[go: up one dir, main page]

JPS58150037A - Electronically controlled fuel injection method of internal-combustion engine - Google Patents

Electronically controlled fuel injection method of internal-combustion engine

Info

Publication number
JPS58150037A
JPS58150037A JP3203382A JP3203382A JPS58150037A JP S58150037 A JPS58150037 A JP S58150037A JP 3203382 A JP3203382 A JP 3203382A JP 3203382 A JP3203382 A JP 3203382A JP S58150037 A JPS58150037 A JP S58150037A
Authority
JP
Japan
Prior art keywords
engine
fuel injection
compensation
pipe pressure
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3203382A
Other languages
Japanese (ja)
Other versions
JPH0325621B2 (en
Inventor
Toshiaki Isobe
磯部 敏明
Toshimitsu Ito
利光 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Toyota Jidosha Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Jidosha Kogyo KK filed Critical Toyota Motor Corp
Priority to JP3203382A priority Critical patent/JPS58150037A/en
Publication of JPS58150037A publication Critical patent/JPS58150037A/en
Publication of JPH0325621B2 publication Critical patent/JPH0325621B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/068Introducing corrections for particular operating conditions for engine starting or warming up for warming-up

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To aim at improvement in starting characteristics at the time of low temperature, by carrying out an increase in quantity after engine starting and an air-fuel ratio compensation in time of idling, while stopping the air-fuel ratio compensation when cooling water temperature is below the specified value, in case of a method to properly compensate for the basic injection quantity accordance with a state of engine rotation. CONSTITUTION:In a digital control circuit 54, the basic injection time is read out of a read-only memory on a basis of both the suction pipe pressure by a suction pipe pressure sensor 23 and the engine speed by a crank angle sensor 44 whereby injection 30 is controlled. In this case, after engine starting, a fuel increment compensation is carried out in accordance with a coefficient of compensation read out according to the warm-up state by a water temperature sensor 46 and then the compensation is attenuated after the lapse of the specified time. Likewise, at the time of idling, the increase and decrease compensation of fuel is carried out according to the coefficient of compensation being varied with the suction pipe pressure and the engine speed change. And, at this time, this method makes the latter so as not to carry out the air-fuel ratio compensation in time of idling when the cooling water temperature is below the specified value.

Description

【発明の詳細な説明】 本発明は、内燃機関の電子制御燃料噴射方法に係り、特
に、吸気管圧力式の電子制御燃料噴射装置を備えた自動
車用内燃機関に用いるのに好適な。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electronically controlled fuel injection method for an internal combustion engine, and is particularly suitable for use in an automobile internal combustion engine equipped with an intake pipe pressure type electronically controlled fuel injection device.

エンジンの吸気管圧力とエンジンの回転数に応じて基本
噴射量を求めると共に、過渡時等は、エンジン運転状態
に応じて前記基本噴射量を増減量補正することによって
燃料噴射量を決定するようにした内燃機関の電子制御燃
料噴射方法の改良[19する。
The basic injection amount is determined according to the engine intake pipe pressure and the engine rotational speed, and at transient times, the fuel injection amount is determined by increasing or decreasing the basic injection amount according to the engine operating condition. Improvement of electronically controlled fuel injection method for internal combustion engine [19].

自動車用エンジン等の内燃機関の燃焼室に所定空燃比の
混合気を供給する方法の一つに、電子制御燃料噴射装置
を用いるものがある。これは、エンジン内に燃料を噴射
するためのインジェクタを、ガニば、エンジンの吸気マ
ニホルド或いはスロットルボデーに、エンジン気筒数個
或いは1個配設し、該インジェクタの開弁時間をエンジ
ンの運転状態に応じて制御することにより、所定の空燃
比の混合気がエンジン燃焼室に供給されるようにするも
のである。この電子制御燃料噴射装置には。
2. Description of the Related Art One of the methods for supplying an air-fuel mixture at a predetermined air-fuel ratio to the combustion chamber of an internal combustion engine such as an automobile engine uses an electronically controlled fuel injection device. In this method, an injector for injecting fuel into the engine is installed in the intake manifold or throttle body of the engine for several or one engine cylinder, and the valve opening time of the injector is adjusted depending on the engine operating state. By controlling accordingly, a mixture having a predetermined air-fuel ratio is supplied to the engine combustion chamber. This electronically controlled fuel injection system.

