JPS58138974A - Method of separating air - Google Patents
Method of separating airInfo
- Publication number
- JPS58138974A JPS58138974A JP2164782A JP2164782A JPS58138974A JP S58138974 A JPS58138974 A JP S58138974A JP 2164782 A JP2164782 A JP 2164782A JP 2164782 A JP2164782 A JP 2164782A JP S58138974 A JPS58138974 A JP S58138974A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- low
- air
- pressure column
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation By Low-Temperature Treatments (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は?電を液化して分離する方法に関し、特に全低
圧方式によって空電を分繊して低純度(約95搭#lN
)の酸素を経済的に製造する方法に関するものである。[Detailed Description of the Invention] What is the invention? Regarding the method of separating static electricity by liquefying it, in particular, it is possible to separate static electricity using an all-low pressure method to achieve low purity (approximately 95 #lN).
) relates to a method for economically producing oxygen.
空気を液化して精留することによってN2 *02−A
r等を分離する空気の液化分備装置1IFi橋々の分野
で稼動、している。この棚の空気液化分離装置では、原
料空電や製品酸素に対して運転条件に応じた加圧、m圧
慄作を施す必要がある為、圧縮機。N2 *02-A by liquefying air and rectifying it
The air liquefaction/splitting device 1IFi is in operation in the field of bridges. In this shelf air liquefaction separation equipment, it is necessary to apply pressure and pressure shock to the raw material static electricity and product oxygen according to the operating conditions, so a compressor is used.
診会m等の機器の投波が杢可欠である。そして空気准化
分婚装置に大谷鎗のものが多く動力費が嵩むため、シI
l!I酸嵩の製造コストの低減を図るにはM’JfIJ
率を向上させ不と共に、かかる動力費をできる限り顛約
する必要がある。こうした事i#にいわゆる全低圧式空
気分膠による低純度酵素製重装#(以下単に「酸素製閂
装隨」という)に於ても全(同様であるが、有効な対′
#tはほとんど講じられていない。The transmission of waves from equipment such as clinics is essential. In addition, since many of the air conditioning units were manufactured by Yoshi Otani and the power costs were high,
l! To reduce the manufacturing cost of bulk I acid, M'JfIJ
It is necessary to reduce such power costs as much as possible by improving efficiency. In addition to this, there is a similar but effective solution for low-purity enzyme heavy packaging using a so-called all-low-pressure air bulking system (hereinafter simply referred to as "oxygen stocking").
#t is hardly taken.
イト来の全低圧式空電分断による低純度酸素1造方法(
以下用に「酸素装造方法」という)は、−散に@I W
lにボす様な糸絖図に従って行なわれている。即ち原料
空気は空気沖過器lから供給され、7p気圧締榊2で約
4.6ataに圧〜6加圧されたのち、アフタクーラ8
で冷却される。次に管路21からI′11逆式熱父侠話
4に入り、Q品醪嵩及び不純窒素と熱交換してほぼ沸点
近くまで冷却される。史にV路22から柚留嶋低圧塔C
以下己れを単に「上塔」と称する)5の下部の5glコ
ンデンサ6に導入し、該コンデンサ6で上塔5のm流液
との熱交換により節点以下まで過冷却される。従って一
部は液化する。次いで管路23から気液分離器7内に導
入され、気体空気と液体空気に分離される。Ito's first production method for low-purity oxygen using completely low-pressure electrostatic separation (
(hereinafter referred to as “oxygen preparation method”) is generally referred to as @I W
It is carried out according to the thread diagram shown in Figure 1. That is, raw air is supplied from the air filter 1, pressurized to about 4.6 ata by the 7p pressure tightening filter 2, and then passed through the aftercooler 8.
cooled down. Next, it enters the I'11 inverse heat exchanger 4 through the pipe 21, exchanges heat with the Q product and impure nitrogen, and is cooled almost to its boiling point. History V Route 22 to Yurushima Low Pressure Tower C
(hereinafter simply referred to as the "upper tower") 5 is introduced into a 5 gl condenser 6 at the bottom of the upper tower 5, where it is supercooled to below the nodal point by heat exchange with m flowing liquid from the upper tower 5. Therefore, some of it liquefies. The air is then introduced into the gas-liquid separator 7 through the pipe 23 and separated into gaseous air and liquid air.
