, respectively.

41bを設けて前記導波路本体の電極ペースJ1に設け
である冷却水通水孔JJaと連結してあシ、この通水用
の孔44m、44b、45m。
41b is provided and connected to the cooling water passage hole JJa provided in the electrode space J1 of the waveguide body, and the water passage holes 44m, 44b, 45m are provided.

46eを介して電極ペースJ1に外ilsよ〉冷却水を
通水できるようにしである。
Cooling water is allowed to flow to the outside of the electrode space J1 via 46e.

尚、2ラーマウント42における4σはレーデ光L[の
出力孔であシ、出力ミラー2)の光軸に中心軸を一散さ
せて形成しである。
Incidentally, the 4σ in the 2-ray mount 42 is formed by dispersing the central axis at the optical axis of the output mirror 2).

このように構成したことによ)本装置は空間利用率の高
い光路とすることができ、光路長も畏くとれて嶌出力レ
ーデ光を得すことができる。
By configuring the device in this way, it is possible to create an optical path with high space utilization efficiency, and the optical path length can be made very short, so that it is possible to obtain the optical output LED light.

即ち、―達したように本装置においては主たる光路を&
層直方体の4本の長手肯稜線に沿う形とし、ミラーによ
如各光路を結ぶようにしたため、光路長は長くとnlし
かも占有する空間の利用率−為くなる。
In other words, in this device, the main optical path is
Since the shape is along the four longitudinal edges of the layered rectangular parallelepiped and the optical paths are connected by mirrors, the optical path length is long (nl) and the utilization rate of the occupied space is low.

また、本装置では中間の光路をつなぐ折シ返えしミラー
を一対の反射鏡を用いて対向面が90°の開きとなる保
持台の該対南面に固定させ、これ′にミラーマウ/)4
J、47に固定して設けるようにしたので、一度各建う
−と導波路との光軸を電歇させて取)付けると輸送中の
振動などによυ光軸ずれが生ずるような心配がなくなシ
、fk刻における光軸調整が不要となる他、導波路本体
は冷#ll管過す孔を設けて冷tI&を送り、これによ
p冷却を行う構成であるため、放電等によ)生ずる発熱
も抑制されるので動作中に発生する熱による構造物の膨
張も抑えられ、これらに起因する光軸ずれも抑制される
In addition, in this device, a folding mirror that connects the intermediate optical path is fixed to the south face of a holding base using a pair of reflecting mirrors, and the opposing faces are opened at 90 degrees.
Since it is fixed to J and 47, there is no concern that once the optical axis between the waveguide and the waveguide is installed, the optical axis may shift due to vibration during transportation. In addition to eliminating the need for optical axis adjustment at fk increments, the waveguide body has a hole through which the cold #ll tube passes and sends the cold tI&, thereby performing p cooling. 2) Since the generated heat is also suppressed, the expansion of the structure due to the heat generated during operation is also suppressed, and the optical axis shift caused by these is also suppressed.

また、導波路本体社とり得る光路長の割に小部となるた
め、この導波路本体を包囲するブス對入用の外筐41は
導波路本体に比べ比較的大きくしても装置が大きくな〉
すぎるなどの支障が生じないから、内部空間も大きくす
ることができ、レーデガスの密度分布等が責化しにくく
なるため、レーデ出力が安定するなど、竪牢な構造で安
定した大出力のレーデ光O得られるRF放電機励起導波
路履ガスレーデ値装が得られる。
In addition, since the waveguide body is small in comparison to the possible optical path length, even if the outer casing 41 for bus insertion surrounding the waveguide body is relatively large compared to the waveguide body, the device will not be large. 〉
Since problems such as overheating do not occur, the internal space can be enlarged, and the density distribution of Rede gas is less likely to be affected, resulting in stable Rade output. The resulting RF discharge machine excitation waveguide structure is obtained.