大別して、エンジンの吸入空気量とエンジン回転数に応
じて基本噴射量を求めるようにした、いわゆる吸入空気
量式の電子制御燃料噴射装置と、工ンジンの吸気管圧力
とエンジン回転数に応じて基本噴射量を求めるようにし
た。いわゆる吸気管圧力式の電子制御燃料噴射装置があ
る。
Broadly speaking, there are so-called intake air amount type electronically controlled fuel injection devices, which calculate the basic injection amount according to the engine's intake air amount and engine speed, and those that calculate the basic injection amount according to the engine's intake pipe pressure and engine speed. The basic injection amount is now calculated. There is a so-called intake pipe pressure type electronically controlled fuel injection device.

このうち前者は、空燃比を精密に制御することが可能で
あり、排気ガス浄化対策が施された自動車用エンジンに
広く用いられるようになっているしかしながら、この吸
入空気量式の電子制御燃料噴射装置においては、吸入空
気量が、アイドル時と高負荷時で50倍程度変化し、F
イナミックレンジが広いので、吸入空気tt−電気信号
に変換する際の精度が低くなるだけでな(、後段のデジ
タル制御回路における計算精#を高めようとすると、電
気信号のビット長が長くなり、デジタル制御回路として
高価なコンピュータを用いる必要がある。
Of these, the former allows for precise control of the air-fuel ratio, and is now widely used in automobile engines equipped with exhaust gas purification measures. In a device, the amount of intake air changes by about 50 times between idle and high load, and F
Since the dynamic range is wide, the accuracy when converting the intake air tt to an electrical signal will be low (but if you try to increase the calculation accuracy in the digital control circuit at the subsequent stage, the bit length of the electrical signal will become longer, It is necessary to use an expensive computer as a digital control circuit.

又、吸入空気jllを測定するために、エアフローメー
タ等の非常に精密な構造を有する測定器を用いる必要が
あり、設備費が高価となる等の問題点を有していた。
In addition, in order to measure the intake air jll, it is necessary to use a measuring device such as an air flow meter having a very precise structure, resulting in problems such as high equipment costs.

一方、vk者の吸気管圧力式の電子制御燃料噴射装置に
おいては、吸気管圧力の変化量が2〜3倍程程度少なく
、ダイナミックレンジが狭いので。
On the other hand, in VK's intake pipe pressure type electronically controlled fuel injection system, the amount of change in intake pipe pressure is about 2 to 3 times smaller, and the dynamic range is narrower.

後段のデジタル制御回路における演算処理が容易である
だけでなく、吸気管圧力を検知するための圧力センサも
安価であるという特徴を有する。しかしながら、吸入空
気量式の電子制御燃料噴射装置に比べると、空燃比の制
御精度が低く、%K、アイドル時には、各センサかもの
入力信号の位相遅れにより正帰還がかかりエンジン回転
がハンチングすることがあった。このハンチングを防止
すルヘく、アイドル時に、吸気管圧力及びエンジン回転
数の変化量[K応じて燃料噴射量を増減量補正する。第
1図(A)[示すようなアイドル時空燃比補正を行うこ
とも考えられるが、エンジン始#b後に、エンジン暖機
状態に応じて燃料噴射量を増量補正し1次いで減衰する
。第1図の)に示すような始動後場量と併用された場合
には、第1図(OK−示す如く、特にエンジン始動直後
に空燃比がオーバーリッチとなり、エンジン回転が不安
定になるだけでなく、始動性も悪くなってしまうという
問題があった。このような問題は%特に、エンジン冷却
水温が低く、低温時に、エンジン暖機状態に応じて燃料
噴射量を増量補正する暖機増量が更に併用された場合に
大である。
Not only is the arithmetic processing in the subsequent digital control circuit easy, but the pressure sensor for detecting the intake pipe pressure is also inexpensive. However, compared to an intake air volume type electronically controlled fuel injection system, the control accuracy of the air-fuel ratio is lower, and at %K and idle, positive feedback occurs due to the phase delay of the input signal of each sensor, causing engine rotation hunting. was there. To prevent this hunting, during idling, the fuel injection amount is corrected to increase or decrease according to the amount of change in intake pipe pressure and engine speed. Although it is possible to perform the air-fuel ratio correction at idle as shown in FIG. 1(A), after engine start #b, the fuel injection amount is corrected to increase in accordance with the engine warm-up state, and then is attenuated. If used in conjunction with the post-start condition shown in Figure 1 (OK-), the air-fuel ratio will become overrich, especially immediately after the engine starts, and the engine rotation will become unstable, as shown in Figure 1 (OK-). There was a problem that starting performance deteriorated.This problem is especially caused when the engine cooling water temperature is low and the warm-up increase that corrects the fuel injection amount according to the engine warm-up condition is not effective. Furthermore, it is large when used together.

