[go: up one dir, main page]

JPS5814470A - Dry battery - Google Patents

Dry battery

Info

Publication number
JPS5814470A
JPS5814470A JP56111719A JP11171981A JPS5814470A JP S5814470 A JPS5814470 A JP S5814470A JP 56111719 A JP56111719 A JP 56111719A JP 11171981 A JP11171981 A JP 11171981A JP S5814470 A JPS5814470 A JP S5814470A
Authority
JP
Japan
Prior art keywords
electrolyte
particle size
manganese dioxide
zinc
electrolytic manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56111719A
Other languages
Japanese (ja)
Inventor
Akira Hayashi
彰 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP56111719A priority Critical patent/JPS5814470A/en
Publication of JPS5814470A publication Critical patent/JPS5814470A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase very high rate discharge performance by adding sodium perchlorate (NaClO4) to an electrolyte and using fine manganess dioxide having a mean particle size (Dp) of 10mum or less. CONSTITUTION:Adding sodium perchlorate to an electrolyte shows the largest additive effect, and the corrosion rate of zinc in this electrolyte is substantially reduced. In the high temperature storage, no occurrence of stop corrosion and no deposit of insoluble crystal on zinc surface are observed, therefore, it acts as a corrosion inhibitor. Increase of internal impedance during low rate continuous discharge is somewhat reduced. A special effect of NaClO4 on very high rate discharge performance is especially noticeble when high active electrolytic manganese dioxide is used as a composition of wet cathode mix. The finer particle size of the electrolytic manganese dioxide is preferable, and about 10mum particle size indicates clear effect but more fine particle size gives more good results.

Description

【発明の詳細な説明】 この発wAは乾電池の電解液の改良S2関し、電池の急
放電特性の向上を目的とする。
DETAILED DESCRIPTION OF THE INVENTION This wA relates to improvement S2 of electrolyte solution for dry batteries, and is aimed at improving rapid discharge characteristics of batteries.

一般6;ルクランシェ乾電池の電解液は適量の塩化亜鉛
を含む塩化アンモニウムの飽和溶液で、さらC:大過剰
の固体状の塩化アンくニウムが共存している不均一系か
らなり、かっこの電解液中の水分、が蒸発逸散したとき
C二析出すべき同相が樹枝状の(II!4oJ )のみ
であって(znoA−am*cJ )のような複塩を生
成しない組成領域であることを特徴としている。一般的
には35−551の塩化アンモニウムと5〜20%の塩
化亜鉛を含む範囲のものである0 このよう−な電解液を用いた乾電池を放電すると次のよ
うな起電反応によって難溶性のジアミン錯塩を生ずる。
General 6: The electrolyte of a Leclanche dry battery is a saturated solution of ammonium chloride containing an appropriate amount of zinc chloride. When the water inside evaporates and dissipates, the same phase that should be precipitated with C2 is only a dendritic (II!4oJ) and is in a composition region that does not form double salts such as (znoA-am*cJ). It is a feature. Generally, the electrolyte contains 35-551 ammonium chloride and 5-20% zinc chloride. When a dry battery using such an electrolyte is discharged, the following electromotive reaction causes the formation of poorly soluble electrolytes. Forms diamine complex salts.

2Mn01 + 2HH4Cjノ+Kn →2MziO
OH+ zn(NIB)’g(32gこのシア之ン錯塩
拡陽極合剤の外縁部C:緻密な抵抗層(Hara −L
ayer )を形成してルクランシエ乾電池の急放電特
性低下の一因となっている。
2Mn01 + 2HH4Cjノ+Kn →2MziO
OH+ zn(NIB)'g (32g) Outer edge C of this cyanide complex salt expanded anode mixture: Dense resistance layer (Hara-L
ayer), which contributes to the deterioration of the rapid discharge characteristics of Lecrancier dry batteries.

これに対して塩化亜鉛乾電池の電解液は塩化アンそニウ
ムを全く含まないか、または極〈少量の塩化アンモニウ
ムを含む塩化亜鉛溶液からなる不飽和溶液であって、一
般的に社15〜40−の塩化亜鉛と10%以下の塩化ア
ンモニウムを含む均一系溶液からなっている。
On the other hand, the electrolyte of a zinc chloride dry battery is an unsaturated solution consisting of a zinc chloride solution containing either no ammonium chloride or a very small amount of ammonium chloride. It consists of a homogeneous solution containing 10% zinc chloride and 10% or less ammonium chloride.