液体空気は全iliMv!M塔中圧塔c以下これを単に
「下塔」と称する)8に導かれる。こうして下塔8に導
入され九液体空電は気化して上昇ガスとなる一方、1下
%8の頂部で凝縮して得られる還流液(富窒素液)に髪
触させて粗輌留し、下塔8の頂部で富窒素ガスを傅ると
共に、前記jllfJt液は下塔8の底部で酸素成分約
80〜40%の液体空電となる。一方気液分M器7で分
離された気体空気は管路24から嵌化器9を通過する間
に全量液化された後、管路25.液体空気過冷却器10
.管絡26を経て上塔5の上部へ導かれる。Liquid air is all iliMv! The M column is led to an intermediate pressure column (hereinafter referred to simply as the "lower column") 8. In this way, the nine liquid static electricity introduced into the lower column 8 vaporizes and becomes a rising gas, while it is brought into contact with the reflux liquid (nitrogen-rich liquid) obtained by condensation at the top of the lower column 8, and is crudely distilled. At the top of the lower column 8, nitrogen-rich gas is passed, and at the bottom of the lower column 8, the jllfJt liquid becomes a liquid static with an oxygen content of about 80 to 40%. On the other hand, the gaseous air separated in the gas-liquid separator 7 is completely liquefied while passing through the fitting device 9 from the pipe 24, and then is liquefied in the pipe 25. Liquid air supercooler 10
.. It is led to the upper part of the upper tower 5 through a pipe 26.
又下塔8で前述の如く粗稍留された液体空気は、管路2
8を通って液体空気過冷却器lO内に導入冷却された後
、管路29.膨張弁11から下塔8の頂部に配設された
@2コンデンサー2に導き、該コンデンサ12で下塔8
内の冨窒紫ガスと熱交換して有体空気をガス化する。得
られた気体空気nv路f’IO,81から膨張機18に
入り、とこで寒冷を兄生じた洟、管路82を通って上塔
5に導かれる。一方下塔8の頂部に貯留された冨窒3に
准はぽ路88を曲って液体空気過冷脚器ld内に導入・
冷却された偵、V略84から上塔5の上部へ導かれる。In addition, the liquid air that has been coarsely distilled as described above in the lower tower 8 is transferred to the pipe line 2.
8 into the liquid air subcooler lO. After being cooled, the line 29. The expansion valve 11 leads to the @2 condenser 2 installed at the top of the lower column 8, and the condenser 12 leads to the lower column 8.
The solid air is gasified by heat exchange with Tominitoshi gas inside. The resulting gaseous air enters the expander 18 through the nv line f'IO, 81, where it is led to the upper tower 5 through the pipe 82 where it is cooled. On the other hand, the nitrogen 3 stored at the top of the lower tower 8 is introduced into the liquid air supercooling leg unit ld through the passage 88.
The cooled reconnaissance vessel is led to the upper part of the upper tower 5 from V 84.
上塔5で!留分離され、底部に貯留された低純度の冨醗
素液は、上塔5の底部最下端より抽出され、V路85を
通して附化器lRへ導(。At Upper Tower 5! The low-purity aqueous solution that has been distilled and stored at the bottom is extracted from the lowermost end of the bottom of the upper column 5 and led to the admixture reactor 1R through the V line 85.
必l伊イヒm18内で若干湿原回復した低純度富窒素ガ
スは丈に管路86i7って可逆式熱交換器4へ導入芒れ
、該熱交換&g4内で大きく温度回復する。The low-purity nitrogen-rich gas, which has been slightly recovered in the wetland area, is introduced into the reversible heat exchanger 4 through the pipe 86i7, and its temperature is greatly recovered in the heat exchanger 4.
次いで!路37から外部へ製品酸素として回収される。Next! It is recovered as product oxygen to the outside through line 37.