尚、本発明は上記し且つ図面に示す実施例に限定するこ
となく、その要旨を変更しない範囲内で適宜変形して実
施し得るものであり、例えば導波路本体は第3図構成の
他に第6図〜第8図の知事構成としてt嵐い。
It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings, but can be implemented with appropriate modifications within the scope of the gist thereof. The governor configuration shown in Figures 6 to 8 is as follows.

即ち、ssgは第3図において別体となっていた電極板
32a、〜JJdをそれぞn片個毎に一体化し、幅広の
電極板61.62で導波路34m、34bと34e、3
4dを樫うようにして構造の簡単化を図るようにしたも
のである。
That is, in the ssg, the electrode plates 32a to JJd, which were separated in FIG.
4d is oaked to simplify the structure.

また、第7図は断面り字形の一対の・電極ペース71.
72を用い、この電極ペース7J 、 72を組んで方
形筒状に形成し、この方形筒状のものt−を極ベース本
体73とすると共にこの電極ペース本体73内貴に導波
路341.〜34dを形成するようにし友ものである。
Further, FIG. 7 shows a pair of electrode spaces 71 with a cross-sectional shape.
72, the electrode spaces 7J and 72 are assembled to form a rectangular tube shape, and the rectangular tube shape t- is used as a pole base body 73, and a waveguide 341. It is a friend that forms 34d.

電極ベース本体73の内側対向面にそnぞ扛第3図の場
合と同様適1m関させて電極板32h 、32b 。
As in the case of FIG. 3, electrode plates 32h and 32b are placed on the inner facing surface of the electrode base main body 73 at a distance of about 1 m.

32c 、32dt−配設し、且つこtら電極板32畠
、〜Jjdと電極ペース本体73の内壁面との隙間を両
脇から塞ぎ、導波路34&、〜J4dを形成すると共に
電極板321〜jJdと電極ペース本体73とを電気的
に絶縁する誘電体板)1 331〜331を設けである。
32c, 32dt- are disposed, and the gap between the electrode plates 32, ~Jjd and the inner wall surface of the electrode pace main body 73 is closed from both sides to form waveguides 34&, ~J4d, and the electrode plates 321~ Dielectric plates 1 331 to 331 are provided to electrically insulate jJd and the electrode paste main body 73.

このような構成とすると電憔ベース本体73tま導波路
本体の外筐としての機能をも持たせることができ、一層
構造が簡単となる。
With such a configuration, the electrolytic base body 73t can also function as an outer casing for the waveguide body, making the structure even simpler.

尚、電極ベース77.72の接合部74゜”tsFi密
閉構造とする必要が、Toシ、そのために電子ビーム溶
接やレーザ溶接などを施こすと良い結果が得らnるが、
これらの#!接方法の他にも材料内部に熱ひずみが残ら
ない接合方法を用いるようにしても良い、なお、7Ja
、7Jb。
It should be noted that the joint part 74 of the electrode base 77 and 72 needs to have a sealed structure of tsFi, and good results can be obtained by performing electron beam welding or laser welding for this purpose.
these#! In addition to the bonding method, a bonding method that does not leave thermal strain inside the material may be used.
, 7Jb.

r2畠、7Jbは冷媒を通す孔である。r2 and 7Jb are holes through which the refrigerant passes.

第8図はある大きさの範囲で任意の半径′f:*する円
周上に等分割角度で例えば60°きざみの位置に導波路
を形成するようにした例である。
FIG. 8 shows an example in which waveguides are formed at equal division angles, for example, in 60° increments, on the circumference of a circle with an arbitrary radius 'f:* within a certain size range.

即ち、方形のプロ、り状の電極ペース8ノの長手側面四
面に電極ペースa1の中心Sよシ円を描き60°刻みに
円周を分割してその分割位置に導波路が形成されるよう
誘電体板82と電極板83を設けたもので、基本的な構
造においては第3図のものと変らない。
That is, a circle is drawn around the center S of the electrode space a1 on the four longitudinal sides of the rectangular pro-shaped electrode space 8, and the circumference is divided into 60° increments so that waveguides are formed at the dividing positions. A dielectric plate 82 and an electrode plate 83 are provided, and the basic structure is the same as that in FIG. 3.