本発明は、前記従来の欠点を解消するべくなされたもの
で、特に、低温時の始動性及び始動後のアイドル安定性
を向上することができる内燃機関の電子制御燃料噴射方
法を提供することを目的とする。
The present invention has been made to eliminate the above-mentioned conventional drawbacks, and in particular, it is an object of the present invention to provide an electronically controlled fuel injection method for an internal combustion engine that can improve starting performance at low temperatures and idling stability after starting. purpose.

本発明に、エンジンの吸気管圧力とエンジン回転数に応
じて基本噴射量を求めると共に、過渡時等は、エンジン
運転状態に応じて前記基本噴射量を増減量補正すること
によって燃料噴射量を決定するようにした内燃機関の電
子制御燃料噴射方法において、エンジン始動後に、エン
ジン暖機状態に応じ、て燃料噴射量を増量補正し、次い
で減衰する始動後場量と、アイドル時に、吸気管圧力及
びエンジン回転数の変化速度に応じて燃料噴射量を増減
量補正するアイドル時空燃比補正とを行うと共に、エン
ジン冷却水温が所定温度未満である場合は、アイドル時
空燃比補正を行わないようにして、前記目的を達成した
ものである。
In the present invention, the basic injection amount is determined according to the engine intake pipe pressure and the engine rotation speed, and at transient times, the fuel injection amount is determined by correcting the basic injection amount to increase or decrease according to the engine operating state. In the electronically controlled fuel injection method for an internal combustion engine, after the engine starts, the fuel injection amount is increased according to the engine warm-up condition, and then the after-starting amount is attenuated, and the intake pipe pressure and the engine are adjusted at idle. The idling air-fuel ratio correction is performed to increase or decrease the fuel injection amount according to the rate of change of the rotational speed, and if the engine cooling water temperature is below a predetermined temperature, the idling air-fuel ratio correction is not performed. has been achieved.

以下図面を参照して、本発明の実m例J會詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described in detail below with reference to the drawings.

本発明に係る内燃機関の電子制御燃料噴射方法が採用さ
れた吸気管圧力式の電子制御燃料噴射装置の実線例は、
第2図及び@3図に示す如く、外気を取入れるためのエ
アクリーナ12と、該エアクリーナ12より取入れられ
た吸入空気の温41&検出するための吸気温センサ14
と、吸気通路16中に配設され、運転席に配設されたア
クセルペダル(図示省略)と連動して開閉するようにさ
れ九、@大空気の流ti副制御るための絞り弁18と、
骸絞り弁18がアイドル開#にあるか否かを検出するた
めのアイドル接点及び絞り弁18の開1に比例した電圧
出力を発生するポテンショメータを含むスロットルセン
サ2oと、サージタンク22と、該サージタンク22内
の圧力から吸気管圧力を検出するための吸気管圧力上ン
サ23と、前記絞り弁18をバイパスするバイパス通路
24と、該バイパス通路24の途中に配設され。
A solid line example of an intake pipe pressure type electronically controlled fuel injection device employing the electronically controlled fuel injection method for an internal combustion engine according to the present invention is as follows:
As shown in Figures 2 and 3, there is an air cleaner 12 for taking in outside air, and an intake air temperature sensor 14 for detecting the temperature 41 of the intake air taken in from the air cleaner 12.
A throttle valve 18 is disposed in the intake passage 16 and is opened and closed in conjunction with an accelerator pedal (not shown) disposed on the driver's seat. ,
A throttle sensor 2o including an idle contact for detecting whether or not the throttle valve 18 is in the idle open position and a potentiometer that generates a voltage output proportional to the open position of the throttle valve 18, a surge tank 22, and the surge tank 22. An intake pipe pressure sensor 23 for detecting the intake pipe pressure from the pressure in the tank 22, a bypass passage 24 that bypasses the throttle valve 18, and an intermediate part of the bypass passage 24 are provided.

