JPS58143548A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS58143548A JPS58143548A JP2702782A JP2702782A JPS58143548A JP S58143548 A JPS58143548 A JP S58143548A JP 2702782 A JP2702782 A JP 2702782A JP 2702782 A JP2702782 A JP 2702782A JP S58143548 A JPS58143548 A JP S58143548A
- Authority
- JP
- Japan
- Prior art keywords
- film
- insulating film
- groove
- etched
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 238000005530 etching Methods 0.000 claims abstract description 17
- 238000002955 isolation Methods 0.000 claims abstract description 13
- 238000000151 deposition Methods 0.000 claims abstract description 6
- 238000009413 insulation Methods 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 239000011810 insulating material Substances 0.000 claims 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 10
- 229910052710 silicon Inorganic materials 0.000 abstract description 10
- 239000010703 silicon Substances 0.000 abstract description 10
- 238000000034 method Methods 0.000 abstract description 8
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 238000001312 dry etching Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- -1 GaAs Chemical compound 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76224—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Local Oxidation Of Silicon (AREA)
- Drying Of Semiconductors (AREA)
- Element Separation (AREA)
Abstract
Description
【発明の詳細な説明】
〔発tpro技術分野〕
本発明は半導体装置の製造方法に係り、特に半導体基板
上の各素子間を電気的に絶縁分離するために、フィール
ド領域に絶縁膜を埋め込む半導体装置O製造方法に関す
るものである。Detailed Description of the Invention [Technical Field] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a semiconductor device in which an insulating film is embedded in a field region in order to electrically isolate each element on a semiconductor substrate. The present invention relates to a method for manufacturing device O.
半導体としてシリコンを用いた半導体装置、特にMO8
11半導体装置においては寄生チャンネルによる絶縁不
良t&<L、かつ寄生容量を小さくするために1素子間
のいわゆるフィールド領域に厚い酸化膜を形成すみこと
が行われている。Semiconductor devices using silicon as a semiconductor, especially MO8
In semiconductor devices of No. 11, a thick oxide film is formed in a so-called field region between one element in order to reduce the insulation defect t&<L due to a parasitic channel and the parasitic capacitance.
従来このような酸化膜を用いる素子間分離法として、フ
ィールド領域のシリコン基板を一部工、チンダして溝を
形成し、ここにCVD技術【用いてフィールド酸化膜を
平坦になるように麺め込む方法がある。この素子間分離
法は、素子分離後、基板表面かは埋平坦になり、しかも
分畷領域の寸法は正確に形成した溝部の寸法で決められ
ているため、高集積化された集積回路を制作する上で非
常に有効な素子分離技術である。Conventionally, as a device isolation method using such an oxide film, a part of the silicon substrate in the field area is processed, chindled to form a groove, and then the field oxide film is flattened using CVD technology. There is a way to get into it. With this device isolation method, after device isolation, the substrate surface is buried and flat, and the dimensions of the separation area are determined by the precisely formed groove dimensions, making it possible to produce highly integrated integrated circuits. This is a very effective device isolation technology.
従来法管#!1図を用いて簡単に説明する。第1図(1
)に示すように、比抵抗5−500−1:5I8i度の
Pfi(100)シリコン基板11f用意し、素子分1
11m域に例えば0.6μmI!度の深さの溝12と形
成する。次に(b)に示すように基板表面に@JJの深
さより厚い絶縁膜1st−例えばCVD法によって均一
に堆積する。次に(、)に示すように表面を平坦にする
事ができる表面平坦化膜14t−形成する。平坦化@1
4としては例えば高分子材料の塗布膜とかプラズマCV
DによるシリコンナイトライドlI勢がある。その後(
d)に示すように、上記平坦化l114と絶縁膜13t
jlぼ等しいエツチング条件で表面から工゛・ツチング
していき、素子形成領域上の基板11面を露出させると
、上記素子分離領域の溝12は絶縁膜IJで平坦に埋め
込まれる。その後、露出した基板に所望の素子を形成す
る。Conventional method #! This will be briefly explained using Figure 1. Figure 1 (1
), prepare a Pfi (100) silicon substrate 11f with a specific resistance of 5-500-1:5I8i degrees, and
For example, 0.6μmI in the 11m area! The groove 12 is formed with a depth of Next, as shown in (b), an insulating film 1st thicker than the depth of @JJ is uniformly deposited on the surface of the substrate by, for example, the CVD method. Next, as shown in ( ), a surface flattening film 14t capable of flattening the surface is formed. Flattening @1
4, for example, a coating film of a polymer material or a plasma CV
There is silicon nitride lI based on D. after that(
As shown in d), the planarization l114 and the insulating film 13t
When etching is performed from the surface under approximately the same etching conditions to expose the surface of the substrate 11 above the element formation region, the groove 12 in the element isolation region is filled flat with the insulating film IJ. After that, desired elements are formed on the exposed substrate.