このような電解液を用い九乾電池を放電するときの主反
応は下式のごとくで、反応生成物として不溶性の塩基性
塩化物を生ずるのが%徴である。
The main reaction when discharging a battery using such an electrolytic solution is as shown in the following equation, and the main reaction is that insoluble basic chloride is produced as a reaction product.

8Mn01 + Zn0J、、@◆8H@0+4zn−
+8Mn0OH+ZnCJB・4Zn(OH)@この塩
基性塩化物沈澱は上述のジアミン錯塩のように緻密な抵
抗層を形成しないので、電池の内部抵抗を急上昇せしめ
たり、反応生成物C二よる顕著な拡散障害を生じたりす
ることはなく、塩化アンモニウム系乾電池S:比べよい
急放電特性が得られるのである。この反応社電池内の水
分を消費する反応なので塩化亜鉛乾電池の耐漏液性を高
める主因ともなっている0この場合塩化アンモニウムの
少量の存在社塩化亜鉛の加水分解を防止し、液抵抗及び
反応過電圧を若干低下させる効果があるが、多量の存在
は耐漏液性を低下させるから0.5〜4.0チ程度の範
囲で添゛加するのが実用的である。このようC塩化亜鉛
系の乾電池は急放電特性に秀れているので、近来塩化ア
ンモニウム系のルクランシ工乾電池感二とって代りつつ
あるが、最近に到りモーター・ドライブ機構を有する各
種応用機器等の発達によって、電源である乾電池の重負
荷特性の一層の向上が要求されている。
8Mn01 + Zn0J, @◆8H@0+4zn-
+8Mn0OH+ZnCJB・4Zn(OH)@This basic chloride precipitate does not form a dense resistance layer like the above-mentioned diamine complex salt, so it may cause a sudden increase in the internal resistance of the battery or cause significant diffusion obstruction due to the reaction product C2. This does not occur, and a rapid discharge characteristic comparable to that of ammonium chloride dry battery S can be obtained. Since this reaction consumes water inside the battery, it is also the main reason for increasing the leakage resistance of zinc chloride dry batteries. Although it has the effect of slightly lowering the leakage resistance, the presence of a large amount lowers the leakage resistance, so it is practical to add it in a range of about 0.5 to 4.0 inches. Zinc chloride-based dry batteries have excellent rapid discharge characteristics, so they have recently been replacing ammonium chloride-based Lucranci dry batteries, but recently they have been used in various applied devices with motor drive mechanisms. With the development of technology, there is a need to further improve the heavy load characteristics of dry cell batteries, which are the power source.

この発明は主として塩化亜鉛または少量の塩化アンモニ
ウム等の塩類を含む塩化亜鉛水溶液よりなる電解液に、
過塩素酸ナトリウム(Na0j04 )を添加するとと
もI:、二酸化マンガンとして平均粒径(Ep)10μ
m以下の徽細な二酸化マンガンを用いた乾電池に係り、
電池の超重負荷放電特性の向上を目的にしたものである
This invention mainly uses an electrolytic solution consisting of an aqueous zinc chloride solution containing salts such as zinc chloride or a small amount of ammonium chloride.
When adding sodium perchlorate (Na0j04), the average particle size (Ep) as manganese dioxide was 10μ.
Concerning dry batteries using fine manganese dioxide with a size of less than m,
The purpose is to improve the ultra-heavy load discharge characteristics of batteries.