該バイパス通路24の開口面積を制御することによって
アイドル回転速度を制御するためのアイドル回転制御弁
26と、吸気マニホルド28に配設された、エンジン1
0の吸気ボートに向けて燃料を噴射するためのインジェ
クタ30と、排気マニホルド32に配設された、排気ガ
ス中の残存酸素amがら空燃比を検知するための酸素濃
度センサ34と、on記排気マニホルド32下流側の排
気管36の途中に配設された三元触媒コンバータ38と
、エンジンlOのクランク軸の回転と連動して回軛する
ディストリビュータ軸を有するディストリビュータ40
と、レゾイストリピユータ40に内蔵された。前記ディ
ストリビュータ軸の回転に応じて上死点信号及びクラン
ク角信号を出力する上死点センサ42及びクランク角セ
ンサ44と。
An idle rotation control valve 26 for controlling the idle rotation speed by controlling the opening area of the bypass passage 24, and an engine 1 disposed in the intake manifold 28.
an injector 30 for injecting fuel toward the intake boat of 0; an oxygen concentration sensor 34 disposed in the exhaust manifold 32 for detecting the air-fuel ratio from residual oxygen am in the exhaust gas; A three-way catalytic converter 38 is disposed in the middle of the exhaust pipe 36 on the downstream side of the manifold 32, and a distributor 40 has a distributor shaft that rotates in conjunction with the rotation of the crankshaft of the engine IO.
It was built into the Resoist Repeater 40. A top dead center sensor 42 and a crank angle sensor 44 output a top dead center signal and a crank angle signal in accordance with the rotation of the distributor shaft.

エンジンブロックに配設された。エンジン冷却水温を検
知するための冷却水温センサ46と、変速1m4Bの出
力軸の回転数から車両の走行速[を検出する九めの車速
センサ50と、前記吸気管圧力。
installed in the engine block. A cooling water temperature sensor 46 for detecting the engine cooling water temperature, a ninth vehicle speed sensor 50 for detecting the running speed of the vehicle from the rotational speed of the output shaft of the variable speed 1m4B, and the intake pipe pressure.

センサ23出力の吸気管圧力と前記クランク角センサ4
4の出力から求められるエンジン回転数に応じてエンジ
ン1工程あたりの基本噴射量をマツプから求めると共に
、これを前記スロットルセンサ20の出力、前記酸素濃
度センサ34出力の空燃比、前記冷却水温センサ46出
力のエンジン冷却水温等に応じて増減量補正することに
よって、燃料噴射量を決定して前記インジェクタ30に
開弁時間信号を出力し、又、エンジン運転状態に応じて
点火時期を決定してイグナイタ付コイル52に点火信号
を出力し、更に、アイドル時に前記アイドル回転制御弁
26を制御するデジタル制御回路54とを備えた自動重
用エンジンlOの吸気管圧力式電子制御燃料噴射装置に
おいて、前記デジタル制御回路54内で、エンジン始動
後に、エンジン冷却水温から検知されるエンジン暖機状
態に応じて燃料噴射at増量補正し1次いで減衰する始
動後装置と、アイドル時に、吸気管圧力及びエンジン回
転数の変化速度に応じて営料噴射量を増減量補正するア
イドル時空燃比補正と倉行うと共に、エンジン冷却水温
が所定温度未満である場合は、アイドル時空燃比補正を
行わないようにしたものである。
The intake pipe pressure output from the sensor 23 and the crank angle sensor 4
The basic injection amount per engine stroke is determined from the map according to the engine rotation speed determined from the output of step 4, and this is calculated from the output of the throttle sensor 20, the air-fuel ratio of the oxygen concentration sensor 34 output, and the cooling water temperature sensor 46. The fuel injection amount is determined by correcting the increase or decrease in output according to the engine cooling water temperature, etc., and a valve opening time signal is output to the injector 30. Also, the ignition timing is determined according to the engine operating condition and the igniter is activated. An intake pipe pressure type electronically controlled fuel injection system for an automatic heavy-duty engine 10, which is equipped with a digital control circuit 54 that outputs an ignition signal to an attached coil 52 and further controls the idle rotation control valve 26 during idle. Within the circuit 54, after the engine is started, there is a post-start device that corrects the increase in fuel injection amount according to the engine warm-up state detected from the engine cooling water temperature, and then attenuates it, and a change in the intake pipe pressure and the engine rotational speed during idling. The idling air-fuel ratio correction is performed to increase or decrease the commercial injection amount according to the speed, and the idling air-fuel ratio correction is not performed when the engine cooling water temperature is less than a predetermined temperature.

