JPS58140094A - Method for reducing molecular weight of polysaccharide with rod-like helical structure - Google Patents
Method for reducing molecular weight of polysaccharide with rod-like helical structureInfo
- Publication number
- JPS58140094A JPS58140094A JP57023724A JP2372482A JPS58140094A JP S58140094 A JPS58140094 A JP S58140094A JP 57023724 A JP57023724 A JP 57023724A JP 2372482 A JP2372482 A JP 2372482A JP S58140094 A JPS58140094 A JP S58140094A
- Authority
- JP
- Japan
- Prior art keywords
- polysaccharide
- molecular weight
- solution
- rod
- shear rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/715—Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H3/00—Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
- C07H3/06—Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Saccharide Compounds (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
【発明の詳細な説明】 はその誘導体の低分子化方法に関する。[Detailed description of the invention] relates to a method for reducing the molecular weight of its derivatives.
既ニ多くの高くの高粘性多情が知られている。A number of highly viscous philosophies are already known.
最近、これらの高粘性多槽の構造に関する研究が進めら
れ、それらのいくつかのものについては、二本鎖酸いは
二本鎖のへリックス構造を持つことが明らかにされてい
る.(例えばT Norisuy・。Recently, research on the structure of these highly viscous multicysts has progressed, and it has been revealed that some of them have a double-stranded helical structure. (For example, T Norisuy.
*t.al ; J,Polym@r seienc*
, Polym@r PhysicsEd. /J
!rll7ー3;!;tc/9g??)、 E.D
.T. Atkins and K.D。*t. al; J, Polym@r seienc*
, Polym@r Physics Ed. /J
! rll7-3;! ;tc/9g? ? ), E. D
.. T. Atkins and K. D.
Park@r; J−Polymer 8ei*nee
Partc.コざ49−J/(/91a9)− T.
L.Bluhm and A Sarko; Can.
J.Oh@mリ コ93 〜コ99C/97り)、
R−H. Maraheaiault, ate
.;Can. J. Oh@m jj 300 〜.3
03(/デ77)、 E.R.Morrla;A.C.
S− Symposium Seri@s, n
, ’73 g/(/9り7)、 E。Park@r; J-Polymer 8ei*nee
Partc. Koza49-J/(/91a9)-T.
L. Bluhm and A Sarko; Can.
J. Oh@mriko93 ~ko99C/97ri),
R-H. Maraheiault, ate
.. ;Can. J. Oh@m jj 300 ~. 3
03 (/De77), E. R. Morrla;A. C.
S- Symposium Seri@s, n
, '73 g/(/9ri7), E.
R. Morria, at ml; J.
Mo1. Hiol. /10 / (/9
クク)等参照)
これらの多糖は、その高粘性を利用して食品、医薬品等
に1嘔広い用途を有している。特にβ一l。R. Morria, at ml; J.
Mo1. Hiol. /10 / (/9
These polysaccharides have a wide range of uses in foods, medicines, etc., due to their high viscosity. Especially βl.
3−グルカンのあるものは免疫増強性を持つために、制
癌剤としての新規な研究・開発が進められている。しか
しながら、これらの多情は条件によってあまりに4高粘
性であるため、その取扱い上あるいは利用目的の上から
各種の問題を有していた。Since some 3-glucans have immune-enhancing properties, new research and development as anticancer agents is underway. However, these polyesters have extremely high viscosity depending on the conditions, so they have had various problems in terms of their handling and purpose of use.
この嘩な状況に鑑み、本発明者らは先にβ−l。In view of this difficult situation, the present inventors first developed β-l.
3−グルカンの超音波による低分子化方法を見出し、既
に特杵出願している. (%開昭!738々コ)、す
なわちこの超音波照射による低分子化方法では、β一l
,3ーグルコシド結合からなる主鎖だけが選択的に切断
され、その結果低分子化され+mにおいてもとのグルカ
ンと同じくり返し単位からなる化学構造ならびに、二本
鎖ヘリックス構造を有していることが明らかになった。We have discovered a method for reducing the molecular weight of 3-glucan using ultrasound, and have already applied for a patent application. (% Kaisho! 738 pieces), that is, in this method of reducing molecular weight by ultrasonic irradiation, β - l
, only the main chain consisting of 3-glucoside bonds is selectively cleaved, resulting in a lower molecular weight, and +m has a chemical structure consisting of repeating units and a double-stranded helical structure, just like the original glucan. It was revealed.
(K Tabata, at al; OJLrb6
11ydrat@R@seareh.i?lコi−t3
k (/?Jr/)参照)との憚に超音波照射による低
分子化方法は、その低分子化機構の特異性のために極め
て特徴的な方法ではあるが、当蚊処理中の発熱、罎音、
及びチップからの金属粒子の溶出等の各種間礪を有して
おりまたエネルギー動車が低いという欠点があって工業
的規模に於ける実施においてはこれらの各種欠点の解消
又は改善が強く望まれていた。(K Tabata, at al; OJLrb6
11ydrat@R@seareh. i? lko it3
Although the low-molecularization method using ultrasonic irradiation is a very unique method due to the specificity of its low-molecularization mechanism, it does not cause heat generation during mosquito treatment. Keion,
It has various disadvantages such as elution of metal particles from the chip and also has the disadvantage of low energy consumption, so it is strongly desired to eliminate or improve these various disadvantages in implementation on an industrial scale. Ta.
そこで超音波照射による低分子化方法以外の方法につき
鋭意研究を続けた結果以外にも簡単な操作で低分子化が
可能である、本発明の方法に到達した。Therefore, as a result of intensive research into methods other than ultrasonic irradiation to reduce molecular weight, we have arrived at the method of the present invention, which enables the reduction of molecules by simple operations.