ここでいう超重負荷放電とは、通常の電池構造および製
造条件での電池において、陽極二酸化マンガンの利用率
が10%m度以下となってしまうような大きな負荷のか
がる破壊電流領域の放電を云う。たとえばR−6型セル
(単3型)の場合で祉平均放電電流がIA前後またはそ
れ以上で連続消費されるような放電条件をさしている〇
上記目的C二適合する塩化亜鉛電解液の改質剤として種
々な電解質、特C:各種のオキシハロゲン酸の無機塩に
ついて検討したが過塩素酸ナトリウムが最もよい結果を
得たものである。
The super-heavy load discharge referred to here refers to a discharge in the breakdown current region where a large load is applied, such that the utilization rate of anode manganese dioxide is 10% or less in a battery under normal battery structure and manufacturing conditions. say. For example, in the case of an R-6 type cell (AA type), it refers to a discharge condition in which the average discharge current is continuously consumed at around IA or higher.〇 Modification of zinc chloride electrolyte that meets the above objective C2. Various electrolytes were investigated as agents, and special C: various inorganic salts of oxyhalogen acids were investigated, but the best results were obtained with sodium perchlorate.

まず、金属イオンその他のカチオンと結合して塩を形成
するオキシハロゲン酸〔一般式HXOn )については
、ハロゲン(X)がC!以外のF、 Br、工で  ゛
ある場合には主として亜鉛極1:対する分極特性が劣り
、またオキシ塩素酸塩の中でも塩素酸1(CjOfi 
Th亜塩素醗Hojel 、次亜鉛素酸F’1c10等
の塩では酸化力が強く二酸化マンガンに対し不安定で使
用できないため、結局過塩素酸acjo4の塩のみが比
較的安定な状態で使用可能であった。
First, regarding oxyhalogen acids [general formula HXOn] that combine with metal ions and other cations to form salts, halogen (X) is C! In cases where F, Br, or
Salts such as chlorite and hypozinc acid F'1c10 cannot be used because they have strong oxidizing power and are unstable to manganese dioxide.In the end, only the salt of perchloric acid acjo4 can be used in a relatively stable state. there were.

次に過塩素酸塩を構成するカチオンw1f二ついて検討
した結果を説明する。
Next, the results of an investigation using two cations w1f constituting perchlorate will be explained.

まずアルカリ金属塩C巳づ゛いては’に、 Os、 R
13の過塩素酸塩の場合C−は塩化亜鉛溶液中の溶解度
が小さいため実用できない。一方L1塩の場合1二は添
加しても超重負荷放電特性向上の効果(以下相乗効果と
称す)が認められなかった。アルカリ金属塩以外の塩に
ついて#iZn塩直−おいて相乗効果が認められたがt
それ以外のNT14塩、 Mg塩等では認められなかっ
た。過塩素酸亜鉛を添加した場合C;は比較的含有葺濃
変の高い領域で相乗効果が認められ九が、この組成の電
解液舎用いたセルの起電力は後述するモデルテストセル
では正常な電位を示すが、乾−池に使用すると約70m
V11Q’低い値を示す。また、この電解液中で亜鉛の
腐蝕測定を行なうと公知の塩化亜鉛系電解液εニルべ亜
鉛の腐蝕速度は小さいが、亜鉛面に不均一な点餘が発生
し、この部分を中心にして肉眼では識別困難な微視的な
無色難溶性結晶の析出が観察された。この現象は実際の
R−6型乾電池の貯蔵時Cおいても同様に確認された。
First of all, the alkali metal salts C and then Os, R
In the case of perchlorate No. 13, C- cannot be put to practical use because of its low solubility in zinc chloride solution. On the other hand, in the case of L1 salt, even when 12 was added, no effect of improving super heavy load discharge characteristics (hereinafter referred to as synergistic effect) was observed. Regarding salts other than alkali metal salts, a synergistic effect was observed in #iZn salt, but
It was not observed with other NT14 salts, Mg salts, etc. When zinc perchlorate was added, a synergistic effect was observed in the region of relatively high concentration change in C;9, but the electromotive force of the cell using the electrolyte chamber with this composition was normal in the model test cell described later. It shows the electric potential, but when used in a dry pond, it is about 70 m.
V11Q' shows a low value. Furthermore, when the corrosion of zinc was measured in this electrolyte, although the corrosion rate of the known zinc chloride-based electrolyte ε nilbenzinc was small, uneven spot spots were generated on the zinc surface, and some The precipitation of microscopic, colorless, poorly soluble crystals that were difficult to discern with the naked eye was observed. This phenomenon was similarly confirmed during storage of actual R-6 type dry batteries.

