JPS5813938A - High frequency heater - Google Patents
High frequency heaterInfo
- Publication number
- JPS5813938A JPS5813938A JP11398681A JP11398681A JPS5813938A JP S5813938 A JPS5813938 A JP S5813938A JP 11398681 A JP11398681 A JP 11398681A JP 11398681 A JP11398681 A JP 11398681A JP S5813938 A JPS5813938 A JP S5813938A
- Authority
- JP
- Japan
- Prior art keywords
- heating
- cooking
- high frequency
- output
- food
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 claims abstract description 47
- 238000010411 cooking Methods 0.000 claims abstract description 27
- 235000013601 eggs Nutrition 0.000 claims description 16
- 238000001514 detection method Methods 0.000 claims description 14
- 235000013305 food Nutrition 0.000 abstract description 20
- 238000010586 diagram Methods 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 2
- 235000014347 soups Nutrition 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 239000004278 EU approved seasoning Substances 0.000 description 1
- 244000294411 Mirabilis expansa Species 0.000 description 1
- 235000015429 Mirabilis expansa Nutrition 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 235000011950 custard Nutrition 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000011194 food seasoning agent Nutrition 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 108010015053 lipovitellin Proteins 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 235000013536 miso Nutrition 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/66—Circuits
- H05B6/68—Circuits for monitoring or control
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Control Of High-Frequency Heating Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は高周波加熱によって食品を調理し、食品の調理
状態を検知して加熱時間を自動的に決定するいわゆる自
動高周波加熱装置に関するもので、茶わん蒸し等の卵料
理をも自動調理することを目的とするものである0
高周波における食品の加熱時間は、被加熱食品の初期温
度、量、最終温度、比熱、および高周波エネルギー吸収
率などの諸量によって定まる。従来より電子レンジの加
熱時間の設定方法は、被加熱食品の品目と量から決定さ
れる時間を使用者がタイマーにより設定していた0した
がって、食品の初期温度等は考慮されていないので調理
ミスが生じやすく、又分量が変わればその都度、加熱時
間を計算して設定しなければいけない等、使い勝手が悪
かった。Detailed Description of the Invention The present invention relates to a so-called automatic high-frequency heating device that cooks food using high-frequency heating, detects the cooking state of the food, and automatically determines the heating time. The heating time of food at high frequency is determined by various quantities such as the initial temperature, amount, final temperature, specific heat, and high frequency energy absorption rate of the food to be heated. Conventionally, the heating time setting method for microwave ovens was for the user to set the time determined based on the type and amount of food to be heated using a timer. Therefore, the initial temperature of the food, etc. was not taken into consideration, leading to cooking errors. It was difficult to use, as it was easy to cause problems, and the heating time had to be calculated and set each time the quantity changed.
近年、こうした欠点を改善する為、食品の調理進行状態
を検知するセンサーとマイコンを主とした制御回路によ
シ自動的に調理時間を設定し完了するいわゆる自動電子
レンジが開発され、市場にても電子レンジの主流となり
つつある。自動電子レンジは食品加熱によって生ずる相
対湿度2食品温度、におい、ガス等の変化を各種センサ
ーでキャッチするもので、ある一定の品目に限っては自
動調理が可能となった。しかし、電子レンジでは従来よ
り失敗率の高い品目であった卵料理は自動化することが
できなかった。In recent years, in order to improve these shortcomings, so-called automatic microwave ovens have been developed that use a sensor that detects the cooking progress of food and a control circuit mainly based on a microcomputer to automatically set and complete the cooking time. is also becoming the mainstream of microwave ovens. Automatic microwave ovens use various sensors to detect changes in relative humidity, food temperature, odor, gas, etc. that occur when food is heated, and are now capable of automatically cooking only certain items. However, it has not been possible to automate egg dishes, which have traditionally had a high failure rate in microwave ovens.
以下、第1図〜第4図と共に従来の自動電子レンジで卵
料理の代表格である茶わん蒸しを調理した場合の動作原
理と調理加熱の推移を説明する。Hereinafter, with reference to FIGS. 1 to 4, the operating principle and the transition of cooking heating when cooking chawan mushi, a typical egg dish, in a conventional automatic microwave oven will be explained.