前記デジタル制御回路54は、“第3図に詳細に示す如
く、各糧演算処理を行うマイクロプロセッサからなる中
央処理装置(以下CPUと称する)6(1:、前記吸気
温センサ14、スロットルセンサ20のポテンショメー
タ、吸気管圧力センサ23、酸素濃度センサ34、冷却
水温センサ46等から入力されるアナログ信号を、デジ
タル信号に変換して順次CPU60に取込むためのマル
チプレクサ付アナログ入力ポートロ2と、前記スロット
ルセンサ20のアイドル接点、上死点センサ42、クラ
ンク角センサ44、車速センサ50等から入力されるデ
ジタル信号を、所定のタイミングでCPU6oVc取込
むためのデジタル入力ポートロ4と、プログラム或いは
各種定数等を記憶するためのリードオンリーメモリ(以
下ROMと称する)66と、CPU60における演算デ
ータ等を一時的に記憶するためのランダムアクセスメモ
リ(以下RAMと称する)68と、機関停止時にも補助
電源から給′胤されて記憶を保持できる・(ツクアップ
用ランダムアクセスメモリ(以−t〕くツクアップRA
Mと称する)70と、CPU60&こおける演算結果を
所定のタイミングで#記アイドル回転制御弁26.イン
ジェクタ30、イグナイタ付コイル52等に出力するた
めのデジタル出力ポードア2と、上記各構成機器間を接
続するコモンバス74とから構成されている。
As shown in detail in FIG. 3, the digital control circuit 54 includes a central processing unit (hereinafter referred to as CPU) 6 (1:, the intake temperature sensor 14, the throttle sensor 20) consisting of a microprocessor that performs various calculation processes. an analog input port 2 with a multiplexer for converting analog signals inputted from the potentiometer, the intake pipe pressure sensor 23, the oxygen concentration sensor 34, the cooling water temperature sensor 46, etc. into digital signals and sequentially inputting them into the CPU 60; A digital input port 4 for inputting digital signals inputted from the idle contact of the sensor 20, the top dead center sensor 42, the crank angle sensor 44, the vehicle speed sensor 50, etc. to the CPU 6oVc at a predetermined timing, and a program or various constants. A read-only memory (hereinafter referred to as ROM) 66 for storing data, a random access memory (hereinafter referred to as RAM) 68 for temporarily storing calculation data etc. in the CPU 60, and a read-only memory (hereinafter referred to as RAM) 68 for temporarily storing calculation data etc. in the CPU 60, and a (Random access memory for pick-up (hereinafter referred to as "tup-up RA")
M) 70 and the CPU 60 & CPU 60 & 70 output the calculation results to the idle rotation control valve 26. at a predetermined timing. It is comprised of a digital output port door 2 for outputting to the injector 30, the igniter-equipped coil 52, etc., and a common bus 74 that connects each of the above-mentioned components.

以下作用を説明する。The action will be explained below.

まずデジタル制御回路54に、吸気管圧力センサ23出
力の吸気管圧力PMと、クランク角センサ44の出力か
ら算出されるエンジン回転数NEにより、ROM66に
予め配憶されているマツプ“から、基本噴射時間TP 
(RM、NE )k読出す。
First, the digital control circuit 54 uses the intake pipe pressure PM output from the intake pipe pressure sensor 23 and the engine rotation speed NE calculated from the output of the crank angle sensor 44 to perform basic injection from a map stored in advance in the ROM 66. Time TP
(RM, NE) Read k.

更に、各センサからの信号に応して、次式を用いて前記
基本噴射時間TP(PM、NE)t−補正することによ
り、燃料噴射時間TAUk算出する。
Furthermore, the fuel injection time TAUk is calculated by correcting the basic injection time TP (PM, NE) t using the following equation according to the signals from each sensor.

TAU=TP (PM、NE l * (1+FsE+
FLL l傘Wt。
TAU=TP (PM, NE l * (1+FsE+
FLL l umbrella Wt.

・・・・・・・・・・・・ (り ここで、FSEf′i、始艶後増暑補正係数、FLLは
、アイドル時空燃比補正係数、WLは緩接増量補正係数
である。
(Here, FSEf'i is a post-shining heat increase correction coefficient, FLL is an idling air-fuel ratio correction coefficient, and WL is a slow heat increase correction coefficient.