    ゛ これに対して本発明の過′塩素酸す) IJウムを添加
した場合には相乗効果が最も大きく、この電解液中C−
おける亜鉛の腐蝕速度は公知の塩化亜鉛乾電゛解液め場
合Cニルべ相当I:抑制されることが認められた。また
高温貯蔵、した場合にも亜鉛面べの点蝕の発生や難溶性
結晶の析出も認められず、結果的l二防蝕剤(工HHよ
り工TOR)としての機能を果している。更に予期しな
かった附随効果として軽負荷連続放電中における内部イ
ンピーダンスの上昇をある程度抑制する作用も認められ
た。軽負荷放電容量は主として活物質含量C二支配され
、内部抵抗の影響をあまり受け々いが軽負荷放電中に間
欠的に短時間重負荷を重畳させるいわゆるパルス族1i
tCおいては内部抵抗の影響を強く受けるので上記効果
は意義を有する。このような幾つかの効果、特に超重負
荷放電特性に対する相乗効果FiMacノo4濃度が1
5重量−程度となると殆んど認められず、それ以上では
かえって特性を低下せしめるので十分な効果が期待でき
るのFiIO重量−以下の領域であること、およびこの
場合のZn(J濃度は過塩素酸塩を添加しない公知の塩
化亜鉛系電解液f;おける場合(24〜35重量%)#
:比べて若干低い範囲(15〜30重童チ)において効
果的であることが実験的に誌められた。
In contrast, when IJium is added, the synergistic effect is greatest, and the C-
It was found that the corrosion rate of zinc in a known zinc chloride dry electrolyte solution was suppressed by C nylvane equivalent I:. Furthermore, even when stored at high temperatures, no pitting on the zinc surface or precipitation of hardly soluble crystals was observed, and as a result, it functioned as a corrosion inhibitor (TOR rather than HH). Furthermore, as an unexpected incidental effect, an effect of suppressing the rise in internal impedance during light load continuous discharge to some extent was also observed. The light load discharge capacity is mainly controlled by the active material content C2, and is not very affected by the internal resistance, but the so-called pulse group 1i, in which a heavy load is intermittently superimposed for a short time during a light load discharge, is controlled by the active material content C2.
At tC, the above effect is significant because it is strongly influenced by internal resistance. Some of these effects, especially the synergistic effect on super-heavy load discharge characteristics, have a FiMac concentration of 1.
When the weight is about 5-5, it is hardly observed, and when it exceeds it, the properties are deteriorated, so it is important to note that sufficient effects can be expected in the region below the FiIO weight, and in this case, the Zn (J concentration is In case of known zinc chloride electrolyte f without adding acid salt (24 to 35% by weight) #
: It has been experimentally shown that it is effective in a slightly lower range (15 to 30 degrees).

このような起重負荷放電特性に及t!す!180104
の特異な効果は、湿潤陽極合剤を構成する二酸化マンガ
ン力?天然二酸化マンガン、活性化処理二酸化マンガン
、化学合成二酸化マンガン、電解二酸化マンガンのいず
れの場合I:も認められる。しかしながら高活性の電解
二酸化マンガンと併用したとき特1:顕著であって、電
解二酸化マンガン以外の上記の各種二酸化マンガンの場
合I:はそれ自体の活性が比較的低いため、超重負荷放
電のような苛酷な条件g二おける効果は電解二酸化マン
ガンの場合−−比べて相対的に小さなものとなる。
Such a lifting load discharge characteristic is reached! vinegar! 180104
Is the unique effect of the manganese dioxide that makes up the wet anode mixture? I: is observed in all cases of natural manganese dioxide, activated manganese dioxide, chemically synthesized manganese dioxide, and electrolytic manganese dioxide. However, when used in combination with highly active electrolytic manganese dioxide, Special 1: is noticeable, and in the case of the above various manganese dioxides other than electrolytic manganese dioxide, I: itself has a relatively low activity, so The effect under severe conditions is relatively small compared to the case of electrolytic manganese dioxide.

更(二電解二酸化マンガンの場合にも、その超1負荷特
性は粒度が微細であるほど向上すること。
Furthermore, in the case of di-electrolytic manganese dioxide, its ultra-uniload characteristics improve as the particle size becomes finer.