第1図において1は、マグネトロン2を駆動するための
変圧器、3,4は整流回路を構成するコンデンサーとダ
イオード、6は加熱室、6は被加熱食品であシ、マイク
ロ波加熱された結果、被加熱物6から生ずる湿気を帯び
た空気は、排気ロアから排気される。そして排気ロアの
排気通路には第2図に示すような特性をもつ湿度センサ
ー8を設置し、湿度センサーに直列につながる抵抗9の
両端の電圧を湿度検知信号とする。1oは標準信号源、
11は前置増巾器、12は最低値検出保持回路、13は
最低値からの湿度上昇分を検出するための引算回路であ
り、(ム−B)に比例した信号Cを出力する。第3図(
IL)に対応させるとムは変化する湿度信号りであり、
Bは最低値hminであり、△hはCである。14は電
圧比較回路であり、偏差信号Cを基準電圧vhと比較し
、Cがvh を越えるとき出力信号を発生する。この時
間は第3図におけるTである。16は電圧比較回路14
の出力信号で駆動され調理の開始と停止にともなって電
力供給源を0N−OFFする接点16の駆動回路である
。(STム)は調理開始信号であり、STムが入力され
ると接点16は閉じ第3図におけるTが経過すると開く
ようになっている。すなわちマグネトロン2から生ずる
高周波によって被加熱物6が加熱され空気を発生すると
、湿気を帯びた空気が排気される0この空気を湿度セン
サー8が検知して、それぞれの制御回路11,12,1
3゜14.16により検出電圧の最低値からの上昇分が
vhを越えるとき接点16が開いて加熱が自動的に終了
する。さて、次は調理加熱の推移を詳細に説明する。ま
ず加熱開始と共に被加熱物6である茶わん蒸し液は斡々
に温度が上昇する0高周波は、被加熱物6の周囲から吸
収が進む特性があるので高周波による急激な加熱により
第4図中DゾーンはEゾーンより先VC温度上昇が進む
ものである。In Figure 1, 1 is a transformer for driving the magnetron 2, 3 and 4 are capacitors and diodes that constitute a rectifier circuit, 6 is a heating chamber, and 6 is the food to be heated, the result of microwave heating. The humid air generated from the heated object 6 is exhausted from the exhaust lower. A humidity sensor 8 having characteristics as shown in FIG. 2 is installed in the exhaust passage of the exhaust lower, and the voltage across a resistor 9 connected in series with the humidity sensor is used as a humidity detection signal. 1o is the standard signal source,
11 is a preamplifier, 12 is a minimum value detection and holding circuit, and 13 is a subtraction circuit for detecting an increase in humidity from the minimum value, which outputs a signal C proportional to (mu-B). Figure 3 (
When it is made to correspond to IL), mu is a changing humidity signal,
B is the lowest value hmin, and Δh is C. 14 is a voltage comparison circuit which compares the deviation signal C with a reference voltage vh and generates an output signal when C exceeds vh. This time is T in FIG. 16 is a voltage comparison circuit 14
This is a drive circuit for the contact 16, which is driven by the output signal of the contact 16 and turns the power supply source ON and OFF when cooking starts and stops. (STm) is a cooking start signal, and when STm is input, the contact 16 closes and opens when T in FIG. 3 has elapsed. In other words, when the object 6 to be heated is heated by the high frequency generated by the magnetron 2 and air is generated, the humid air is exhausted.The humidity sensor 8 detects this air and controls the respective control circuits 11, 12, 1.
According to 3°14.16, when the increase in the detected voltage from the lowest value exceeds vh, the contact 16 opens and heating is automatically terminated. Next, the transition of cooking heating will be explained in detail. First, as heating begins, the temperature of the tea steamed liquid, which is the object to be heated 6, rises steadily.High frequency waves have the characteristic of being absorbed from the periphery of the object to be heated, so rapid heating due to high frequency waves causes the temperature to rise steadily. In the zone, the VC temperature increases further than in the E zone.
次に、さらに加熱が進み、T2 の間においては、E
ゾーンの温度は70’C〜90℃に至り第3図(b)に
示すように徐々に蒸気を発生し出す。しかしこの間も1
(a)に示す検出信号(h)は、ひき続き下降していく
。これは、強出力動作を続けて行なっている為、マグネ
トロン2、加熱室6等の温度上昇により、排気ロアを通
過する空気の相対湿度は、低下を続けていく為である。Next, heating progresses further, and during T2, E
The temperature of the zone reaches 70'C to 90C, and steam gradually begins to be generated as shown in FIG. 3(b). However, during this time 1
The detection signal (h) shown in (a) continues to fall. This is because the relative humidity of the air passing through the exhaust lower continues to decrease due to the temperature increase in the magnetron 2, heating chamber 6, etc. as the high output operation continues.