すなわち、本発明は棒状のへリツクス構造な持つ多種溶
液を高剪断速度条件にお舞その主鎖だけを特異的に切断
することを特徴とする、使用原料と同じ基本構造すなわ
ち棒状のへリックス構造を有する低分子多種の新規な創
造法に関する.本発明に於て棒状のヘリックス構造を有
する多情(以下単に「該多糖」と略称する)とは、直鎖
状の主鎖を有する多情分子の何本かが、ねじれ合ってロ
ーブの様に棒状の形体になったものを意味し、それらの
殆んどのものが一本鎖又は3本積ヘリツクス構造となっ
ている.具体的には例えばシゾフイラン スクレログル
カン レンチナン 力−P ラン ヂンタンガム等を挙
げることができる。また該多情の誘導体としては該多情
のアルキロールアミド誘導体を挙げることが出来る。こ
れらのうちの多くのものは、自然界より得られ,就中培
養あるいは抽出によって得られたものは平均分子量約a
ooo 万以下を示す。しかしてこれらの多糖はアルカ
リ溶液や、ノメチスルホキシド等の溶媒に溶解したり、
加熱すると1本鎖ランダムコイル状に分散することがあ
り、またこの様にランlムコイルに分散したものを再ひ
もとのへリツクス構造となる条件下においても、もとの
ヘリックス構造にはならず、もつと多くの多m鎖が無秩
序にからみ合った多量体となることが知見されている。That is, the present invention has the same basic structure as the raw material used, that is, a rod-like helix structure, which is characterized by specifically cutting only the main chain of various solutions having a rod-like helix structure under high shear rate conditions. Concerning new methods for creating various small molecules with the following properties. In the present invention, a polysaccharide having a rod-shaped helical structure (hereinafter simply referred to as "the polysaccharide") is a polysaccharide in which several polysaccharide molecules having a linear main chain are twisted together to form a rod-like lobe. Most of them have a single-stranded or triple-helix structure. Specifically, examples thereof include schizophyllan, scleroglucan, lentinan, force-P, and landtan gum. Further, examples of derivatives of the polymorphism include alkylolamide derivatives of the polymorphism. Many of these are obtained from nature, and those obtained by culture or extraction have an average molecular weight of about a.
ooo Indicates less than 10,000. However, these polysaccharides can be dissolved in alkaline solutions or solvents such as nomethysulfoxide,
When heated, it may be dispersed into a single-stranded random coil, and even under conditions where it is re-strung into a helical structure after being dispersed in a random coil, it does not return to its original helical structure. It has been found that many multi-m chains become disorderly entangled multimers.
本発明の方法は前記の如き嘩々な分子形体の中、特に前
述の特定構造、すなわち棒状のへリツクス構造を有する
多糖が適当に溶解している該多糖の溶液に適用されるも
のである。また本発明における低分子化方法の特徴は、
該多情の主鎖だけを選択的に切断し、低分子化後ももと
の該多情と同じくり返し単位を有する化学構造ならびに
棒状のヘリックス構造を保持することにある.すなわち
該多情を例えば酸(よって加水分解すると主鎖や側鎖の
結合がランダムに切断され、また特定のグリコシド結合
の酵素による切断に於ても切断箇所はランダムにな抄、
とにかくいずれの場合に於ても該多糖を構成する単槽や
オリゴ糖の生成をさけることができず、その結果へリツ
クス構造を組めない様な平均分子量約300θ以下の非
常に低分子のフラグメントが相当量生成することがさけ
られなかつ九。The method of the present invention is particularly applicable to solutions of polysaccharides having the above-mentioned specific structure, that is, a rod-like helical structure, in which polysaccharides are suitably dissolved among the various molecular forms mentioned above. Furthermore, the characteristics of the method for reducing molecular weight in the present invention are as follows:
The purpose of this method is to selectively cleave only the main chain of the polyester and maintain the same chemical structure and rod-like helix structure as the original polypropylene after it has been reduced to a low molecular weight. That is, when the polyester is hydrolyzed with an acid (therefore, the bonds in the main chain and side chains are randomly cut, and when a specific glycosidic bond is cut with an enzyme, the cut points are randomly selected,
In any case, it is impossible to avoid the formation of single vessels and oligosaccharides that constitute the polysaccharide, and as a result, very low-molecular fragments with an average molecular weight of about 300θ or less, which cannot form a helical structure, are produced. It is unavoidable to generate a considerable amount.
これに対して、本発明の方法では、この様なヘリックス
構造を組めないような低分子のオリゴ糖は生成しないと
いう特徴を有する。すなわち本発明の方法の実施(より
、平均分子量が少くとも約io、oθθ以上の低分子化
され死骸多情を定量的に生成する。In contrast, the method of the present invention is characterized in that low-molecular oligosaccharides that cannot form such helical structures are not produced. That is, by carrying out the method of the present invention (by carrying out the method of the present invention), a low-molecular carcass having an average molecular weight of at least about io, oθθ or more is quantitatively produced.
尚、この種関連技術としては大雑把に云って既に次のコ
糧類の方法が知られている。Roughly speaking, the following methods are already known as this type of related technology.
(11公開特許公報昭Sダー/7/’10号で例示され
るような多情を高剪断速度下におく処理方法。(A treatment method of subjecting polyurethane to a high shear rate as exemplified in Japanese Published Patent Application No. 11/11/7/'10.
(2)合成ポリマーを高剪断速度下におく低分子化する
方法。(2) A method of reducing the molecular weight of synthetic polymers by subjecting them to high shear rates.
(W、+1. John@on、 C,C,prlcc
Jocrnol Polym@l5e1@uc* X
LVコlクー2コj(/デ40)) &リメタクリル酸
メチル、/ IJ スf V 7 (A、 Nakau
s、 y。(W, +1. John@on, C, C, prlcc
Jocrnol Polym@l5e1@uc* X
LV COLCU 2 COJ (/DE 40)) & METHYL RIMETHACRYLATE,/IJ Sf V 7 (A, Nakau
s, y.
Minoura、 Journal of A ppl
ieel polym@rBe %@ne@ /?
2//9−2/30 (/975) ) (へ Na
kano。Minoura, Journal of A ppl
ieel polym@rBe %@ne@ /?
2//9-2/30 (/975) ) (to Na
kano.
Y、 Mlnoura、 Ma@romol@cul*
s g: 03 /577−180(/91))
しかして前者は高剪断速度下多糖を#により加水分解す
ることを開示するものであり、従って生成する低分子化
画分は7実質上多糖の酸加水分解物であり勿論切断個所
は主−に%定されるもので&末ない。Y, Mlnoura, Ma@romol@cul*
s g: 03/577-180 (/91)) However, the former discloses hydrolyzing polysaccharides with # under high shear rates, and therefore the low-molecular-weight fraction produced is 7% of the polysaccharides. Since it is an acid hydrolyzate, the cut point is of course mainly determined by the percentage.
また後者は、例えばビニルポリマー、?リメタクリル酸
メチル、4リスチレン等それ自体線状の合成ポリマーで
あり、それ故へリツクス構造を持たないものであや、し
かも分子切断は主鎖に特定されるものではない。Also, the latter is, for example, vinyl polymer? Methyl remethacrylate, 4-listyrene, etc. are synthetic polymers that are themselves linear and therefore do not have a helical structure, and molecular cleavage is not specific to the main chain.