またNaClO2”Jたはzn(ato+)aを添加し
た電解液を用いた場合I:は公知のZn 01 B系電
解液を用いた場合に比べて、微細な電解二酸化マンカン
との併用l二よる効果が一層大きいことを実験的に認め
た。
In addition, when an electrolyte containing NaClO2''J or zn(ato+)a is used, compared to the case where a known Zn01B-based electrolyte is used, the combination with fine electrolytic mankan dioxide is more difficult. It was experimentally confirmed that the effect is even greater.

周知のように乾電池用二酸化マンガンとしては平均粒径
(Ep)20〜40’pm程度のものが一般嶌二用いら
れている。発明者は平均粒径2〜70μmの範囲の電解
二酸化マンガン数種について比較したところ粒径は微細
なほどよく、10μm程度で明瞭な効果を示すこと、そ
れより微細な場合には吏署二よい結果を示すことが判っ
た。、しかしながら電解二酸化マンガンが微細化すると
、その表面活性1−より二次凝集が起るので通常の粉砕
方法ではDpがミクロン台以下の粉体な経済的に得ると
とは困難である。上述のよう6;微細な電解二酸化゛マ
ンガンと過塩素酸ナトリウムを添加した塩化亜鉛電解液
とを併用したときの相乗効果について以下実施例により
説明する。
As is well known, manganese dioxide having an average particle diameter (Ep) of about 20 to 40'pm is generally used as manganese dioxide for dry batteries. The inventor compared several types of electrolytic manganese dioxide with an average particle size in the range of 2 to 70 μm, and found that the finer the particle size, the better, and that a clear effect was shown at around 10 μm, and that finer particle sizes showed two better effects. It was found that the results were shown. However, when electrolytic manganese dioxide is refined, secondary agglomeration occurs due to its surface activity 1-, so it is difficult to economically obtain powder with a Dp of less than the micron level using ordinary pulverization methods. As mentioned above, the synergistic effect when using finely divided electrolytic manganese dioxide and a zinc chloride electrolyte to which sodium perchlorate is added will be explained below using Examples.

以下この発明の実施例について述べる。Examples of the present invention will be described below.

まず表IC二この発明を構成する電解液お門び公知のも
のを含む若干の電解液の組成と物性を示した0 表1のうちムは従来公知の過塩素酸塩を含有していない
塩化亜鉛系電解液の組成(重量部)と物性である0また
Bは本発明を構成する過塩素酸ナトリウムを含有する電
解液のうち代表的な液組成の一つを示し九◇c;D、x
lri効来の認められなかった他の無機過塩素酸塩を添
加した例で、それぞれLl 0704 e HH+ c
jo* −Mg (Of 04 ) 、を添加してぃ゛
る。
First, Table IC2 shows the composition and physical properties of some electrolytic solutions including known electrolytes constituting this invention. Composition (parts by weight) and physical properties of the zinc-based electrolytic solution 0 or B indicates one of the typical solution compositions among the electrolytic solutions containing sodium perchlorate that constitute the present invention 9◇c; D, x
This is an example in which other inorganic perchlorates were added that had no lri effect, and Ll 0704 e HH+ c
jo*-Mg (Of 04) is added.

0、D、]!lの液組成は比較のためBl二準じたもの
あるのは電解液によって加水分解防止に必要とする量が
異なるためであるOFはZn(ClO2)gを含有する
電解液であって、このものは比較的高い添加率において
相乗効、果がiめら武ており、そのうちの代表的な液組
成の一つを示[またものである。
0, D, ]! The liquid composition of l is similar to Bl2 for comparison.The reason for this is that the amount required to prevent hydrolysis differs depending on the electrolyte.OF is an electrolyte containing Zn(ClO2)g, and this shows a synergistic effect at a relatively high addition rate, and shows one of the representative liquid compositions.