又、上記T2 間における後半においてDゾーンの温
度はさらに急激な上昇カーブを示す。この現象は卵料理
特有のものである。すなわち、卵に含まれ主成分をなす
ホポアルプミンやリポビテリン等の蛋白質は約66℃〜
72℃で凝固する特性を有している。たとえば茶わん蒸
しは、一般に卵とだし汁を1:3〜1:4に配合し、調
味料と共に加熱するが、その凝固温度は、76℃〜86
℃である。この温度に達したDゾーンの卵液は完全に凝
固し、それまで容器17内で生じていた対流が完全に停
止してしまい、さらに急激な温度上昇を示すものである
。又、前述したように、蒸気は、わずかながら発生して
いるにもかかわらず、相対湿度の上昇が見られない為、
検出信号カーブの上昇がないまま加熱動作は、さらに続
けられる。次に、Ts 0間にまで加熱が進むと、上2
Dゾーンは100℃近辺まで温度上昇し、多量の蒸気を
急激に発生する0この蒸気発生量は、前駅した加熱室6
内空気の温度上昇による相対湿度の低下要因を大きく上
まわり、検出信号の上昇分△h′として検出され、加熱
動作が自動的に終了する。この時点における被加熱物6
のDゾーンは激しく、す立っており、きわめて固い凝固
状態で舌ざわりが悪い。元来、味噌汁の再加熱等は温度
が沸点に近付いても凝固することは無いので、最後まで
対流による熱伝導で比較的温度むらは生じに<<、かつ
食する時に、混ぜて飲むことが多いので特に支障は無い
。又、野菜等の生からの調理においては、ラップで食品
を、つつみ加熱するので蒸気がラップ内の野菜の隙間に
充満し、全体を加熱していくので加熱むらが生じにくく
前述した加熱と検知手段で支障なく調理できた。しかし
、茶わん蒸し等の卵料理においては、調理終了温度を、
比較的蒸気やガヌの発生量が少ない低温度にて押さえる
必要があること、父上記終了温度の許容範囲が極めて小
さいこと、さらには80℃近辺で凝固してしまう為、対
流をさまたげ加熱ムラが大きく生じやすいこと等の多く
のむずかしい条件を必要としており従来の自動電子レン
ジでは、自動調理できなかった。Further, in the latter half of the period T2, the temperature in the D zone shows an even steeper rising curve. This phenomenon is unique to egg dishes. In other words, proteins such as hopoalpmin and lipovitellin, which are the main components contained in eggs, have a temperature of about 66℃~
It has the property of solidifying at 72°C. For example, chawanmushi is generally made by mixing eggs and soup stock at a ratio of 1:3 to 1:4 and heating it with seasonings, but the coagulation temperature is 76°C to 86°C.
It is ℃. The egg liquid in zone D that has reached this temperature is completely solidified, the convection that had been occurring in the container 17 until then completely stops, and the temperature rises even more rapidly. In addition, as mentioned above, even though a small amount of steam is generated, there is no increase in relative humidity, so
The heating operation continues without any rise in the detection signal curve. Next, when the heating progresses to between Ts 0, the upper 2
The temperature in zone D rises to around 100℃, and a large amount of steam is rapidly generated.
This greatly exceeds the cause of the decrease in relative humidity due to the rise in temperature of the internal air, which is detected as an increase in the detection signal Δh', and the heating operation is automatically terminated. Heated object 6 at this point
The D zone is intense, erect, extremely hard and coagulated, with a bad texture. Originally, when miso soup is reheated, it does not solidify even when the temperature approaches the boiling point, so the temperature is relatively uneven due to heat conduction by convection until the end.And when you eat it, you can mix it and drink it. There are a lot of them, so there is no particular problem. In addition, when cooking raw vegetables, etc., the food is wrapped in plastic wrap and heated, so the steam fills the gaps between the vegetables in the plastic wrap and heats the whole thing, which prevents uneven heating and allows for the heating and detection described above. I was able to cook without any problems. However, for egg dishes such as chawanmushi, the cooking end temperature is
It is necessary to maintain the temperature at a low temperature where the amount of steam and gas produced is relatively small, the allowable range of the above-mentioned end temperature is extremely small, and furthermore, since it solidifies around 80℃, it blocks convection and causes uneven heating. Conventional automatic microwave ovens were unable to automatically cook the food, as it required many difficult conditions such as the possibility of large amounts of gas being generated.