ところで上目1の如きヤ素製曲方法においては、下塔8
で租梢留された論体窒素(圧力約4.8ata)をいっ
たん膨張弁11で約2.2aLaiで低圧化し、この偵
膨慟模18で約1.2〜1.8ataに低下する(いわ
ゆる低圧タービン方式で何なう)ことによシプロセス保
冷用の摩冷を発生させている為、鯵張al1台当シの駆
動効率はあまシ良(ない。それ故、必要且つ十分な寒冷
量を得る為KFiどうしても膨張[11Bのt!置台数
が多(なシ、その分動労費が高くなる。又上記の々口〈
下塔8で租精留された液体空9!cは膨張弁11.膨張
機1Bを経た後、全て上塔5内で上昇ガスとなってしま
うので、上塔5における全還流f&は、その公営に絶対
的不足状6にある。こうした還流液の絶対的不足状紡に
伴い上塔6内での酸素成分と窒雪敗分の分離効率にも自
ずと制@があシ、従って精留効率にも限界があった。こ
うした動力費の高騰中精留効率の限界性−製品酸素の製
造コストの低減化を図る上で依然として律速となってい
た。By the way, in the Yame bending method as shown in the upper part 1, the lower tower 8
The pressure of the distilled logical nitrogen (approximately 4.8 ata) is reduced to approximately 2.2 ata by the expansion valve 11, and then reduced to approximately 1.2 to 1.8 ata by the expansion valve 18 (so-called Because the low-pressure turbine system generates friction for cold storage in the process, the drive efficiency of one AHARI AL unit is not very good.Therefore, the necessary and sufficient amount of refrigeration is In order to obtain KFi expansion [11B's t!
Liquid air 9 rectified in the lower tower 8! c is an expansion valve 11. After passing through the expander 1B, all of the gas rises in the upper tower 5, so the total reflux f& in the upper tower 5 is in a state of absolute shortage 6. Due to this absolute shortage of reflux liquid, the separation efficiency of oxygen components and nitrogen and snow waste in the upper column 6 was naturally limited, and therefore there was a limit to the rectification efficiency. Amid such rising power costs, the limitations of rectification efficiency remained the rate-limiting factor in reducing the production cost of product oxygen.
本発明はこうした事情に着目してなされたものでその目
的とするところは、膨張機の駆動効率を高めて動力費を
節減すると共に還流液の減少による上塔内での酸素成分
と蟹素成分の分離効率の低下を補充して精留効率を高め
ることにょシ、製品酸素の製造コストを低減しようとす
るにある。The present invention was made in view of these circumstances, and its purpose is to increase the drive efficiency of the expander to reduce power costs, and to reduce the amount of oxygen and crab components in the upper column by reducing the reflux liquid. The aim is to compensate for the decrease in separation efficiency and increase the rectification efficiency, thereby reducing the production cost of the oxygen product.
しかしてこの様な目的を達成し得た本発明の空気分離方
法とは、上塔底部の@lコンデンサにて一部液化せしめ
九原料空気を気体空気と液体空気とに気緻分醸し、准体
空気はl!に冷却して上塔に導入してsNmとなすと共
に、気体空電は2分して一方を膨張機にかけて低圧化し
且つ寒冷を発生させた後、上塔に導入して麟上塔の上昇
ガスとなし、他方を下塔に導入して下塔の上昇ガスとな
し、前!re下塔IJiI都で得た高窒素ガスを上塔の
中間部よシ抜き出した混合流体と熱交換させることによ
りa冨屋素ガスを冷却液化せしめて上塔上部からのff
1tit液となす一方、前記混合流体を蒸発ガス化して
上塔に、戻して廐上堪の上昇ガスとなす様にした点に要
旨を44−するものである。However, the air separation method of the present invention, which has achieved these objectives, involves partially liquefying the raw material air in the @l condenser at the bottom of the upper tower, atomizing the raw material air into gaseous air and liquid air, and separating the Body air is l! At the same time, the gas static electricity is divided into two parts and one side is applied to an expander to lower the pressure and generate refrigeration, and then introduced into the upper tower to reduce the rising gas in the upper tower. and the other is introduced into the lower tower and used as the rising gas of the lower tower, before! By exchanging heat with the mixed fluid extracted from the middle part of the upper tower, the high nitrogen gas obtained in the lower tower IJII is cooled and liquefied to liquefy the Tomiya gas, which is then discharged from the upper part of the upper tower.