第8図の構成の場合、導波路の数Fi6本となるので更
に折り返えしの多重化が成され、導波路の長さは長くな
る。なおallは冷媒流通用の孔である。
In the case of the configuration shown in FIG. 8, the number of waveguides Fi is six, so folding multiplexing is further performed, and the length of the waveguide becomes longer. Note that all are holes for refrigerant circulation.

これら各方式により 4ffij1本体は構造のより簡
略化或いは導1ILjiI長の伸延が可能となる。
By each of these methods, the structure of the main body of the 4ffij1 can be simplified or the length of the conductor can be extended.

尚、また上記実施例において電極ベースは冷却水等の冷
媒t−流通させることによp行っているが、ヒート・臂
イノ中半導体冷却素子など?用いた冷却構造としても良
い。
In addition, in the above embodiment, the electrode base is cooled by circulating a coolant such as cooling water, but is it possible to use a semiconductor cooling element during heat or heat exchange? A cooling structure may also be used.

〔@明の効果〕[@Ming effect]

以上詳述したように本発明はガスレーデ装置において冷
却手段t−有するプロ、り状の電極ペースの対向する少
なくとも一対の貴W!面にそれぞれ電#ik板倉畷関し
て配設すると共にこの電極板と藺紀貴ll11iiii
との間には適宜間隔で対向する誘電体板′に設けて電極
ペース側壁面及び電極板及び誘電体板で包Hされ九両端
部の開口される値ti(D4tiL路を形成し、これら
導波路の端部には反射光軸の一方tその導波路の軸に一
致させてそれぞれ反射鏡を設は且つ反射−の他方の反射
光1lIiは績ぶべ龜導波路の反射鏡に光軸t−欽させ
て各導波路を直列的に結び、また、直列的に鮎ばれた導
波路の両端には一方に全反射鏡を、オた他方には半透過
鏡を設け、且つ前記反射鏡は同一端部側の対となるもの
を同一の保持体に保持させて配設する構成とし、前記電
極ペースと電極板との間には高い周波数の電圧を印加し
て放電させることによル前記導波路内に光を励起させ、
レーデ光を発生させるようにしたので、放電距離は短く
しかも高周波であるから放電には高電圧は不要であや、
また、導波路は電極ペースの少なくとも対向する二壁面
に複数本設け、これらを光学的に直列接続したため、装
置長が短くとも長い導波路長が得られ高出力が得られる
他、空間の利用効率も高く、従うて従来と閤出力であれ
ばよp小皺化を図ることができ、また、対を成す反射鏡
は同一〇保持体に固定されて配設されるため、機緘的振
動に強く光軸がずれたルせず、また、電極ペースは冷却
される構成となっているため、放電による発熱の影響を
最小限にとどめ、装置の熱膨張による光軸と導波路中心
軸の狂いを抑制して為安定のレーデ光を得ることができ
るなど優れた特Imを有する導波路形のガスレーデ装置
を提供することができる。
As described in detail above, the present invention provides a gas-rede device having at least one pair of facing electrodes having a cooling means and a rib-shaped electrode plate. Electrodes are placed on each surface of the electrode plate, and the electrode plate and the
A value ti (D4tiL path) is formed between the electrode space side wall surface, the electrode plate, and the dielectric plate, which face each other at an appropriate interval, and is opened at both ends. A reflecting mirror is installed at the end of the waveguide so that one of the reflected optical axes t coincides with the axis of the waveguide, and the other reflected light 1lIi is reflected with the optical axis t aligned with the reflecting mirror of the waveguide. - Each waveguide is connected in series by connecting each waveguide, and a total reflection mirror is provided at one end of the waveguides connected in series, and a semi-transmission mirror is provided at the other end, and the said reflection mirror is The pair of electrodes on the same end side are held by the same holder, and a high frequency voltage is applied between the electrode pace and the electrode plate to cause discharge. Excite light into the waveguide,
Since the LED light is generated, the discharge distance is short and the frequency is high, so high voltage is not required for discharge.
In addition, multiple waveguides are provided on at least two opposing walls of the electrode space, and these are optically connected in series, so even if the device length is short, a long waveguide length can be obtained and high output can be obtained, as well as space utilization efficiency. Therefore, it is possible to reduce the wrinkles even more with the conventional method and with the output power, and since the pair of reflecting mirrors are fixed to the same holder, it is less susceptible to mechanical vibrations. The optical axis does not shift strongly, and since the electrode space is configured to be cooled, the effect of heat generation due to discharge is minimized, and the optical axis and waveguide central axis are prevented from misalignment due to thermal expansion of the device. It is possible to provide a waveguide-type gas Raded device having excellent properties such as being able to obtain stable Raded light by suppressing .