次I:1表2I:上記の69類の電解液を用いて調製し
た湿114陽極合剤の可成を示した。表2の中で成分1
1!Mlは平均粒径2’ppm (D電解二酸化マンカ
ンを、 EMgは千−粒径5μmの電解二酸化7ンガン
を、hBliアセチレンプラクを5zarJ、塩化亜鉛
を、PCui塩素酸塩を、ACFi塩化アンモニウムを
−s ADはその他微量の添加物を、AQは水をそれぞ
れ示している。、また合剤AおよびGけ表1の電解液り
を、合剤−BおよびHFi電解箪Bを、合剤Cおよび工
は電解液Cを、合剤りおよびJけ電解液りを、合剤Eお
よびKu電解液Eを、合剤FおよびLは電解液Fをそれ
ぞれ用いて調製した合剤である。
Table 2I shows the composition of the wet 114 anode mixture prepared using the electrolyte of class 69 above. Component 1 in Table 2
1! Ml is electrolytic manganese dioxide with an average particle size of 2'ppm (D), EMg is electrolytic manganese dioxide with a particle size of 5 μm, hBli is acetylene plaque at 5zarJ, zinc chloride, PCui chlorate, ACFi is ammonium chloride. s AD indicates a trace amount of other additives, and AQ indicates water. Also, Mixture A and G are the electrolyte solution in Table 1, Mixture B and HFi electrolyte B, Mixture C and Mixtures F and L are mixtures prepared using electrolyte C, mixture E and Ku electrolyte E, and electrolyte F for mixtures F and L, respectively.

表  2 陽極減極合剤5二調製し、この陽極合剤を用いて従来既
知の乾電池と同一構造、同一製法のペーパラインド形乾
電池が組立られる。
Table 2 Anode depolarization mixture 52 is prepared, and using this anode mixture, a paper-bound dry cell having the same structure and manufacturing method as conventionally known dry cells is assembled.

ここで、まずこのような乾電池署−用いられる上述の陽
極合剤について下記条件でモデルセルな組立て放電試験
を行なった結果を説明する。
Here, first, the results of a model cell assembled discharge test conducted under the following conditions on the above-mentioned anode mixture used in such a dry battery station will be explained.

すなわち、アクリル容器内にセットした直径22闘有効
反応面積2−の汞化亜鉛板上aニセパレータを介して被
試験陽極合剤119をのせ、史墨二グラ圧負荷状態で陽
極合剤上のカソード集電極および陰極亜鉛板に密接した
アノード集を極を介して25℃の雰囲気で定電流放電を
行なつ喪結来を& 1 に示す。すなわちモデルセルを
121mA定電6ic連続放電したときのもので、亜鉛
陰極及び陽極合剤の放電電流?W度がそれぞれ61mA
/aJ 、 110mA/f l二相当する。その結果
を表3に示した。
That is, the anode mixture to be tested 119 was placed on a zinc chloride plate with a diameter of 22 mm and an effective reaction area of 2 mm set in an acrylic container via a false separator, and the anode mixture was placed on the anode mixture under a pressure load of 20 mm. &1 shows the result of constant current discharge in an atmosphere at 25° C. through the cathode collector electrode and the anode collector in close contact with the cathode zinc plate. In other words, this is when the model cell is continuously discharged at a constant current of 6 ic at 121 mA, and the discharge current of the zinc cathode and anode mixture is ? W degree is 61mA each
/aJ, equivalent to 110mA/fl2. The results are shown in Table 3.

この結果から判るようI:無機過塩素酸塩のうちNa0
j04またはZn(0204)1を添加した電解液の場
合には超重負荷放電特性について効果が認められるが、
他の過塩素酸塩の場合1;は認められない。またMaO
JO* tたはZn(O2O3)1を添加した電解液の
場合には、他の過塩素酸塩を添加した場合や公知の塩化
亜鉛系電解液I:比べて微細な電解二酸化マンガンと併
用したときの特性向上率が大きい。
As can be seen from this result, I: Na0 of inorganic perchlorate
In the case of an electrolytic solution containing J04 or Zn(0204)1, an effect on super-heavy load discharge characteristics is observed, but
In the case of other perchlorates, 1; is not observed. Also MaO
In the case of an electrolyte to which JO*t or Zn(O2O3)1 is added, when other perchlorates are added or when used in combination with fine electrolytic manganese dioxide compared to the known zinc chloride electrolyte I: The characteristic improvement rate is large when