上記従来法において、素子分離領域となる溝の幅がその
深さの2倍以下になると、絶縁膜13として例えばCV
D5i02膜【堆積した場合、第2図に示したようK
CVD5102膜が溝中で巣1 j (810,が粗で
#)り空洞状態になっている部分)を形成してしまう、
したがってこの後CVD810j膜の表面をレジスト展
で平坦化して工り、あるいは、上に更KCVD8102
膜叫を堆積した時に空洞として!!IIJ)、中の空気
の熱膨張によシクラ、り【生じるなど、素子の信頼性を
著しく低下させる問題があった。In the above conventional method, if the width of the trench serving as the element isolation region is less than twice the depth, the insulating film 13 may be
D5i02 film [When deposited, K
The CVD5102 film forms cavities 1j (portions where 810, is rough and #) is hollow) in the grooves.
Therefore, after this, the surface of the CVD810j film is flattened by resist spreading, or the surface of the CVD810j film is further coated with KCVD8102.
As a cavity when the membrane is deposited! ! IIJ), there were problems such as cycra and cracking caused by thermal expansion of the air inside, which significantly reduced the reliability of the device.
本発明は上記の如き巣を発生させることなくフィールド
領域に平坦に絶縁膜t−埋め込むようにし九信麺性の高
い半導体装置の製造方法を提供すること【目的とする。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device with high reliability by flatly embedding an insulating film in a field region without generating the above-mentioned cavities.
本発明は、素子分離領域に急峻な溝を形成した後、′第
1の絶縁膜【全面に堆積し、これを溝側壁に残すように
エツチングして溝儒壁七実質的に傾斜面とし、その後第
2の絶縁膜、続いて表面平坦化膜【堆積して、これら平
坦化膜と第2の絶縁膜を両者に対するエツチング速度が
略等しい条件でエツチングして素子分離領域の溝t−@
1及び第2の絶縁膜で埋め込む。In the present invention, after forming a steep trench in an element isolation region, a first insulating film is deposited on the entire surface and etched so as to remain on the side walls of the trench to make the trench wall substantially an inclined surface. After that, a second insulating film is deposited, followed by a surface planarizing film [deposited], and the planarizing film and the second insulating film are etched under conditions where the etching rate for both is approximately equal to the trench t-@ of the element isolation region.
The first and second insulating films are buried.
本発明によれば、溝側壁【事実上傾斜面とすることへ分
離絶縁膜として第2の絶縁膜を堆積するときに巣が発生
するのを防止することができ、従って配線の断線やクラ
ックの発生を防止して素子の信頼性を向上させることが
できる。According to the present invention, it is possible to prevent the formation of cavities when depositing the second insulating film as an isolation insulating film on the trench sidewalls (virtually sloped surfaces), thereby preventing wire breakage and cracks. This can be prevented and the reliability of the device can be improved.
本発明の実施例を第3図を用いて説明する。 An embodiment of the present invention will be described with reference to FIG.