The main point is that the mixed fluid is evaporated into a gas and returned to the upper tower to form a rising gas at the top.
以下本施例図面に基づき本発明の桐底及び作用効果を駅
明するが、下紀賽施例は単に一代表例に過ぎないもので
あって、前・後記の趣旨に沿って適宜f史して賽施し俸
ることは冒うまで4ない。The paulownia bottom and the effects of the present invention will be explained below based on the drawings of this embodiment, but the lower embodiment is merely a representative example, and the history will be explained as appropriate in accordance with the spirit of the above and below. 4 It is impossible to give alms until you commit a crime.
第2図は本発明の全低圧式空気分離方法の系統図を示し
、第1図の従来例と基本的11放は同一であり、同−構
成のもOKは同一の符号を付し、その説明は省略する3
、以下本実施例の特徴とする構成を中心に説明する。Figure 2 shows a system diagram of the all-low-pressure air separation method of the present invention.The basic 11 air separation methods are the same as those of the conventional example in Figure 1, and those with the same configuration are given the same symbols. I will omit the explanation 3
The following description will focus on the configuration that characterizes this embodiment.
上塔50底部の@1コンデンサ6で一部液化した原料空
気は1[’CJl&分離器7で気体空気と液体空電に気
液分離される。この気体空気を2分して原料空気に対す
る流量比で80憾の気体空気(圧力的4.8〜4.4
aha )を管路24’、Illから膨張機18に直接
導入して圧力的1.2〜1Jata[1で低圧化し且つ
寒冷を発生させ友後、管路82から上塔すに導入する。The feed air partially liquefied in the @1 condenser 6 at the bottom of the upper tower 50 is separated into gas-liquid into gaseous air and liquid static electricity in the separator 7. This gaseous air is divided into two parts, and the flow rate ratio to the raw material air is 80% (pressure: 4.8 to 4.4).
aha) is directly introduced into the expander 18 through the pipe 24', Ill, and reduced in pressure to 1.2 to 1 Jata[1], and after generating refrigeration, is introduced into the upper tower through the pipe 82.
このalK本WM例では寒冷の発生をいわゆる高圧ター
ビン方式で行なうので、膨張機1台当シの寒冷発生量は
多(なる。従ってw張機18の駆動効率は良くなり、そ
の分動カ費を節減することができる。In this alK WM example, the cold generation is performed by a so-called high-pressure turbine system, so the amount of cold generation per expander is large. Therefore, the drive efficiency of the w expansion machine 18 is improved, and its differential cost is can be saved.
又本実施偶においても上記気体空気を除く原料空気は、
全て上塔6に導入され、還流液とされている。即ち気液
分離器7で生じえ液体空気は更に液体空気過冷却器lO
で冷却し友後、管路ICから上塔6に導入している。又
気液分S器7で生じた気体空気は前述の如き寒冷発生用
の気体空気を除く全量を下塔8に導入して、底部に液体
空気を、頂sK冨菫嵩ガスを侮る。そして液体空気は、
管路28を通して液体空気過冷却器1Gに導入・冷却さ
れた後、管路2 F’から上塔5に導入する一方、冨鼠
素ガスは管路42から熱交換器14へ導入し、該熱交換
−14献上塔6の中間部より抜き出した酸素及び窒素成
分混合流体と熱交換させて冷却液化し、W!Kn富窒s
f&を管路48を通して液体空気過冷却器10に導入・
冷却した後、管路84から上塔5に導入している。従っ
て上塔5における迩tN#全体の流量としては従来例と
変わらないが、下M1の釦〈特有のslI成及び作用に
よシ上塔5の精留@重力;太き(異なる。即ち熱交換器
14では上述の如(管路42かダ瘍窒素ガスの液化を行
なう一方、管路4Bからの酸素及び窒素成分混合流体の
うち窒素成分のガス化も同時に行なうもので69、伏動
変化して得られ九窒素ガス成分を含む混合流体を再び上
塔5の中間部へ戻すようKしている。従って熱交換器1
4で窒素成分がガス化される分だけ上塔5内の酸素と窒
素の分離が促進されることになシ、精留効率は高まる。Also in this example, the raw air other than the above gaseous air is
All of the liquid is introduced into the upper column 6 and used as a reflux liquid. That is, the liquid air generated in the gas-liquid separator 7 is further transferred to the liquid air supercooler lO.