【図面の簡単な説明】[Brief explanation of the drawing]

11i 1EFi従来方式の光路構成を示す図、第2図
は本発明装置O光路構成ときツーの各配置及び構造を説
明するための図、第3図は本発明装置における導波路本
体の構造を示す斜視図、第4図は本発IjIの全体的構
成を示す斜視図、第5図Fi第4図の断面構造を示す図
、第6図〜第8図は導波路本体の他の構成例を示す断面
図である。 1.21・・・出力ミラー、2.21・・・全反射ミラ
ー、J 、 J J a 、 j J b 、 j J
 c −折シ返えしミラー、31,71.72.al・
・・電極ペース、Ila、rlm、11b、12a、r
lb。 l 1 g−・一孔、jJa 、Jjb 、li@、J
Jd。 61.62.III・・・電極板、31m、〜311゜
al・・・誘電体板、41・・・筐体。
11i 1EFi A diagram showing the optical path configuration of the conventional method, FIG. 2 is a diagram for explaining the arrangement and structure of the O optical path configuration of the device of the present invention, and FIG. 3 is a diagram showing the structure of the waveguide body in the device of the present invention. FIG. 4 is a perspective view showing the overall configuration of the IjI of the present invention, FIG. 5 is a diagram showing the cross-sectional structure of FIG. FIG. 1.21... Output mirror, 2.21... Total reflection mirror, J, J J a, j J b, j J
c - folding mirror, 31, 71.72. al・
...electrode pace, Ila, rlm, 11b, 12a, r
lb. l 1 g-・one hole, jJa, Jjb, li@, J
Jd. 61.62. III... Electrode plate, 31m, ~311°al... Dielectric plate, 41... Housing.

Claims (1)

【特許請求の範囲】[Claims] ガスレーデ装置において、冷却手段を有するf口、り状
O電極ペースO対向する少なくとも一対の儒I1面にそ
れぞれ電極板を離間して配設すゐと共にζO電極板と鎗
記側壁画との間には適宜間隔で対向する誘電体板を設け
て電極ペース側壁面及び電極板及び誘電体板で包囲され
喪両端部O開口される複数01IIIL路を形成し、こ
れら導波路の端部には反射光軸〇一方をその導波路の軸
に一致させてそれぞれ反射鏡を設け、且つ反射鏡の他方
の反射光軸は曽ぶべ音導波路O反射鏡に光軸を一致させ
ることKよ)各導波路を直列的に結びまえ、ζO直列的
に結ばれた導波路の両端には一方に光を全反射させる全
反射鏡を、盲え他方には亭遥遥鏡を設け、1つ前記反射
鏡は同一端部側の対と1にみもot同一保持体に保持さ
せて配設する構成とし、前記電極ペースと電極板との間
には高い周波数の電圧を印加して放電させることKより
レーデ光の励起を行うようKしたことを%黴とするガス
レーデ装置。
In the Gaslade device, an electrode plate is arranged spaced apart from each other on at least a pair of opposing sides of the f-shaped O electrode plate having a cooling means, and between the O electrode plate and the wall mural on the Yaki side. The dielectric plates facing each other are provided at appropriate intervals to form a plurality of 01IIIL paths surrounded by the electrode space side wall surface, the electrode plate, and the dielectric plate and open at both ends. Provide a reflecting mirror with one axis aligned with the axis of the waveguide, and the optical axis of the other reflecting mirror should be aligned with the Sobube sound waveguide O reflecting mirror. The waveguides are connected in series, and at both ends of the waveguides connected in ζO series there is a total reflection mirror that totally reflects the light on one side, and on the other side there is a total reflection mirror. The two electrodes are arranged so that they are held in the same holding body with the pair on the same end side, and a high frequency voltage is applied between the electrode plate and the electrode plate to cause discharge. A gas Rede device that uses K to excite Rede light.
JP3985482A 1982-03-13 1982-03-13 Gas laser device Granted JPS58157186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3985482A JPS58157186A (en) 1982-03-13 1982-03-13 Gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3985482A JPS58157186A (en) 1982-03-13 1982-03-13 Gas laser device