本発明は、以上説明した自動電子レンジにおいてできな
いとされていた卵料理の自動化を、上述した卵料理独特
の性質、蒸気と相対湿度、及び、電子レンジ本体の特性
を充分考慮した上で、加熱パターン及び制御回路の工夫
により、可能としたものであり、以下第4〜6図と共に
説明する。The present invention aims to automate egg cooking, which was thought to be impossible with the automatic microwave oven described above, by fully considering the unique characteristics of egg cooking, steam and relative humidity, and the characteristics of the microwave oven itself. This was made possible by devising patterns and control circuits, and will be explained below with reference to FIGS. 4 to 6.
第6図において、被加熱物6の蒸気を検知する為の基本
的要素である1、2,3,4,5,7,8,9゜10.
11,12,13,14,16,16 の働きは従来例
と同様であるので詳細な説明を省略する。同図において
18は、目的調理物品目を選定するメニュー選択回路、
19は加熱パターン記憶選択回路であり、タイマー回路
も兼ねている。(IN)はメニュー選択信号である。又
20は第2コンデンサー、21は、第2コンデンサー2
0に直列に接続された第2接点であり、リレー駆動回路
16の信号によりオンオフする。22はマグネ上ロン冷
却ファンである第6図に対応させながら、加熱動作の推
移を説明すると、まず、使用者が「茶わん蒸し」を選択
し信号(IN)をメニュー選択回路18に送り、次に(
S’l’A)信号を、上記メニュー選択回路18及び、
リレー駆動回路16に送ると、ただちに最高出力である
600Wの高周波が第6図中テの間、被加熱物6に照射
されるこのT1 時間は、被加熱物6である茶わん蒸し
が凝固する温度76℃〜86℃になる以前で止められる
よう設定している。次に、あらかじめ加熱ノくターン記
憶選択回路19に記憶設定された一定時間T1 が経過
すると、リレー駆動回路16に信号が送られ、第2接点
21を開とし、高周波出力は弱動作に移行する。さて弱
出力動作中の、検出信号発生蒸気量、調理物温度に注目
したい0まず、検出信号は1強出力動作中は、大きな下
降線をたど−ていたが弱出力動作に移ると、はぼ安定し
てしまう。これは、マグネトロン2や加熱室6の温度上
昇が少なく、冷却ファン22の冷却効果によりほぼ飽和
する為、相対湿度の変化が無くなってしまうものである
。又、調理物6は凝固してなく、シかも弱出力動作で徐
々に加熱されるので、容器17内にて対流が十分に生じ
て、Dゾーンと2ゾーンの温度差が少なくなっていく。In FIG. 6, the basic elements for detecting the steam of the heated object 6 are 1, 2, 3, 4, 5, 7, 8, 9 degrees, 10 degrees.
The functions of 11, 12, 13, 14, 16, and 16 are the same as in the conventional example, so detailed explanation will be omitted. In the figure, 18 is a menu selection circuit for selecting a target cooking item;
19 is a heating pattern storage selection circuit, which also serves as a timer circuit. (IN) is a menu selection signal. Further, 20 is a second capacitor, and 21 is a second capacitor 2.
0, and is turned on and off by a signal from the relay drive circuit 16. 22 is a magnetron cooling fan.The transition of the heating operation will be explained by referring to FIG. To (
S'l'A) signal to the menu selection circuit 18 and
When sent to the relay drive circuit 16, a high frequency wave of 600 W, which is the highest output, is immediately irradiated to the heated object 6 for a period of time T1 in FIG. The temperature is set to stop before the temperature reaches 76°C to 86°C. Next, when a certain period of time T1 preset in the heating turn memory selection circuit 19 has elapsed, a signal is sent to the relay drive circuit 16, the second contact 21 is opened, and the high frequency output shifts to weak operation. . Now, I would like to pay attention to the amount of steam generated by the detection signal and the temperature of the food being cooked during low output operation. First, the detection signal followed a large downward slope during high output operation, but when it changed to low output operation, it decreased. It's almost stable. This is because the temperature rise in the magnetron 2 and the heating chamber 6 is small and the temperature is almost saturated due to the cooling effect of the cooling fan 22, so there is no change in relative humidity. In addition, since the food 6 is not solidified and is gradually heated by low output operation, sufficient convection occurs within the container 17, and the temperature difference between the D zone and the two zones decreases.