要するに本発明の方法Ktkける如く、低分子化処理後
に於ても使用原料と同じく9返し単位からなり、しか本
同じへリツクス構造を保持しうる方法は知られていなか
った。In short, as shown in the method of the present invention, there is no known method that can maintain the same helical structure even after the low-molecularization treatment, except that it consists of nine repeating units like the raw material used.
ところで本発明の方法を実施するためには、該多lI@
液を微小空間に通す必要がある。そのような微小空間と
してはノズル、スリット、充填層、焼結板、セラミック
板等が挙げられろ。By the way, in order to carry out the method of the present invention, it is necessary to
It is necessary to pass the liquid through a microscopic space. Examples of such microspaces include nozzles, slits, packed layers, sintered plates, ceramic plates, and the like.
まt、本発明の方法の実施に於て重要な因子としては、
溶液に加えられる圧力溶液の11度、通過する空間の断
面積、該多情溶液のa度等を挙げることができる。Additionally, important factors in implementing the method of the present invention include:
Examples include the 11 degree pressure of the solution applied to the solution, the cross-sectional area of the space through which it passes, and the a degree of the polyamorous solution.
ただし、これらの各種因子(条件)VCよって生じ九溶
液の剪断速度が基本的に最も重要かつ支配的なものであ
ることが判明した。従ってこの様に微小空間中を該多糖
溶液を高速に流動させ九場合にその微小空間の半径方向
に流動のズレを生じ2この力によって多糖分子が切断さ
れるものと考えられる。この結果その切断は流速のズレ
すなわち剪断速vLK依存するものと考えられる。However, it has been found that the shear rate of the nine solutions caused by these various factors (conditions) VC is basically the most important and dominant one. Therefore, it is thought that when the polysaccharide solution is flowed at high speed in a microspace in this way, a deviation in the flow occurs in the radial direction of the microspace, and this force causes the polysaccharide molecules to be cut. As a result, it is thought that the cutting depends on the flow velocity deviation, that is, the shear velocity vLK.
本発明の方法は核多糖溶液を高剪断速度条件下におくこ
とからなるものである。しかして咳多情溶液の剪断速頃
は、大きくすればするほど低分子化の速度は上昇しJ終
的には該多情の分子量は小さくなる。この関係ははソー
壕なものであり、それ故−概に剪断連関を規定すること
は出来ないが、工業的実施の観点からは少くとも/ X
#7’(see−り以下の剪断速度では実質的な低分
子化を行うことは出来ない。The method of the invention consists of subjecting a nuclear polysaccharide solution to high shear rate conditions. However, as the shear rate of the cough solution increases, the rate of molecular weight reduction increases, and eventually the molecular weight of the solution decreases. This relationship is a sawtooth one and therefore - it is not possible to define the shear coupling in general, but at least from the point of view of industrial implementation /
Substantially lower molecular weight cannot be achieved at a shear rate below #7' (see).
本発明の方法の実施にさいし、該多t’s液に加える圧
力は高いほど、また該多種溶液を通過させる微小空間の
断面積が小さいほど、%+!断速度を生じる。しかしあ
まり圧力を上げると附随して危険性が増大するし、ま九
工業的実施にさいしての耐圧装置の規模も自ら制限があ
る。更に溶液を通過させる微小空間の断面積4小さすぎ
れば異物による閉塞等により安定した操作が困峻となり
、ま九逆に該断面積が大きすぎると所望の剪断速度を与
えるために各種苛酷な条件を必要とし実用的でない、従
って一般的には前配圧力は一〇 kg / m 2〜t
rooyん1、微小空間の断面積は/×/θ〜/QQw
s”が好ましいが本発明の方法に於てはこれらの範囲に
限定する意図はない。本発明者らは、1!に本発明方法
を実施する場合に、核多檀の溶剤S液′a闇ならびにこ
の使用溶剤と相溶性であって、しかも、該多糖の貧溶媒
である溶媒(以下”貧溶媒”という)をこの溶液に添加
することが非常に有効であるという事実を見出し友。す
なわち前者については同一の剪断速度で処理する場合で
も溶剤溶液中の該多糖の濃度が高い程、より低分子化が
可能とな抄、それ故本発明の方法の効率が一層改善され
ることが判明した。この効果は臨界的なものでなく該多
糖の濃度が約0./ 1 (重量)以上になるとやや顕
著に発現する。When carrying out the method of the present invention, the higher the pressure applied to the multi-t's solution, and the smaller the cross-sectional area of the microspace through which the multi-t's solution passes, the higher the %+! Produces breaking speed. However, increasing the pressure too much increases the danger, and there are limits to the scale of pressure-resistant equipment for industrial implementation. Furthermore, if the cross-sectional area of the microspace through which the solution passes is too small, stable operation will be difficult due to blockage by foreign matter, and conversely, if the cross-sectional area is too large, various harsh conditions will be required to provide the desired shear rate. Therefore, the predistribution pressure is generally 10 kg/m2~t.
rooyn1, the cross-sectional area of the microscopic space is /×/θ~/QQw
s'' is preferred, but the method of the present invention is not intended to be limited to these ranges. When carrying out the method of the present invention in 1! We discovered that it is very effective to add to this solution a solvent that is compatible with the solvent used and is also a poor solvent for the polysaccharide (hereinafter referred to as "poor solvent"). Regarding the former, it has been found that the higher the concentration of the polysaccharide in the solvent solution, even when treated at the same shear rate, the lower the molecular weight of the paper becomes possible, and therefore the efficiency of the method of the present invention is further improved. This effect is not critical and becomes somewhat noticeable when the concentration of the polysaccharide exceeds about 0./1 (weight).
しかして本発明の方法で使用する該多糖は雑多であり各
種溶剤に比較的低沸点のものが多い。従って一般に70
畳以下のa度で実用的には!r4以下で使用することが
望ましい。加えて低濃賓で実施する方が溶解操作が遥か
に容易であるという操作上の観点から、使用原料によっ
ては特にO1s優以下の濃度を採用してもよい、このこ
とは高磯度に溶解すると不溶解部分が生じ微小空間を閉
塞するという欠点をさける九めにも望ましいことである
。従って限定する意図はないが0./ −0,34以下
の低1!Ifで実施することが望ましい。However, the polysaccharides used in the method of the present invention are various, and many have relatively low boiling points in various solvents. Therefore, generally 70
Practical at a degree below tatami! It is desirable to use it at r4 or lower. In addition, from the operational point of view that the dissolution operation is much easier when carried out at a low concentration, a concentration of less than O1s may be adopted depending on the raw material used. This is desirable in order to avoid the disadvantage that undissolved portions are generated and block microscopic spaces. Therefore, there is no intention to limit it to 0. / Low 1 below -0,34! It is desirable to implement the If.