次イニこの発明C二よる乾電池、つまり従来乾電池と同
一構造、同−製法響;よって得、られたペーパーライン
ド形単3乾電池(工No名称R−6)の急放電試験結果
C二ついて説明する。表4C二この発明C;よる単3乾
電池と従来既知の電解液を使用した単3乾電池を雰囲気
20℃シーおいて1.330負荷で1.00Vまで定抵
抗連続放電を行った場合の特性比較を示し九〇 表  4 表4の中でAs Go Be IIIは上述のモデルテ
ストセルによる試験g2使用したものとそれぞれ同一組
成の湿潤陽極合剤を用いたR−6型乾輩池で、Aは公知
のZn0h系電解液と平均粒径25μmの電解二酸化マ
ンガンを用い良もの、GIfiA知のZn0JB系電解
液と平均粒径5μmの電解二酸化マンガンを用いたもの
、BはWaOJO4を添加した電解液と平均粒径25μ
mの電解二酸化マンガンを用いたものs RFi Na
0JO4を添加した電解液と平均粒径5μmの電解二酸
化マンガンを用いた。ものである。表4から本発明−二
おけるM&CJO4を添加した電解液と微細な電解二酸
化マンガンとを併用した場合の特性が最も優れたもので
ある仁とが判る。
Next, the dry cell according to this invention C2, that is, the same structure and manufacturing method as the conventional dry cell; thus, the results of the rapid discharge test of the paper-lined AA dry cell (No. R-6) will be explained. . Table 4C Comparison of characteristics of AA batteries according to this invention C and AA batteries using a conventionally known electrolyte when constant resistance continuous discharge is performed at a load of 1.330 to 1.00V in an atmosphere of 20°C. 90 Table 4 In Table 4, As Go Be III is an R-6 type dry pond using a wet anode mix of the same composition as that used in test g2 using the model test cell described above, and A is A good one uses a known Zn0h-based electrolyte and electrolytic manganese dioxide with an average particle size of 25 μm, a good one uses a known Zn0JB-based electrolyte and electrolytic manganese dioxide with an average particle size of 5 μm, and B uses an electrolyte with WaOJO4 added. Average particle size 25μ
s RFi Na using electrolytic manganese dioxide
An electrolytic solution containing OJO4 and electrolytic manganese dioxide having an average particle size of 5 μm were used. It is something. From Table 4, it can be seen that the properties were the best when the electrolytic solution containing M&CJO4 and fine electrolytic manganese dioxide were used in combination in the present invention.

表5に前述の電解液(表1)のうちA、B、Fの311
1一ついてそれぞれ亜鉛板を浸漬し腐蝕試験を行なった
結果を示す。試験条件として亜鉛テストピースFin 
7 X 22.Owφ(反応面積7.60j)を121
1−KOH中で超音波洗滌したのち0.2sv(#)/
j(Zn)に東化したもので試験温度45℃で360時
間後の値である◇ 表  5 表5の中で亜鉛テストピース面5:付着した難溶性生成
物を顕微Is観察すると電解液ム、Bの場合6:は結晶
性析出物が認められないが、電解液νを用いた場合g’
it微細な無色難溶性結晶の析出が認められる。
Table 5 shows 311 of the electrolytes A, B, and F among the electrolytes (Table 1).
The results of a corrosion test conducted by immersing a zinc plate in each case are shown below. Zinc test piece Fin as test condition
7 X 22. Owφ (reaction area 7.60j) is 121
1-After ultrasonic cleaning in KOH, 0.2sv (#)/
This is the value obtained after 360 hours at a test temperature of 45°C. In case 6: of B, no crystalline precipitates are observed, but when using electrolyte ν, g'
Precipitation of fine, colorless, poorly soluble crystals was observed.

以上%実施例の表3.4.5から判るよう署−塩化亜鉛
tiは主として塩化亜鉛よりなる電解液中直二過塩素酸
ナトリウムを添加した電解液と平均粒径(五、)10μ
m以下の微細な電解二酸化マンガンを併用することによ
って乾電池の超重負荷重性を向上すると共感=、陰極亜
鉛I:対しても防蝕効果を示すなど本発明の工業的価値
は極めて太きいものである。
As can be seen from Table 3.4.5 of the Examples, zinc chloride ti was mixed with an electrolyte solution containing mainly zinc chloride and an electrolyte solution to which sodium perchlorate was added.
The industrial value of the present invention is extremely great, as it shows a corrosion-proofing effect even against cathode zinc I. .