そして、さらに加熱動作が進むと、調理物6全体の温度
が76℃〜86℃となった時凝固して、わずかながら蒸
気を発生する0この時、加熱室6内の相対湿度は、安定
していたので、調理物6のわずかな蒸気の発生により、
変化上昇し、検出信号上昇分△hとして検出される。こ
の検出信号上昇分△hにより、リレー駆動回路16に信
号を送り、第1の接点16を開とし、加熱を終了する0
すなわち、調理完了温度である70〜86℃の中温にお
いて発生するわずかな蒸気を確実に検知することが可能
であり、従来より失敗の多かった茶わん蒸し等の卵料理
を自動調理化することとなり、極めて簡単な操作で、失
敗なく行なうことができる。しかも、調理物凝固温度以
前まで強出力動作を行ない、その後、弱出力動作に自動
的に移行するので、全体の調理時間は短縮され、かつ加
熱むらの無い美味な卵料理の自動加熱が実現される。な
お、前述したそれぞれの制御回路は、近年急速に普及し
たマイコン13でほとんど処理できるものであり、コス
トアップにはならないものである0
以上説明したように、本発明は従来の自動調理に加え、
極めて困難な調理品目であった卵料理の自動化を、卵料
理独特の性質に対応した加熱ノくターンプログラムと制
御回路の工夫によシ実現したものであり、極めて有用で
ある。As the heating operation progresses further, when the overall temperature of the food 6 reaches 76°C to 86°C, it solidifies and generates a small amount of steam.At this time, the relative humidity in the heating chamber 6 becomes stable. Due to the generation of a small amount of steam from cooking food 6,
The change increases and is detected as an increase in the detection signal Δh. This detection signal rise Δh sends a signal to the relay drive circuit 16 to open the first contact 16 and end the heating. Steam can be detected reliably, and egg dishes such as egg custard, which have traditionally had many failures, can be automatically cooked, and can be done without failure with extremely simple operations. In addition, high output operation is performed until the temperature of the food solidifies, and then automatically shifts to low output operation, which shortens the overall cooking time and realizes automatic heating of delicious egg dishes without uneven heating. Ru. It should be noted that each of the aforementioned control circuits can be mostly processed by the microcontroller 13 that has become rapidly popular in recent years, and does not result in an increase in cost.
The automation of egg dishes, which was an extremely difficult cooking item, was achieved by devising a heating turn program and a control circuit that are compatible with the unique characteristics of egg dishes, making it extremely useful.
第1図は従来例を示す高周波加熱装置のブロク図、第2
図は湿度センサー特性図、第3図a、b。
0、(1は従来例の各動作特性を示す図、第4図は調理
物を示す断面図、第6図は本発明の一実施例を示す高周
波加熱装置のブロック図、第6図a。
b、c、dは同動作特性を示す図である。
6・・・・・・被加熱物、8・・・・・・湿度センサー
、9・・・・・・抵抗、14・・・・・・電圧比較回路
。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名高
11
0
軌 2 図
1
、l:1.H(%)
13図
第 4f!!Figure 1 is a block diagram of a conventional high-frequency heating device;
The figure is a humidity sensor characteristic diagram, Figure 3 a, b. 0, (1 is a diagram showing each operating characteristic of a conventional example, FIG. 4 is a cross-sectional view showing a food to be cooked, FIG. 6 is a block diagram of a high-frequency heating apparatus showing an embodiment of the present invention, and FIG. 6a. b, c, and d are diagrams showing the same operating characteristics. 6... Heated object, 8... Humidity sensor, 9... Resistor, 14... ...Voltage comparison circuit. Name of agent: Patent attorney Toshio Nakao and one other person
11 0 rail 2 Figure 1 , l:1. H (%) Figure 13 4f! !