なお該多情の低分子化が進むにつれて溶moT能着も増
加するので低分子化VC#、って適宜濃縮し、漸次低分
子化の効果がより有効に作用するよう調整することが望
ましい。Since the amount of dissolved moT increases as the molecular weight of the compound progresses, it is desirable to appropriately concentrate the low-molecular-weight VC# and adjust it so that the effect of gradual reduction in molecular weight becomes more effective.
次に発明者らは後者についても添加すべき溶媒の量が多
い程、低分子化の効果はより向上することを知見した。Next, the inventors also found that the larger the amount of solvent to be added for the latter, the more the effect of lowering the molecular weight is improved.
ただし、該多情が沈轍する程!fオで該溶媒を添加する
ことをさけねばならない。既に述べたようにこの場合に
於ても低分子化が進むにつれて核多糖の溶解可能量が増
加するので、低分子化に序いこの溶媒の添加量を適宜増
加させることが出来る。However, this passion is so overwhelming! Addition of the solvent at high temperatures must be avoided. As already mentioned, in this case as well, the amount of nuclear polysaccharide that can be dissolved increases as the molecular weight decreases, so the amount of this solvent added can be appropriately increased as the molecular weight decreases.
このように本発明の方法では該多糖が低分子になるに従
って低分子□花の速度が徐々に低下するので、工業的観
点から濃縮や、骸多糖の貧溶媒の添加を適宜行って、低
分子化速度の増加を計ることは極めて有利である。As described above, in the method of the present invention, as the polysaccharide becomes lower in molecular weight, the speed of low molecular □ flowering gradually decreases. It is extremely advantageous to measure the increase in the rate of deterioration.
前記に於て、該多糖溶液の溶剤としては、水ま九は有機
溶剤を用いる。なお低分子化処理中の安定性ならびに処
理後多糖に残存したときの毒性等の観点で、水を用いる
ことが最も望ましい。また溶剤に混和しうる該多糖の貧
溶媒としてはアセトン、 メタノール、 エタノール、
イソデロノ母ノール、 n−デロノやノール、 テトラ
ヒドロフラン、等の比較的低沸点のものを用いることが
。In the above, an organic solvent is used as the solvent for the polysaccharide solution. Note that it is most desirable to use water from the viewpoints of stability during the molecular weight reduction treatment and toxicity when remaining in the polysaccharide after the treatment. In addition, examples of poor solvents for the polysaccharide that are miscible with solvents include acetone, methanol, ethanol,
It is possible to use compounds with a relatively low boiling point such as isoderonol, n-deronol, tetrahydrofuran, etc.
処理後の操作の点で望ましい。Desirable in terms of post-processing operations.
本発明に於てはまた棒状のヘリックス構造を有する多糖
の誘導体内えばN−フルキロ−ルアミド誘導体の如き誘
導体を出発原料として用いることを包含する。しかして
該多糖の1114体を用いる場合にはそれを光分IjI
′pj4する仁とのできる適当な有機俗剤真えばアセト
ン、ベンゼン等の溶液として蓼、tiltうことが望ま
しい。なおこの様な場合の該多輪の貧溶媒としては水、
炭化水XS+等を挙げることが出来る。The present invention also includes the use of derivatives of polysaccharides having a rod-like helical structure, such as N-furkylamide derivatives, as starting materials. However, when using the 1114 polysaccharide, it is
It is preferable to use a suitable organic compound such as acetone, benzene, etc. as a solution. In such cases, the poor solvent for the polycycles is water,
Examples include hydrocarbon XS+.
着た本発一方法を行うときの溶液のmIfは低分子化の
効果にあ普り大きな影響を与えない。しかし挑まり嶌い
温良では該多糖、溶削ならびに貧溶媒の分淋や、これら
出発物質量の反応を生ずることもあるので、一般には呈
−ないし約/ 00Qc根度までの1度が選ばれる。The mIf of the solution when performing the method of this invention does not have a large effect because it is the effect of reducing the molecular weight. However, if the temperature is too low, the polysaccharide, cutting, and poor solvent may be separated, and reactions may occur with the amounts of these starting materials, so generally, a temperature range of 1 degree to approximately 00Qc is selected. .
史に本発明方法な実施する前K、適当なf過手段を通し
、混在する多少の不溶解物や懸濁物を除去することが望
ましい。Before carrying out the method of the present invention, it is desirable to remove some undissolved matter and suspended matter by passing through a suitable filtration means.
を九通常敵小空間に通液する前に該多糖浴液は鳩流状*
KR動させることが望ましい。それは使用原料すなわち
該多糖が棒状の分子形状を有することに由来してテクノ
トロピック性を有しているので、この様な流aな行うこ
とによって溶液の見かけ粘度を低下させ、微小空間への
流入を容易ならしめるためである。9. The polysaccharide bath solution is usually flow-like before being passed into the enemy's small space.
It is desirable to move KR. It has technotropic properties due to the rod-shaped molecular shape of the raw material used, the polysaccharide, so this simple process lowers the apparent viscosity of the solution and prevents it from flowing into the microscopic space. This is to make it easier.
本発明方法の処理に於いては、一般に該多糖溶液が微小
空間を通過する流速が太きいためK、−回の処理での分
子量の減少が不十分な場合があるが、このときには岡じ
操作をくり返し行うか、多段的装置を用いて所望の分子
量まで低下させる。In the treatment of the method of the present invention, generally the flow rate at which the polysaccharide solution passes through the microscopic space is high, so that the molecular weight may not be sufficiently reduced in the K, - times of treatment; The molecular weight is reduced to the desired molecular weight by repeated steps or by using a multistage device.