壕ず(1)に示すように比抵抗5〜5001程度のP型
(ioo)シリコン基板21を用意し、その表面に直接
または熱酸化at−形成した後にレジスト上パターニン
グしてマスクトシ、シリコン基板11t−異方性のドラ
イエ、チングにより工、チングし、はは矩形に近い急峻
な側壁をもつ溝幅のせまい溝2zを形成する。その後、
(b)に示すように第1の絶縁膜としてCVD引0□膜
23を全面に堆積する。このとき図示のように東24が
発生する。次に弗化アンモニウム水浴液あるいは縦画弗
酸にて表面のCVD5i02膜23を一部エッテ/グす
ると、巣24の部分のエツチング速度は早いため#$2
2の中央部は先にエツチングされ、(C)のように溝1
1C)側壁にのみCVD−810、jlJJが残る。上
起工、チンダ液のかわりに異方性のドライエ、チングに
よりCVD5 io□膜Jlt−エツチングし溝23の
側壁にCVDSiO2展xst′IAす事もできる0次
1tc (a)に示すように、第2の絶縁膜として再び
CVD810□膜25t−全面に堆積することによp巣
が発生せずに擲22會置め込むことができる。これは、
すでにM+J段階で溝側壁にCVD810.膜24が、
なたらかな#J4斜面【持って堆積されているためであ
る0次に、(・)に示すようにcvnsto□膜25表
面にわずかに残っCいる凹部を平坦化するために、レジ
スト膜26t−塗布し、レジスト膜26とCVD1ii
102膜25とがほぼ等しいエツチング速度となる条件
で異方性のドライエ、チングを行ない、素子形成領域の
シリコン基板表面が露出するまでエツチングすれば、(
f)に示すようにフィールド領域はほぼ平坦に酸化膜で
埋め込まれる。その後、素子形成領域には通常のMO8
O8型体導体装置製造工程様にして?−)91化膜、ソ
ース、ドレイン拡散層を形成してトランジスタを作る。As shown in trench (1), a P-type (IOO) silicon substrate 21 with a resistivity of about 5 to 5001 is prepared, and after directly or thermally oxidizing the surface of the substrate 21, patterning is performed on the resist to form a mask and a silicon substrate 11t. - Machining and etching are performed by anisotropic drying and etching to form a narrow groove 2z having a nearly rectangular steep side wall. after that,
As shown in (b), a CVD 0□ film 23 is deposited over the entire surface as a first insulating film. At this time, East 24 occurs as shown. Next, when a part of the CVD5i02 film 23 on the surface is etched/etched with an ammonium fluoride water bath solution or vertical hydrofluoric acid, the etching speed of the cavity 24 is fast, so #$2
The center part of 2 is etched first, and groove 1 is etched as shown in (C).
1C) CVD-810 and jlJJ remain only on the side wall. As shown in (a), the CVD5 io□ film Jlt-etching can be performed using anisotropic dry etching instead of the tinde solution, and CVDSiO2 can be spread on the side wall of the groove 23. By again depositing the CVD 810□ film 25t on the entire surface as the second insulating film, it is possible to embed the insulation film 22 without generating p-holes. this is,
CVD810. has already been applied to the groove side walls at the M+J stage. The membrane 24 is
This is because the resist film 26t- Coating, resist film 26 and CVD1ii
If anisotropic dry etching and etching are performed under conditions such that the etching rate is approximately equal to that of the 102 film 25, and etching is performed until the surface of the silicon substrate in the element formation region is exposed, (
As shown in f), the field region is filled with an oxide film almost flatly. After that, the element forming area is filled with ordinary MO8.
What about the O8 type conductor device manufacturing process? -) Form a 91-oxide film, source and drain diffusion layers to make a transistor.
この実施例によシ、従来の方法では巣の発生のために酸
化膜の埋め込みが不可能であったフィールド酸化膜厚の
2倍以下の−の分離領域の溝が埋め込み可能となシ、こ
れによシ、フィールド領域上の多結晶81配線、あるい
は金属配線の!IIT縁を防ぎ、クラ、りの発生を4防
止し素子の(i軸性會向上することができる。According to this embodiment, it is possible to fill trenches in the isolation region with a thickness less than twice the field oxide film thickness, which was impossible to fill with an oxide film due to the generation of cavities in the conventional method. Also, polycrystalline 81 wiring on the field area or metal wiring! It is possible to prevent IIT edges, prevent cracks and cracks, and improve the (i-axis properties) of the element.
上記実施例に用いたCVD8102は、他の絶縁膜、例
えばT&20□や81Nで4JLいが、その場合には、
上記実施例で用い友邦化アンモニウムや緩衝弗酸のエツ
チング液あるいは異方性のドライエツチング技術はこれ
らの絶縁M【工、チングするものを用いる。またシリコ
ン以外の半導体、たとえばGaAs 、 GaP 、
InSbあるいはエピタキシャル成長した層などの半導
体基板を用いる場合にも本発明の方法が適用できること
は当然である。また第1の絶縁膜と第2の絶縁膜は同じ
膜でなくとも嵐く、たとえば、WN2の絶縁膜をプラズ
マcvDsto□膜あるいは減圧CVD5i02膜とし
ても曳い。The CVD8102 used in the above example has a length of 4JL with other insulating films, such as T&20□ and 81N, but in that case,
The etching solution of ammonium chloride or buffered hydrofluoric acid or the anisotropic dry etching technique used in the above embodiments is one that etches these insulations. Also, semiconductors other than silicon, such as GaAs, GaP,
Naturally, the method of the present invention can also be applied when using a semiconductor substrate such as InSb or an epitaxially grown layer. Further, the first insulating film and the second insulating film do not have to be the same film; for example, the WN2 insulating film may be used as a plasma CVDsto□ film or a low pressure CVD5i02 film.