After cooling, it is introduced into the upper tower 6 through conduit IC. Further, the entire amount of the gaseous air generated in the gas-liquid separator 7 is introduced into the lower column 8, excluding the gaseous air for generating cold as described above, to provide liquid air at the bottom and sK voluminous gas at the top. And liquid air is
After being introduced into the liquid air supercooler 1G through the pipe 28 and cooled, it is introduced into the upper tower 5 through the pipe 2F', while the nitric acid gas is introduced into the heat exchanger 14 through the pipe 42, and the Heat exchange-14 Heat exchange with the oxygen and nitrogen component mixed fluid extracted from the middle part of the donation tower 6 to cool and liquefy W! Kn rich nitrogen s
f& is introduced into the liquid air supercooler 10 through the line 48.
After cooling, it is introduced into the upper tower 5 through a pipe 84. Therefore, the overall flow rate of tN# in the upper column 5 is the same as in the conventional example, but the rectification @gravity of the upper column 5 is thicker (different. In the exchanger 14, as described above (while the conduit 42 liquefies the DUSC nitrogen gas, it also simultaneously gasifies the nitrogen component of the oxygen and nitrogen component mixed fluid from the conduit 4B). The mixed fluid containing the nine nitrogen gas components obtained by
The separation of oxygen and nitrogen in the upper column 5 is promoted to the extent that the nitrogen component is gasified in step 4, and the rectification efficiency is increased.
本発明の空気分離方法は概略以上の様に構成されるが、
要は紗張欄をいわゆる高圧タービン方式で駆動すると共
に、還流液の絶対的不足にょる精留不足をiigガス化
促進手段の付加により補うようにしたので、膨張機の駆
動効率を高めて動力費を節減できるようKなシ、′シか
も精留効率を高めること≠工で、きるようにな)、低純
度の製品酸素をよシ経済的FC製造することができる様
になった。The air separation method of the present invention is roughly configured as described above,
In short, the gauze column is driven by a so-called high-pressure turbine system, and the lack of rectification caused by the absolute lack of reflux liquid is compensated for by adding an IIG gasification promotion means, which increases the drive efficiency of the expander and increases the power output. In order to save costs, it has become possible to produce low-purity product oxygen more economically by increasing the rectification efficiency.
又空気分離方法の運転に要する動力を低減することによ
りいわゆる嘗エネルギー化を図ることができるので、二
ネVギーの節約が強く叫ばれている今日、こうした面か
らの産業界に果たす役割も大きい。In addition, by reducing the power required to operate the air separation method, so-called energy conversion can be achieved, so in today's world where there is a strong demand for saving energy, the industry can play a large role in this aspect. .
第1図は従来の#t1#命方法全方法系統図、第2因は
本発明の#I!lit造方法を例示する′lk統図であ
る。
4・・・可逆式熱交換器 5・・・低圧塔6・・・@1
コンデンサ 7・・・気液分離器8・・・中圧塔
9・・・液化器lO・・・液体空電過冷却器
12−・第2コンデン? 18・・・膨張機U・・・
熱交換器Figure 1 is a systematic diagram of the conventional #t1# life method, and the second cause is the #I of the present invention! It is a 'lk system diagram illustrating the lit construction method. 4...Reversible heat exchanger 5...Low pressure column 6...@1
Condenser 7... Gas-liquid separator 8... Medium pressure column
9...Liquifier lO...Liquid pneumatic supercooler 12-・Second condenser? 18... Expander U...
Heat exchanger
Claims (1)
原料′4!気を低圧塔底部の第1コンデンサに導き、麟
コンデンサで低圧塔の液体#素と熱交換し、該准体I!