このようにして決定された燃料噴射時間TAUに対応す
る溶料噴射信号が、インジェクタ30に出力され、エン
ジン回転と同期してインジェクタ30が燃料噴射時間T
AUだけ開かれて、エンジンlOの吸気マニホルド28
内に燃料が噴射される。
A solvent injection signal corresponding to the fuel injection time TAU determined in this manner is output to the injector 30, and the injector 30 is activated for the fuel injection time TAU in synchronization with the engine rotation.
Only AU is opened, engine lO intake manifold 28
Fuel is injected inside.

本1!施例における始動後増量補正係数PSE及びアイ
ドル時空燃比補正係数FLLの計算は、第華図に示すよ
うなプログラムに従って行われる。
Book 1! In this embodiment, the post-start increase correction coefficient PSE and the idle air-fuel ratio correction coefficient FLL are calculated according to a program as shown in Fig. 1.

即ち、まずステップ101で、エンジン冷却水温THW
t−取込む。次いで、ステップ102に進み、前出ステ
ップ101で読出されたエンジン冷却水温THWに応じ
て、予めROM66に記憶さ九ている、エンジン冷却水
温THWと始動後増量補正係数PSEの初期値との関係
を表わし九テーブルから、始動後増量補正係数PSEの
初期値を読出す。更に、ステップ103に進み、前回の
減衰から所定時間或いは所定回転数経過したか否かを判
定する。判定結果が正である場合には、ステップ104
で、次式に従って、その時の始動優増量補正係数PSE
1e盾定量ΔFEEだけ減衰したものを、新たな始動後
増量補正係数FEEとする。
That is, first in step 101, the engine cooling water temperature THW
t-take in; Next, the process proceeds to step 102, in which the relationship between the engine cooling water temperature THW and the initial value of the post-start increase correction coefficient PSE, which is stored in advance in the ROM 66, is determined according to the engine cooling water temperature THW read out in step 101. The initial value of the post-start increase correction coefficient PSE is read from the Table 9. Furthermore, the process proceeds to step 103, where it is determined whether a predetermined time or a predetermined number of rotations have elapsed since the previous damping. If the determination result is positive, step 104
Then, according to the following formula, the starting advantage increase correction coefficient PSE at that time is
1e The value attenuated by the shield quantity ΔFEE is set as the new post-start increase correction coefficient FEE.

F 8 E=F S E−△FSE  ・・・・・・・
・・・・・(2)ステップ104終了後、或いは、前出
ステップ103における判定結果が否である場合には、
ステップ105に進み、iの時のエンジン冷却水温TH
’Wが、PA定値THWA(例えば40〜50℃)以上
となったか否かを判定する。判定結果か否である場合、
即ち、エンジン冷却水温が未だ十分上昇していない場合
には、ステップ106に進み、アイドル時空燃比補正係
数F L L t Oとして、このプログラムを終了し
、アイドル時空燃比補正が行われないようにする。
F 8 E=F S E−△FSE ・・・・・・・・・
(2) After step 104 is completed, or if the determination result in step 103 is negative,
Proceeding to step 105, the engine coolant temperature TH at the time of i
' It is determined whether or not W has become equal to or higher than the PA constant value THWA (for example, 40 to 50°C). If the judgment result is negative,
That is, if the engine cooling water temperature has not yet risen sufficiently, the process proceeds to step 106, where the idling air-fuel ratio correction coefficient F L L t O is set, and this program is terminated, so that the idling air-fuel ratio correction is not performed. .

一方、x、fツブ105における判定結果が正である場
合、即ち、エンジン冷却水温が所定値THWA迄上昇し
た場合KU、ステツ1107に進み、エンジン1回転当
9の吸気管圧力の変化量ΔPMを求める。次いで、ステ
ップ108に過皐。
On the other hand, if the determination result at the x and f knobs 105 is positive, that is, if the engine cooling water temperature has risen to the predetermined value THWA, the process proceeds to KU step 1107, where the amount of change ΔPM in the intake pipe pressure per engine revolution 9 is calculated. demand. Next, proceed to step 108.