なお、この発明の説明にはペーパーラインド式筒形乾電
池で行なったが、同様C二してペースト式筒型乾電池、
ルクランシエタイプのボタン形電池。
Although this invention has been explained using a paper-lined cylindrical battery, it is also possible to use a paste-type cylindrical battery as well.
Le Clancier type button battery.

超薄形構造を有する扁平形乾電池(いわゆるシート・バ
ッテリー等)にも採用することができるものである◇ 特許出願人の名称
It can also be used in flat dry batteries with an ultra-thin structure (so-called sheet batteries, etc.) ◇ Name of patent applicant

Claims (1)

【特許請求の範囲】[Claims] 二酸化マンガンを陽極活物質、亜鉛を陰極活物質、塩化
亜鉛を主電解質とする乾電池C二おいて、電解液が過塩
素酸ナトリウムを含有しており、前記二酸化マンガンが
平均粒径(五p) 1.0声m以下の電解二酸化マンガ
ンであることを特徴とする乾電池。
In dry battery C2, which uses manganese dioxide as an anode active material, zinc as a cathode active material, and zinc chloride as a main electrolyte, the electrolyte contains sodium perchlorate, and the manganese dioxide has an average particle size (5p). A dry battery characterized by being made of electrolytic manganese dioxide with a density of 1.0 m or less.
JP56111719A 1981-07-17 1981-07-17 Dry battery Pending JPS5814470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56111719A JPS5814470A (en) 1981-07-17 1981-07-17 Dry battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56111719A JPS5814470A (en) 1981-07-17 1981-07-17 Dry battery

Publications (1)

Publication Number Publication Date
JPS5814470A true JPS5814470A (en) 1983-01-27

Family

ID=14568425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56111719A Pending JPS5814470A (en) 1981-07-17 1981-07-17 Dry battery

Country Status (1)

Country Link
JP (1) JPS5814470A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5938798A (en) * 1993-09-30 1999-08-17 Mitsui Mining & Smelting Co., Ltd. Cathodic active material composition for dry cells, method for preparing the same, and alkaline battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5938798A (en) * 1993-09-30 1999-08-17 Mitsui Mining & Smelting Co., Ltd. Cathodic active material composition for dry cells, method for preparing the same, and alkaline battery

Similar Documents

Publication Publication Date Title
EP0457354B1 (en) Method of manufacturing zinc-alkaline batteries
US5128222A (en) Zinc-alkaline batteries
CA2090146C (en) Manufacturing of zinc-alkaline batteries
CA2089683C (en) Method of manufacturing zinc-alkaline batteries
WO2010058240A1 (en) Low water loss battery
JP2008053222A (en) Nickel hydroxide powder, nickel oxyhydroxide powder, manufacturing method of these and alkaline dry battery
JP2770396B2 (en) Zinc alkaline battery
JPS5814470A (en) Dry battery
US3761317A (en) Corrosion inhibitor for magnesium cells
JP3647980B2 (en) Anode material for alkaline manganese batteries
JPS61292853A (en) Stabilization of electrochemical primary battery having reactive negative hole comprising zinc, aluminum or magnesium, stabilized negative pole obtained thereby and battery containing said negative pole
JPWO2006001210A1 (en) Alkaline battery
JP3006269B2 (en) Zinc alkaline battery
JP2808822B2 (en) Manufacturing method of zinc alkaline battery
JPS63254671A (en) Zinc alkaline cell
JPS5828173A (en) Dry cell
JPS63248064A (en) Zinc alkaline battery
JPH0697611B2 (en) Zinc alkaline battery manufacturing method
JPS58225565A (en) Alkaline battery
JPH0290465A (en) Alkaline battery and its negative electrode active material
JP2805489B2 (en) Alkaline battery and its negative electrode active material
JPH0426061A (en) Manufacture of zinc-alkali battery
JPS63248065A (en) Zinc alkaline battery
JPH05211060A (en) Manufacture of zinc alkaline battery
JPS63276871A (en) Zinc alkali cell