本発明方法で処理して得られた低分子該多糖は、制癌多
糖の場合にはその薬理効果毒性等はもとの多糖とは変ら
ず、低分子化によってその粘性が低下する九めに生体内
投与や医薬品としての調製が容易となる。ま九食品の添
加物として使用する場合にも、もとの多糖の極めて高い
粘性が減少し食品製造時の1遍性等が改讐され、テクノ
トロピックなaSS性を思いの筐−低下させることが出
来る0
以下、実施fllを挙けて説明する。The low-molecular-weight polysaccharide obtained by the process of the present invention is an anticancer polysaccharide, and its pharmacological effects and toxicity are the same as those of the original polysaccharide. It facilitates in vivo administration and preparation as a pharmaceutical product. When used as an additive in foods, the extremely high viscosity of the original polysaccharide is reduced, the uniformity during food manufacturing is improved, and the technotropic aSS properties are reduced as expected. 0 Below, the implementation will be explained.
実施例/
平均分子量約!T、400.000のシゾフィランな水
に―かし、O8−重重嗟の水溶液とした。グランジャー
ポングを用いてこの水溶液に圧を/JOえ景さSl、半
径0./l、■のノズルを通過させて低分子化を行った
。1ランジヤーポンプの回転数を変えて圧力を変え、そ
れぞれlλ紛/x 21.l s時/12.3410に
4/2 、およびf2ok/1)ll”e処alt。Example/ Average molecular weight approx. T, 400,000 schizophyllane was dissolved in water to form an aqueous solution of O8-glycerol. Pressure is applied to this aqueous solution using a Granger Pong. /l, ■ was passed through a nozzle to lower the molecular weight. 1. Change the rotation speed of the lanzier pump to change the pressure, and obtain lλ powder/x in each case.21. l s hour/4/2 at 12.3410, and f2ok/1)ll''e processing alt.
たときのノズル1本当りの流雪はそれぞれo、−5cR
/ sec % 0.90J/ sec 、
lI1.3 m”/ see sおよび8.弘
、B7−・Cであった。ノズルの半径と流雪から次式、
剪断速度=4<x流1i / K X (ノズル半径)
3によって計算し九W断速度はそれそ114 −s
7・lI10 s@a、コ、lX10m。。、ダ、3−
x10 see sおよびハ/X107.。。−1
1であった。The drifting snow per nozzle is o and -5cR, respectively.
/ sec% 0.90J/sec,
lI1.3 m”/see s and 8.Hiroshi, B7-・C. From the radius of the nozzle and the drifting snow, the following formula,
Shear rate = 4 < x flow 1i / K x (nozzle radius)
3, the breaking velocity of 9W is 114 -s 7・lI10 s@a, ko, lX10m. . , da, 3-
x10 see s and Ha/X107. . . -1
It was 1.
taj−条件でくり過し処理し、ノズル内のm留時間(
θ)と分子量の関係を求めた。その結果を図/に示す。taj-conditions, m residence time in the nozzle (
The relationship between θ) and molecular weight was determined. The results are shown in Figure/.
次に各条件での処理で最終的に得られた低分子化シゾフ
イランの化学構’flKついて、以下の試験を行い処理
前のシゾフイ2ンと同一であることを確認した。Next, the chemical structure of the low-molecular-weight schizophyllan flK finally obtained by the treatment under each condition was tested as follows, and it was confirmed that it was the same as the schizophyllan before the treatment.
(1)処理前のシゾフイランおよび低分子化シゾブイラ
ンを箱守法によってメチル化を行った後ゼ酸次いでトリ
フルオロ酢酸で加水分解し、この加水分解物をピリジン
中で無水酢酸によりアセチル化してガスクロマトグラフ
ィーで生成物の分析を行ったところ、いずれのサンプル
でも、/、5−ジー0−アセテルー−13,ダウ6−チ
トラーO−メチルーD−グルシトール、 ハ、?、j−
)ソー0−アセテルーコ、!、4−トIJ −o−メチ
ル−D−グルシトール、及びl。(1) Schizophyllane and low-molecular-weight schizobyrane before treatment are methylated by the Hakomori method, then hydrolyzed with zeic acid and then trifluoroacetic acid, and this hydrolyzate is acetylated with acetic anhydride in pyridine, followed by gas chromatography. When the products were analyzed, all samples showed /, 5-di-0-acetel-13, Dow 6-chitler O-methyl-D-glucitol, Ha, ? ,j−
) So0-Aceteluko,! , 4-toIJ-o-methyl-D-glucitol, and l.
3.3.4−テトラ−0−アセテA/ −2、lI−ノ
ー0−メチル−D−グルシトールが検出され、七〇モル
比は約l:コ:/であつ九。3.3.4-Tetra-0-acetate A/-2, 1I-no-0-methyl-D-glucitol was detected, with a molar ratio of about 1:co:/9.
(2)各試料を0.0/ Nメタ過ヨウ累酸ナトリウム
によって咳化し、メタ過ヨウ素酸ナトリウムの消黄會と
ギ酸の生成型をヨウ素調定法及び水酸化ナトリウムによ
る滴定で測定したところ、いずれもレゾブイラン中のグ
ルコース残基/ molに対して0.ダg〜0 、 j
!rmol (1)メタ過ヨウ素酸の消費とO,コ/〜
O,コア molのギ酸の生成が認められ友。(2) Each sample was coughed up with 0.0/N sodium metaperiodate, and the yellowing effect of sodium metaperiodate and the formation of formic acid were measured by the iodine adjustment method and titration with sodium hydroxide. Both are 0.0% relative to glucose residue/mol in resobuirane. dag~0,j
! rmol (1) Consumption of metaperiodic acid and O, co/~
O, formation of core mol of formic acid was observed.
taj !試料に・XO−β−/、3−グル刀ナーゼ
を作用させ生成物としてグルコースとrンテオビースと
を、21/のモル比で蘭めた。Taj! The sample was treated with .XO-β-/3-glutinase, and glucose and rntheobise were added as products at a molar ratio of 21/21.
(4)/?!r試料を水およびジメテルス、ルホキシド
に溶かして沈降平画法で分子量を611定したところい
ずれも(コ9g〜、3.3 ) i /であった。(4)/? ! The molecular weight of each sample was determined by the sedimentation method after dissolving it in water, dimetels, and sulfoxide.
以上の結果から該多糖は低分子化後も処理前と同じ基本
*aV持つことが判った。From the above results, it was found that the polysaccharide had the same basic *aV even after being reduced to a low molecular weight as before the treatment.