@1図(、)〜(4)は従来のフィールド領域への酸化
膜埋め込み法を説明する工程断面図、第2図は堀め込み
絶縁膜に巣が発生する様子を示す断面図、絡3図(&)
〜(f)は、本発明の一実施例の酸化膜埋め込み法を説
明する工程断面図である。
21・・・シリコン基板、22・・・溝、23・・・C
VD−8102膜(第1CI絶縁膜)、24・・・東、
25・・・CVD810.膜(@2C)絶縁膜)、J
i −・−L/ )x )膜(1表面平坦化膜)。
出願人代理人 弁理士 鈴 江 武 彦第2図
1′3
第3図 (d)
(e)
(イ)
第3図@1 Figures (,) to (4) are process cross-sectional views explaining the conventional method of embedding an oxide film in the field region, and Figure 2 is a cross-sectional view showing how cavities occur in the trenched insulating film. figure(&)
-(f) are process cross-sectional views illustrating an oxide film embedding method according to an embodiment of the present invention. 21... Silicon substrate, 22... Groove, 23... C
VD-8102 film (first CI insulating film), 24... East,
25...CVD810. Membrane (@2C) insulation film), J
i −・−L/ ) x ) film (1 surface flattening film). Applicant's agent Patent attorney Takehiko Suzue Figure 2 1'3 Figure 3 (d) (e) (a) Figure 3
Claims (2)
ングして、急峻な側壁をもつ溝を形成する工程と、その
後基板表面全面に#11の絶縁属を均一に堆積する工程
と、前記第1の絶縁膜を前記溝の側壁部に残すように工
、テングする工程と、再び全面に纂2の絶縁膜を堆積す
る工程と、表面を平坦化するための平坦化膜管堆積する
工程と、前記1!24D絶縁膜と平坦化膜とを両者に対
するエツチング速度が略等しくなる条件で全面にわたっ
て工、チングして素子分離領域の溝を第1及び第2の絶
縁膜で埋め込む工程と、素子形成領域の基板表面に素子
を形成する工程と【備えたことを特徴とする半導体装置
の製造方法。(1) A step of selectively etching the element isolation region of the semiconductor substrate to form a trench with steep sidewalls, and then a step of uniformly depositing #11 insulating material over the entire surface of the substrate; a step of etching and stretching the insulating film so as to leave it on the side wall of the trench, a step of depositing the second insulating film over the entire surface again, and a step of depositing a flattening film tube for flattening the surface; a step of etching and etching the 1!24D insulating film and the planarizing film over the entire surface under conditions that the etching rates for both are substantially equal to filling trenches in the element isolation region with the first and second insulating films; and element formation. A method of manufacturing a semiconductor device, comprising: a step of forming an element on a surface of a substrate in a region;
vDSi02111であシ、平坦化膜はレジスト属であ
る特許請求の範囲第1項記載の半導体装置の製造方法。(2) 1st xvttg2o insulation ji[tI'1C
2. The method of manufacturing a semiconductor device according to claim 1, wherein the planarization film is made of vDSi02111 and is of a resist type.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2702782A JPS58143548A (en) | 1982-02-22 | 1982-02-22 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2702782A JPS58143548A (en) | 1982-02-22 | 1982-02-22 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58143548A true JPS58143548A (en) | 1983-08-26 |
Family
ID=12209586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2702782A Pending JPS58143548A (en) | 1982-02-22 | 1982-02-22 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58143548A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60164335A (en) * | 1984-02-06 | 1985-08-27 | Nec Corp | Manufacture of semiconductor device |
JPH02159050A (en) * | 1988-12-13 | 1990-06-19 | Matsushita Electric Ind Co Ltd | Manufacture of semiconductor device |
JPH02209747A (en) * | 1989-02-09 | 1990-08-21 | Matsushita Electric Ind Co Ltd | Manufacture of semiconductor device |
US4952524A (en) * | 1989-05-05 | 1990-08-28 | At&T Bell Laboratories | Semiconductor device manufacture including trench formation |
US4980311A (en) * | 1987-05-05 | 1990-12-25 | Seiko Epson Corporation | Method of fabricating a semiconductor device |
US5175122A (en) * | 1991-06-28 | 1992-12-29 | Digital Equipment Corporation | Planarization process for trench isolation in integrated circuit manufacture |
US6027983A (en) * | 1994-06-02 | 2000-02-22 | Hitachi, Ltd. | Method of manufacturing trench isolate semiconductor integrated circuit device |