Publications (2)

Publication Number Publication Date
JPS58157186A true JPS58157186A (en) 1983-09-19
JPH047111B2 JPH047111B2 (en) 1992-02-07

Family

ID=12564547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3985482A Granted JPS58157186A (en) 1982-03-13 1982-03-13 Gas laser device

Country Status (1)

Country Link
JP (1) JPS58157186A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000764A1 (en) * 1986-07-18 1988-01-28 Fanuc Ltd Gas laser device
WO1988009578A1 (en) * 1987-05-20 1988-12-01 Fraunhofer-Gesellschaft Zur Förderung Der Angewand Gas laser
JP2019527479A (en) * 2016-07-15 2019-09-26 メトラー−トレド ゲーエムベーハー Optical device for compensating for improper alignment of the reflector with respect to the light source

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000764A1 (en) * 1986-07-18 1988-01-28 Fanuc Ltd Gas laser device
US4907241A (en) * 1986-07-18 1990-03-06 Fanuc Ltd Gas laser device
WO1988009578A1 (en) * 1987-05-20 1988-12-01 Fraunhofer-Gesellschaft Zur Förderung Der Angewand Gas laser
JP2019527479A (en) * 2016-07-15 2019-09-26 メトラー−トレド ゲーエムベーハー Optical device for compensating for improper alignment of the reflector with respect to the light source

Also Published As

Publication number Publication date
JPH047111B2 (en) 1992-02-07

Similar Documents

Publication Publication Date Title
US4233567A (en) Face-cooled laser device having increased energy storage and output
US8467429B2 (en) Scalable, efficient laser systems
US3577096A (en) Transverse discharge gas laser
CN103518295B (en) Ceramic slab, free-space and waveguide lasers
JPS61500141A (en) Horizontal high frequency gas discharge laser with external electrodes
US20050201442A1 (en) Solid-state lasers employing incoherent monochromatic pump
WO1993014541A1 (en) High power regenerative laser amplifier
JP6154955B2 (en) Laser resonator to suppress parasitic mode
JPS58157186A (en) Gas laser device
JPH0832155A (en) Exciting apparatus for multiple channel laser
US3469207A (en) Metal-ceramic gas laser discharge tube
JPH01501029A (en) Laser device having multiple waveguides and method for manufacturing this laser device
CN101728756A (en) Laser head for all-solid-state laser
JP2003264328A (en) Waveguide gas laser oscillator
EP2994961A1 (en) Solid state laser system
JPS6144481A (en) Gas laser device
CN112366506B (en) A miniaturized low-noise all-solid-state single-frequency continuous-wave laser
Crépy et al. Efficient, diode temperature insensitive Nd: YAG hybrid longitudinal/transversal-pumped zig-zag slab laser: Delta concept
RU2329578C1 (en) Gas laser with high-frequency excitation
JPH08148742A (en) Gas laser apparatus
JP2003115414A (en) Winding equipment, high-voltage pulse generator using the same, and discharge-excited pump laser device provided with pulse generator
JPH05327071A (en) Laser device cooler
JPH08148736A (en) Gas laser apparatus
JPH0228978A (en) Gas laser oscillator
RU114560U1 (en) MINIATURE LASER RADIATOR