実IIa例コ
スクレログルカン(平均分子量約500万)及びずフタ
/ガム(平均分子量約1aoo万)をそれぞれ水VC#
かしてO05重重俤の水16液とした。Example IIa Coscleroglucan (average molecular weight: about 5 million) and Zufuta/gum (average molecular weight: about 1 million) were each added to water VC#
This made 16 liquids of O05 heavy water.
それぞれの溶液Ks00に4/cs の圧力を加え長
さjl、半径0./■のノズルを通過させて低分子化を
行った。各溶液がノズルを通過するときの流雪はスクレ
ログルカンで1.Qx / i@e sデンタンガムで
7.axlo ex/■・C1であった。従って剪断
速度=ダX流歇/π(ノズル半径)3から求め九l!新
速度はスクレログルカンで/、tXlo”m@@−1s
デンタンガムで9.’l X / Osac であつ
九〇それぞれの溶液な10回くり返し処理した像のスク
レログルカンとデンタンガムの分子量は、tO万及びl
O3万であった。いずれの多糖についても、低分子化処
理の前後のものについて箱守床によるメチル化を行い、
酸による光全加水分堺後アセチル化して生成物のガスク
ロマトグラフィーな打ったところ、低分子化の前後で同
一ピークを麹め、谷ピークの大きさも同じであることか
ら処m憬の化学lI遺はもとの多種と同一である仁とを
一誌し−fCo″*たスクレログルカンについては水’
P&びツメチルスルホキシド中の分子量の比が低分子化
の前後いずれでも3対lであったので同じヘリックス4
1114を持つことが明らかである0デンタンガムにつ
いては低分子化の前後の極限粘度がそれぞれ/1000
(mol / I ””)及び1070 (mar
l&)であり、この分子量と極限粘度の関係はdolx
varthら(G、 )Iolxwarth : Ca
rbohydrateR@s@areh、 la4 /
73− / g & (/ 97g))の求めた関係
と一款することから同一のヘリックス構造を持つことが
ii1誌され丸。A pressure of 4/cs was applied to each solution Ks00, and the length was jl and the radius was 0. /■ was passed through a nozzle to reduce the molecular weight. When each solution passes through the nozzle, the snow drift is 1. scleroglucan. Qx/i@es dentan gum 7. It was axlo ex/■・C1. Therefore, find 9l from shear rate = da x flow rate / π (nozzle radius) 3! The new speed is scleroglucan/, tXlo”m@@-1s
9. with dentan gum. 'l
It was O30,000. For both polysaccharides, methylation was performed using Hakomori-doko before and after the low molecular weight treatment.
Gas chromatography of the product after photototal hydrolysis with acid and acetylation revealed that the same peaks were observed before and after the reduction of molecular weight, and the size of the valley peak was also the same, indicating that the chemistry of treatment is For the scleroglucan that was the same as the original variety, it is water'.
Since the ratio of molecular weights in P and methyl sulfoxide was 3 to 1 both before and after lowering the molecular weight, the same helix 4
Regarding 0 dentane gum, which clearly has 1114, the intrinsic viscosity before and after lowering the molecular weight is /1000, respectively.
(mol/I””) and 1070 (mar
l&), and the relationship between this molecular weight and intrinsic viscosity is dolx
varth et al. (G, ) Iolxwarth: Ca
rbohydrateR@s@areh, la4/
73-/g & (/97g)), it can be concluded that they have the same helical structure.
実施993
平均分子量約コOO万のシゾフイ2ンを水、−〇俤、重
置アセトン水溶液および一〇重重置エタノール含有水K
l!解してそれぞれθ、を電暑暢の溶液を一刺した。こ
れらの液を参〇〇Ke/2”の王で平均口ijk j
Oミクロン、厚さ11の焼結板を通して処理した。従っ
て焼結板中の1rlllr速皮は次式からコj X /
0’以上であったと計算される。Implementation 993: Schizofine 2 with an average molecular weight of about 00,000 was mixed with water, -0, overlyzed acetone aqueous solution, and 10 times overly overlaid with ethanol-containing water.
l! Then, each θ was injected with a solution of Denka Nobuo. Take these liquids to an average mouth size of 3〇Ke/2'' ijk j
Processed through a sintered plate of 0 microns and thickness 11. Therefore, the 1rllllr fast skin in the sintered plate is calculated from the following equation:
It is calculated that the value is 0' or more.
3回処理したときのそれぞれの溶液中のシゾフイランの
平均、分子量は以下の遡りであった。The average and molecular weight of schizophylran in each solution after three treatments were as follows.
シゾフイラン平均分子當
コO重當饅エタノール水溶液 j3万コOjl
當饅アセトン水溶液 60万水 #l 液
7を万
実施例ダ
平均分子量約!fコθ力のスクレログルカンな水に#l
かしてそれぞれ濃度0.l li會慢、O,lIS重當
僑、及び0.90重暑囁の水#1液を!A製し、圧力/
70’14/2”で半径0,16■のノズルを通過さ
せた。−0回処理したときのそれぞれのスクレログルカ
ンの分子量は以下の通りであった。Schizofirane average molecular weight ethanol aqueous solution 30,000 ml
Aqueous acetone solution 600,000 water #l liquid
The average molecular weight of 7 million examples is approximately! #l in scleroglucan water with f coθ force
Each concentration is 0. l li meeting, O, l IS heavy weight, and 0.90 heavy heat whisper water #1 liquid! Made by A, pressure/
The samples were passed through a nozzle with a diameter of 70'14/2" and a radius of 0.16 cm. The molecular weight of each scleroglucan after the -0 treatment was as follows.
溶 液 磯 曳 処理後の平均分子量θ、1oz
z饅 Sざ万
o、4′s IIλ万
0.90 −g万
実施例S
゛ 実開1で用いたシゾフイランの/、0重量係水浴液
を孔径0.1wmの素焼板で濾過したのち、タンクの中
でレイノルズ数lコOの状態で流動させ乍らタンクII
C!rOKe/CM”の圧をかけてタンクの底部につけ
た長さJ ts 、半径0.1に−のノズルからこの溶
液を噴射させた0操作は3時間安定して継続することが
出来た0処4後のシゾフイランの分子量はいずれの場合
も約37θ力であった0操作終了後ノズル入口の上部に
約lθ0−の未処理の液が浅域し九〇
次に同じ操作を1通及び攪拌操作なしに行ったが、四重
の溶液を処理する閣にノズルか閉基し何回もタンクの圧
を抜いてノズルの5e挾を村わねはならなかったOSolution Average molecular weight after treatment θ, 1oz
z饅 Szamano, 4's IIλ10,000.90 -g10,000 Example S ゛ After filtering the 0 weight water bath solution of Schizophyllan used in practical experiment 1 through a clay plate with a pore size of 0.1 wm, While flowing in the tank at a Reynolds number of 1
C! The solution was injected from a nozzle of length J ts and radius 0.1 attached to the bottom of the tank under a pressure of ``rOKe/CM''.The zero operation was able to continue stably for three hours. The molecular weight of Schizophyllane after 4 was about 37θ force in each case.After the 0 operation, there was a shallow area of untreated liquid of about 1θ0− at the upper part of the nozzle inlet. I went without it, but I had to close the nozzle in a room that processes quadruple solutions and release the pressure from the tank several times to avoid the nozzle's 5e clamp.