求められた吸気管圧力の変化量ΔPMに応じて、第5図
に示すような関係に従って予めROM66に記憶されて
いるテーブルから、吸気管圧力補正係数PPMk読出す
。更に、ステップ109に進み、エンジン1回転当りの
エンジン回転数の変化量ΔNEを求める。次いで、ステ
ップ110に進み、求められ次エンジン回転数の変化量
ΔNgに応じて、第6図に示すような関係に従って予め
ROM66に記憶されているテーブルから、エンジン回
転数補正係数FNEt読出す。更に、ステップillに
進み、次式に示す如く、吸気管圧力補正係数PPMとエ
ンジン回転数補正係数FNEから、アイドル時空燃比補
正係数FLLk算出して、このプログラムを終了する。
In accordance with the obtained intake pipe pressure change amount ΔPM, the intake pipe pressure correction coefficient PPMk is read out from a table stored in advance in the ROM 66 according to the relationship shown in FIG. Furthermore, the process proceeds to step 109, where the amount of change ΔNE in the engine speed per engine rotation is determined. Next, the process proceeds to step 110, in which the engine speed correction coefficient FNEt is read out from a table stored in advance in the ROM 66 according to the relationship shown in FIG. Further, the program proceeds to step ill, where an idling air-fuel ratio correction coefficient FLLk is calculated from the intake pipe pressure correction coefficient PPM and the engine speed correction coefficient FNE as shown in the following equation, and this program ends.

FLL=FPM+FNE  ・・・・・・・・・・・・
(3)本実施例における最終的な補正係数の変化状態の
一例を@7図に示す。
FLL=FPM+FNE ・・・・・・・・・・・・
(3) An example of the final change state of the correction coefficient in this example is shown in Figure @7.