Claims (2)
物を高周波加熱する高周波発生手段と、上記加熱室内の
湿度等の変化を検知する検知手段と、上記検知手段の信
号にょシ高周波出力を制御する出力制御手段と、調理品
目選択手段を有し、目的調理物に応じてあらかじめ設定
された高周波出力の加熱動作パターンを選択可能とし、
卵料理の調理加熱時は、最大高周波出力に対し弱出力動
作中に、上記検知手段の検出信号の判定を行ない、全加
熱時間を制御する高周波加熱装置。(1) A heating chamber that houses an object to be heated, a high-frequency generating means for high-frequency heating of the object to be heated, a detection means for detecting changes in humidity, etc. in the heating chamber, and a signal detector for the detection means. It has an output control means for controlling the high frequency output and a cooking item selection means, and it is possible to select a heating operation pattern of the high frequency output set in advance according to the target cooking item,
When cooking and heating an egg dish, the high-frequency heating device determines the detection signal of the detection means during operation with a weak output compared to the maximum high-frequency output, and controls the total heating time.
、高出力動作を行なう制御手段を有する特許請求の範囲
第1項記載の高周波加熱装置。(2) The high-frequency heating apparatus according to claim 1, further comprising a control means for performing high-output operation at least in the initial stage of heating when cooking eggs.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11398681A JPS5813938A (en) | 1981-07-20 | 1981-07-20 | High frequency heater |
AU86868/82A AU8686882A (en) | 1981-07-20 | 1982-07-16 | Microwave heater |
PCT/JP1982/000274 WO1983000376A1 (en) | 1981-07-20 | 1982-07-16 | Microwave heater |
EP19820902199 EP0083663A4 (en) | 1981-07-20 | 1982-07-16 | Microwave heater. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11398681A JPS5813938A (en) | 1981-07-20 | 1981-07-20 | High frequency heater |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5813938A true JPS5813938A (en) | 1983-01-26 |
Family
ID=14626189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11398681A Pending JPS5813938A (en) | 1981-07-20 | 1981-07-20 | High frequency heater |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS5813938A (en) |
AU (1) | AU8686882A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6965100B2 (en) * | 2001-08-30 | 2005-11-15 | Lg Electronics Inc. | Method for controlling output power of a combination hood and microwave oven |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51105649A (en) * | 1975-03-13 | 1976-09-18 | Matsushita Electric Ind Co Ltd | DENSHIRENJINOKANETSUJIKANSETSUTEISOCHI |
JPS5369941A (en) * | 1976-12-01 | 1978-06-21 | Matsushita Electric Ind Co Ltd | Automatic oven timer |
-
1981
- 1981-07-20 JP JP11398681A patent/JPS5813938A/en active Pending
-
1982
- 1982-07-16 AU AU86868/82A patent/AU8686882A/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51105649A (en) * | 1975-03-13 | 1976-09-18 | Matsushita Electric Ind Co Ltd | DENSHIRENJINOKANETSUJIKANSETSUTEISOCHI |
JPS5369941A (en) * | 1976-12-01 | 1978-06-21 | Matsushita Electric Ind Co Ltd | Automatic oven timer |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6965100B2 (en) * | 2001-08-30 | 2005-11-15 | Lg Electronics Inc. | Method for controlling output power of a combination hood and microwave oven |
Also Published As
Publication number | Publication date |
---|---|
AU8686882A (en) | 1983-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20030013181A (en) | Microwave oven with rice cooking function and controlling method thereof | |
KR930010264B1 (en) | Control method for a rice-cooking | |
JPS5813938A (en) | High frequency heater | |
JPS5813936A (en) | High frequency heater | |
CN112120523B (en) | Cooking method, cooking appliance and cooking device | |
JPH07171054A (en) | Electric rice cooker | |
WO1983000376A1 (en) | Microwave heater | |
JP2752195B2 (en) | microwave | |
JP2003148743A (en) | High frequency heating device | |
JP2692443B2 (en) | High frequency heating equipment | |
JPH0315922Y2 (en) | ||
JP2577503B2 (en) | microwave | |
JPH0777331A (en) | Microwave oven cooking utensil | |
CN115789705A (en) | Soup cooking function control method for gas stove and gas stove | |
JPH045923Y2 (en) | ||
JP2692411B2 (en) | Method of thawing food by high frequency and heating food at low temperature | |
JPS5813934A (en) | Composite heater | |
JPS6239335B2 (en) | ||
JPH0515448A (en) | Cooker | |
JPS6236355B2 (en) | ||
JP2539194B2 (en) | Microwave oven and cooking method | |
JP2792172B2 (en) | Pressure heating device | |
JPH03192676A (en) | Electric hot plate | |
JPH0722548B2 (en) | How to cook rice in a rice cooker | |
JPS60258896A (en) | High frequency heater |