図/はシゾフイランを使用原料とした場合に於けるノズ
ル内のmwi時間(0)と平均分子量σ)関係を示すも
のであるO
直、事件の表示
昭和57年 特 許 願 第23724号2、発明の名
称 棒状のへリンクス構造を有する多糖の低分子化方
法
3、補正をする者
事件との関係 出願人
カケン カガク
同 科研化学株式会社
4、代理人
5、補正命令の日付 自 発
6、補正の対象 明細書の発明の詳細な説明の欄
7、補正の内容
+11 明細書を次のように訂正する。
(2) 明細!15頁、5行の“ならしめるためであ
る。”を次のように訂正する。
[ならしめる。また該多糖溶酸は粘着性が繭く容器の器
壁体を適当に流動させることによって全体を均一に低分
子化させることが望ましい。この様に全体を流動させる
ことによって、装置から液を排出後、器壁に付着して残
留する液量を減少させることができる。J
13) 明細書22頁、4打目の“ならなかった、′
の後に、−ト文を挿入する。
[操作後、液を排出したのちI!壁からたれ流れた掖が
2500 曽pタンク底部に残留した。
処理後のシゾフィランの分子量はいずれの場合も約37
0万であった。」Figure / shows the relationship between mwi time (0) and average molecular weight σ) in the nozzle when Schizophyllan is used as the raw material. Name: Method for reducing the molecular weight of polysaccharides with a rod-shaped helix structure 3, Relationship with the case of the person making the amendment Applicant Kaken Kagaku Co., Ltd. 4, Agent 5, Date of amendment order Voluntary 6, Amendment Subject Column 7 of the detailed explanation of the invention in the specification, Contents of amendment + 11 The specification is amended as follows. (2) Details! On page 15, line 5, "It is for the purpose of getting used to it." is corrected as follows. [Familiarize yourself. Furthermore, since the polysaccharide-soluble acid has a sticky cocoon, it is desirable to uniformly lower the molecular weight of the whole by appropriately fluidizing the wall of the container. By causing the entire device to flow in this manner, it is possible to reduce the amount of liquid remaining on the wall of the device after the liquid is discharged from the device. J 13) Page 22 of the specification, the 4th stroke “Nanadatta,’
Insert a -t statement after. [After the operation, after draining the liquid, I! The water that dripped from the wall remained at the bottom of the 2500p tank. The molecular weight of schizophyllan after treatment is approximately 37 in each case.
It was 0,000. ”
Claims (1)
速度条件下【おくことを特徴とする低分子化方法。 (2)棒状のへリツクス構造を持つ多糖が直鎖状のβ−
/、3−グルカンである特許請求の範囲第m項記載の方
法。 (3)棒状のヘリックス構造を持つ多積がデンタ/fム
である特許請求の範囲第(1)項記載の方法。 14) / X 10’ (see”)以上の!IJ
Wr速度下で処理する特許請求の範Fj!i第(11項
記載の方法。 (5)棒状のヘリックス構造を持つ多糖の溶液濃度が0
./ −/ 0重を係である特許請求の範囲第(1)項
記載の方法。 (6)棒状のヘリックス構造を有する多糖の溶剤として
、水を用いることからなる特許請求の範囲第(1)項記
載の方法。 (7)棒状のへリツクス構造を持つ多積の溶液に、その
溶剤とは相溶性を有し且つ該多積の貧溶媒である溶媒を
添加して低分子化を行うことがら′なる特許請求の範囲
第(11項記載の方法−(8)高剪断速度条件下におく
前に、該溶液を1遇することからなる特許請求の範囲第
11)項記載の方法。 (9)高剪断速度条件下におく前に、該溶液を易流動性
にすることか−らなる特許請求の範囲第(1)項記載の
方法。[Scope of Claims] (1) A method for reducing molecular weight by subjecting a multilayer solution having a rod-like helical structure to high shear rate conditions. (2) A polysaccharide with a rod-shaped helical structure has a linear β-
/, 3-glucan. The method according to claim m. (3) The method according to claim (1), wherein the multilayer having a rod-like helix structure is a denta/fum. 14) / X 10' (see”) or more!IJ
Claim Fj! processing under Wr speed! (5) The solution concentration of the polysaccharide having a rod-like helix structure is 0.