以上説明した通り、本発明によれば、始動後増量とアイ
ドル時空燃比補正が併用されることによって生じる、エ
ンジン始動直後の空燃比のオーバーリッチを防止するこ
とができ、特に、低温時のエンジン始動性及び始動後の
アイドル安定性を向上することができるという優れた効
果を有する。
As explained above, according to the present invention, it is possible to prevent over-richness of the air-fuel ratio immediately after starting the engine, which is caused by the combination of post-start increase and idle air-fuel ratio correction. This has the excellent effect of improving performance and idling stability after startup.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、内?機関の電子制御燃料噴射方法において、
始動後増量とアイドル時空燃比補正とt併用した場合の
増量の様子をガ、す線図、第2図は。 本発明に係る内燃機関の電子制御燃料噴射力法が採用さ
れた、自11+正用エンジンの吸気管圧力式電子制御燃
料噴射装置の実施例の構成倉示すブロック線図、#E3
図に、前I[8実施例で用いられているデジタル制御回
路の構成を示1ブロック線図 *4図は、同じく前記実
施例で用いられている。始動後増量補正係数及びアイド
ル時空勢比補正Saを算出するためのプログラムを示す
流れ図、*5’図ハ、同じく、エンジン1回転当りの吸
気管圧力の変化量と吸気管圧力補正係数の関係を示す線
図、第6図は、同じく、エンジン1回転当りのエンジン
回転数の変化量とエンジン回転数補正係数の関係を示す
線図、第7図に、前記実施例における。 エンジン冷却水温と始動後増量及び°rイドル時空燃比
補正の関係の一例を示す線画である。 10・・・エンジン、14・・・吸気温センサ。 五8・・絞り弁、20・・・スロットルセンサ。 23・・・吸気管圧力センサ、30・・・インジェクタ
。 34・・・酸素濃度センサ、40・・・ディストリビュ
ータ、42・・・上死点センサ、44・・・クランク角
センサ、46・・・冷却水温センタ、54・・・デジタ
ル制御回路。 代理人   高  矢     論 (ほか1名) く      の      O く          の 牟 3 図 ′tど 250− 第4 図
Figure 1 is inside? In an electronically controlled fuel injection method for an engine,
Figure 2 is a graph showing how the amount increases when t is used in combination with the increase after starting and the air-fuel ratio correction at idle. A block diagram showing the configuration of an embodiment of an intake pipe pressure type electronically controlled fuel injection device for a private 11+ engine in which the electronically controlled fuel injection force method for an internal combustion engine according to the present invention is adopted, #E3
The figure shows the configuration of the digital control circuit used in the previous I[8] embodiment. *4 The diagram is also used in the above embodiment. A flowchart showing a program for calculating the post-start increase correction coefficient and the idle air ratio correction Sa, *5' Figure C also shows the relationship between the amount of change in intake pipe pressure per engine revolution and the intake pipe pressure correction coefficient. Similarly, the diagram shown in FIG. 6 is a diagram showing the relationship between the amount of change in the engine rotation speed per engine revolution and the engine rotation speed correction coefficient in the example described above. It is a line drawing showing an example of the relationship between engine cooling water temperature, increase after starting, and correction of air-fuel ratio at idle. 10...Engine, 14...Intake temperature sensor. 58... Throttle valve, 20... Throttle sensor. 23... Intake pipe pressure sensor, 30... Injector. 34...Oxygen concentration sensor, 40...Distributor, 42...Top dead center sensor, 44...Crank angle sensor, 46...Cooling water temperature center, 54...Digital control circuit. Agent Takaya Ron (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] (1)  エンジンの吸気管圧力とエンジン回転数に応
じて基本噴射量を求めると共K、過渡時等は。 エンジン運転状態に応じて前記基本噴射量を増減量補正
することによって燃料噴射量を決定するようにした内燃
機関の電子制御燃料噴射方法において、エンジン始動後
に、エンジン暖機状態に応じて燃料噴射量を増量補正し
1次いで減衰する始動後増量と、アイドル時に、吸気管
圧力及びエンジン回転数の変化速度に応じて燃料噴射量
を増減量補正するアイドル時空燃比補正とを行うと共に
。 エンジン冷却水温が所定温度未満である場合は、アイド
ル時空燃比補正を行わないようにしたことt%徴とする
内燃機関の電子制御燃料噴射方法。
(1) Calculate the basic injection amount according to the engine intake pipe pressure and engine speed, and at transient times, etc. In an electronically controlled fuel injection method for an internal combustion engine, in which the fuel injection amount is determined by increasing or decreasing the basic injection amount according to the engine operating state, after the engine is started, the fuel injection amount is determined according to the engine warm-up state. A post-start increase is performed in which the fuel injection amount is increased and then attenuated, and an idling air-fuel ratio correction is performed in which the fuel injection amount is increased or decreased during idle according to the rate of change in intake pipe pressure and engine speed. An electronically controlled fuel injection method for an internal combustion engine, in which an idling air-fuel ratio correction is not performed when an engine cooling water temperature is less than a predetermined temperature.
JP3203382A 1982-03-01 1982-03-01 Electronically controlled fuel injection method of internal-combustion engine Granted JPS58150037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3203382A JPS58150037A (en) 1982-03-01 1982-03-01 Electronically controlled fuel injection method of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3203382A JPS58150037A (en) 1982-03-01 1982-03-01 Electronically controlled fuel injection method of internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS58150037A true JPS58150037A (en) 1983-09-06
JPH0325621B2 JPH0325621B2 (en) 1991-04-08

Family

ID=12347553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3203382A Granted JPS58150037A (en) 1982-03-01 1982-03-01 Electronically controlled fuel injection method of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58150037A (en)

Also Published As

Publication number Publication date
JPH0325621B2 (en) 1991-04-08

Similar Documents

Publication Publication Date Title
JPH0251056B2 (en)
JPS58150048A (en) Electronically controlled fuel injection method for internal combustion engines
JPH0211729B2 (en)
JPS58144642A (en) Electronically controlled fuel injection method for internal combustion engines
JPS6231179B2 (en)
JPS593135A (en) Internal combustion engine idle speed control method
JPS58144631A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPH0316498B2 (en)
JPH0512538B2 (en)
JPS58133435A (en) Electronically controlled fuel injection method of internal-combustion engine
JPH057546B2 (en)
JPS58150037A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS58144634A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPS58144637A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPH0325620B2 (en)
JPS58144640A (en) Electronically controlled fuel injection method for internal combustion engines
JPS63162945A (en) Fuel injection control method for internal combustion engine
JPS58144635A (en) Electronically controlled fuel injection method for internal combustion engines
JPS58150045A (en) Electronically controlled fuel injection method for internal combustion engines
JPH0475382B2 (en)
JPH0510490B2 (en)
JPH022457B2 (en)
JPS58133430A (en) Electronically controlled fuel injection method for internal combustion engines
JPS58214633A (en) Electronically controlled fuel injection method for internal combustion engines
JPS593134A (en) Internal combustion engine idle speed control method