US6063693A (en) * | 1998-03-23 | 2000-05-16 | Telefonaktiebolaget Lm Ericsson | Planar trenches |
US6573583B2 (en) | 2000-12-27 | 2003-06-03 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacturing the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54589A (en) * | 1977-06-03 | 1979-01-05 | Hitachi Ltd | Burying method of insulator |
-
1982
- 1982-02-22 JP JP2702782A patent/JPS58143548A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54589A (en) * | 1977-06-03 | 1979-01-05 | Hitachi Ltd | Burying method of insulator |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60164335A (en) * | 1984-02-06 | 1985-08-27 | Nec Corp | Manufacture of semiconductor device |
US4980311A (en) * | 1987-05-05 | 1990-12-25 | Seiko Epson Corporation | Method of fabricating a semiconductor device |
JPH02159050A (en) * | 1988-12-13 | 1990-06-19 | Matsushita Electric Ind Co Ltd | Manufacture of semiconductor device |
JPH02209747A (en) * | 1989-02-09 | 1990-08-21 | Matsushita Electric Ind Co Ltd | Manufacture of semiconductor device |
US4952524A (en) * | 1989-05-05 | 1990-08-28 | At&T Bell Laboratories | Semiconductor device manufacture including trench formation |
US5175122A (en) * | 1991-06-28 | 1992-12-29 | Digital Equipment Corporation | Planarization process for trench isolation in integrated circuit manufacture |
US6027983A (en) * | 1994-06-02 | 2000-02-22 | Hitachi, Ltd. | Method of manufacturing trench isolate semiconductor integrated circuit device |
US6432799B1 (en) | 1994-06-02 | 2002-08-13 | Hitachi, Ltd. | Method of manufacturing semiconductor integrated circuit device |
US6649487B2 (en) | 1994-06-02 | 2003-11-18 | Hitachi, Ltd. | Method of manufacturing semiconductor integrated circuit device |
US6063693A (en) * | 1998-03-23 | 2000-05-16 | Telefonaktiebolaget Lm Ericsson | Planar trenches |
US6573583B2 (en) | 2000-12-27 | 2003-06-03 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacturing the same |
US6881633B2 (en) | 2000-12-27 | 2005-04-19 | Kabushiki Kaisha Toshiba | Method of manufacturing a semiconductor device with an L-shaped/reversed L-shaped gate side-wall insulating film |
US6956276B2 (en) | 2000-12-27 | 2005-10-18 | Kabushiki Kaisha Toshiba | Semiconductor device with an L-shaped/reversed L-shaped gate side-wall insulating film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5458734A (en) | Method of fabricating a semiconductor device | |
EP0129476A2 (en) | Planar interconnection for integrated circuits | |
JP2623812B2 (en) | Method for manufacturing semiconductor device | |
JPS58210634A (en) | Preparation of semiconductor device | |
JPH09139429A (en) | Method for manufacturing semiconductor device | |
JPH04277623A (en) | Manufacture of semiconductor device | |
JPH01175260A (en) | Method for manufacturing insulated gate field effect transistors | |
JPS58143548A (en) | Manufacture of semiconductor device | |
JPS58202545A (en) | Manufacture of semiconductor device | |
JPS59232437A (en) | Manufacture of semiconductor device | |
JPS5898943A (en) | Manufacture of semiconductor device | |
JPH05849B2 (en) | ||
JP2757358B2 (en) | Method for manufacturing semiconductor device | |
JP2517751B2 (en) | Method for manufacturing semiconductor device | |
JPS62190847A (en) | Manufacture of semiconductor device | |
JPH0310231B2 (en) | ||
JPS59117233A (en) | Manufacture of semiconductor device | |
JPH0249017B2 (en) | ||
KR100265850B1 (en) | Method for forming metal interconnection in semiconductor device | |
JPS60249330A (en) | Manufacture of semiconductor device | |
KR100250746B1 (en) | Metal wiring formation method of semiconductor device | |
JPS5928358A (en) | Manufacture of semiconductor device | |
JPS59178773A (en) | Manufacture of semiconductor device | |
JPH05235157A (en) | Method for manufacturing semiconductor device | |
JPH04277649A (en) | Manufacture of semiconductor device |