.. / - / The method according to claim (1), which relates to 0 layers. (6) The method according to claim (1), which comprises using water as a solvent for the polysaccharide having a rod-like helical structure. (7) A patent claim that involves adding a solvent to a multilayer solution having a rod-shaped helical structure that is compatible with the solvent and is a poor solvent for the multilayer solution to reduce the molecular weight. (8) The method according to claim 11, which comprises soaking the solution once before subjecting it to high shear rate conditions. (9) A method according to claim (1), comprising rendering the solution free-flowing before subjecting it to high shear rate conditions.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57023724A JPS58140094A (en) | 1982-02-16 | 1982-02-16 | Method for reducing molecular weight of polysaccharide with rod-like helical structure |
GB08302088A GB2116576B (en) | 1982-02-16 | 1983-01-26 | A method for a specific depolymerization of a polysaccharide having a rod-like helical conformation |
KR1019830000395A KR900006211B1 (en) | 1982-02-16 | 1983-02-02 | Process for depolymerizing polysaccharids having a rod-like helical cenformation |
CA000420799A CA1214162A (en) | 1982-02-16 | 1983-02-03 | Method for a specific depolymerization of a polysaccharide having a rod-like helical conformation |
DE19833304775 DE3304775A1 (en) | 1982-02-16 | 1983-02-11 | METHOD FOR SPECIFIC DEPOLYMERIZATION OF A POLYSACCHARID WITH A ROD-SHAPED HELIX INFORMATION |
FR8302332A FR2521569B1 (en) | 1982-02-16 | 1983-02-14 | PROCESS FOR DEPOLYMERIZATION OF A POLYSACCHARIDE HAVING A HELICOID STRUCTURE IN STICKS |
CH843/83A CH653689A5 (en) | 1982-02-16 | 1983-02-15 | METHOD FOR SPECIFIC DEPOLYMERIZATION OF A POLYSACCHARID WITH A ROD-SHAPED HELIX INFORMATION. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57023724A JPS58140094A (en) | 1982-02-16 | 1982-02-16 | Method for reducing molecular weight of polysaccharide with rod-like helical structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58140094A true JPS58140094A (en) | 1983-08-19 |
JPS6411041B2 JPS6411041B2 (en) | 1989-02-23 |
Family
ID=12118262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57023724A Granted JPS58140094A (en) | 1982-02-16 | 1982-02-16 | Method for reducing molecular weight of polysaccharide with rod-like helical structure |
Country Status (7)
Country | Link |
---|---|
JP (1) | JPS58140094A (en) |
KR (1) | KR900006211B1 (en) |
CA (1) | CA1214162A (en) |
CH (1) | CH653689A5 (en) |
DE (1) | DE3304775A1 (en) |
FR (1) | FR2521569B1 (en) |
GB (1) | GB2116576B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0443043B1 (en) * | 1989-09-12 | 1995-04-05 | Shiseido Company Limited | Process of production of low-molecular weight hyaluronic acid |
ES2049561B1 (en) * | 1991-04-27 | 1994-12-16 | Andromaco Lab | PROCEDURE FOR OBTAINING POLYMERS WITH ACTIVITY ON THE HEMATOPOYETIC SYSTEM. |
DE4434877A1 (en) * | 1994-09-29 | 1996-04-04 | Fresenius Ag | Process for the production of starch breakdown products |
US6242035B1 (en) | 1998-11-23 | 2001-06-05 | Cp Kelco U.S., Inc. | Reduced molecular weight native gellan gum |
AR107982A1 (en) * | 2016-03-28 | 2018-07-04 | Cargill Inc | METHOD FOR SOLUBILIZING BIOPOLIMERIC SOLIDS FOR IMPROVED OIL RECOVERY APPLICATIONS |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5919121B2 (en) | 1975-10-31 | 1984-05-02 | タイトウ カブシキガイシヤ | Shinkinoyakurikatsuseitatoubunkaibutsuno Seizouhouhou |
JPS581907B2 (en) * | 1980-08-07 | 1983-01-13 | 株式会社 柳屋鉄工所 | Forming device for kamaboko without board |
-
1982
- 1982-02-16 JP JP57023724A patent/JPS58140094A/en active Granted
-
1983
- 1983-01-26 GB GB08302088A patent/GB2116576B/en not_active Expired
- 1983-02-02 KR KR1019830000395A patent/KR900006211B1/en not_active IP Right Cessation
- 1983-02-03 CA CA000420799A patent/CA1214162A/en not_active Expired
- 1983-02-11 DE DE19833304775 patent/DE3304775A1/en active Granted
- 1983-02-14 FR FR8302332A patent/FR2521569B1/en not_active Expired
- 1983-02-15 CH CH843/83A patent/CH653689A5/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
DE3304775C2 (en) | 1992-01-23 |
KR900006211B1 (en) | 1990-08-25 |
CH653689A5 (en) | 1986-01-15 |
GB2116576B (en) | 1985-08-14 |
GB2116576A (en) | 1983-09-28 |
DE3304775A1 (en) | 1983-08-25 |
KR840003645A (en) | 1984-09-15 |
FR2521569B1 (en) | 1986-10-10 |
JPS6411041B2 (en) | 1989-02-23 |
FR2521569A1 (en) | 1983-08-19 |
GB8302088D0 (en) | 1983-03-02 |
CA1214162A (en) | 1986-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Qiu et al. | Effect of ultrasonic intensity on the conformational changes in citrus pectin under ultrasonic processing | |
Ngasotter et al. | Nanochitin: An update review on advances in preparation methods and food applications | |
Koda et al. | Effects of frequency and a radical scavenger on ultrasonic degradation of water-soluble polymers | |
Buffiere et al. | The chemical-free production of nanocelluloses from microcrystalline cellulose and their use as Pickering emulsion stabilizer | |
Omar-Aziz et al. | Chemical modification of pullulan exopolysaccharide by octenyl succinic anhydride: Optimization, physicochemical, structural and functional properties | |
Yan et al. | Effects of ultrasound on molecular properties, structure, chain conformation and degradation kinetics of carboxylic curdlan | |
Ma et al. | Degradation kinetics and structural characteristics of pectin under simultaneous sonochemical-enzymatic functions | |
Kadokawa | Dissolution, derivatization, and functionalization of chitin in ionic liquid | |
Wu et al. | Kinetics and mechanism of degradation of chitosan by combining sonolysis with H 2 O 2/ascorbic acid | |
Popa | Polysaccharides in medicinal and pharmaceutical applications | |
Ratnawati et al. | Kinetics and thermodynamics of ultrasound-assisted depolymerization of κ-carrageenan | |
WO2008067942A1 (en) | Production of cellulose nanoparticles | |
Stokke et al. | Macrocyclization of polysaccharides visualized by electron microscopy | |
Kadokawa | Dissolution, gelation, functionalization, and material preparation of chitin using ionic liquids | |
JPS58140094A (en) | Method for reducing molecular weight of polysaccharide with rod-like helical structure | |
Aida et al. | Mechanism of selective hydrolysis of alginates under hydrothermal conditions | |
Walter | Polysaccharide dispersions: chemistry and technology in food | |
Lin et al. | Characterization and blood coagulation evaluation of the water-soluble chitooligosaccharides prepared by a facile fractionation method | |
Biswas et al. | Effect of ultrasound on the physical properties and processing of major biopolymers—a review | |
Tsai et al. | Modifying the molecular weight of chitosan | |
Zheng et al. | Extraction and preparation of cellulose nanocrystal from Brewer's spent grain and application in pickering emulsions | |
Guo et al. | Water-soluble chitin of low degree of deacetylation | |
Jicsinszky et al. | Mechanochemical Degradation of Biopolymers | |
CA1077930A (en) | Neoschizophyllan having novel pharmacological activity | |
Jiang et al. | Kinetics of Heterogeneous Deacetylation of β‐Chitin |