Ilftgtl−#侘させ低圧塔の上昇ガスとなすと共
にIM料空気を沸、Q以下のIMJfに過冷却して一部
を液イヒせしめ、前記上昇ガス・を低圧塔上部からの還
儒液に接触させて精留し、これにより前記低任塔底を市
に貯溜される還fM液を冨−素液となす一方、前記喉化
空気を中圧塔に導入気化して中圧塔の上昇ガスとなし中
圧i%頭頂部第2コンデンサーで俸られる還流液に接触
せしめて柄留し、中圧jil潰部で冨室嵩ガスオ侶ると
共に前記Jl!流液は中圧塔底部で液体空電となるよう
にした空気分離方法において、低圧場底邪の第1コンデ
ンサにて一部液化せしめた原料空電を気体空気と液体空
気とに気液分路し、液体空9tは更に冷却して低圧塔上
部に導入して題流液となすと共に、気体空′*cは2分
して一方を膨張機にかけて低圧化し且つ璋冷を発生させ
九後、低圧塔に導入して該低圧塔の上昇ガスとなし、他
方を中a−嗜に導入して中圧塔の上昇ガスとなし、前記
中仕塔掘都で得た富窒素ガスを低圧塔の中間部よシ抜き
出した酸素及び窒素成分混合流体と熱交換させることに
より該富窒素ガスを冷却液化せしめて低圧塔上部からの
還流液となす一方、前記混合流体を然発ガス化して低圧
塔に戻しして該低圧塔の上昇ガスとなすことを41i?
僧とする空気分離方法。(1) Raw material '4 which was compressed by pressure w3 machine and cooled by heat exchanger! The gas is led to the first condenser at the bottom of the low pressure column, where it exchanges heat with the liquid # element in the low pressure column, and the quasi-form I!
Ilftgtl-# Boil the IM feed air as it becomes the rising gas of the low-pressure column, subcool it to IMJf below Q to partially liquefy, and bring the rising gas into contact with the recirculating liquid from the upper part of the low-pressure column. As a result, the low duty tower bottom is converted into a concentrated liquid from the recycled fM liquid stored in the city, while the throated air is introduced into the medium pressure column and vaporized to produce the rising gas of the medium pressure column. The medium pressure i% top of the head is brought into contact with the reflux liquid discharged by the second condenser, and the handle is fixed, and the Tomimuro gas is turned off at the medium pressure jil collapse part, and the above Jl! In an air separation method in which the flowing liquid becomes liquid static at the bottom of the medium-pressure column, the raw static electricity, which is partially liquefied, is separated into gaseous air and liquid air in the first condenser at the bottom of the low-pressure field. 9 tons of liquid air is further cooled and introduced into the upper part of the low-pressure column to form a liquid, while the gas air '*c is divided into two parts and one side is applied to an expander to lower the pressure and generate cooling. , the nitrogen-rich gas obtained in the above-mentioned Nakashito-Koto is introduced into the low-pressure column to serve as the rising gas of the low-pressure column, and the other is introduced into the middle a-tube to serve as the rising gas of the medium-pressure column. The nitrogen-rich gas is cooled and liquefied by exchanging heat with the mixed fluid of oxygen and nitrogen components extracted from the middle part of the column to form a reflux liquid from the upper part of the low-pressure column, while the mixed fluid is spontaneously gasified and added to the low-pressure column. 41i?
Air separation method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2164782A JPS58138974A (en) | 1982-02-12 | 1982-02-12 | Method of separating air |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2164782A JPS58138974A (en) | 1982-02-12 | 1982-02-12 | Method of separating air |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58138974A true JPS58138974A (en) | 1983-08-18 |
JPS6357714B2 JPS6357714B2 (en) | 1988-11-11 |
Family
ID=12060841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2164782A Granted JPS58138974A (en) | 1982-02-12 | 1982-02-12 | Method of separating air |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58138974A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62162876A (en) * | 1985-10-04 | 1987-07-18 | ザ・ビ−オ−シ−・グル−プ・ピ−エルシ− | Gas-liquid catalytic method and device |
-
1982
- 1982-02-12 JP JP2164782A patent/JPS58138974A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62162876A (en) * | 1985-10-04 | 1987-07-18 | ザ・ビ−オ−シ−・グル−プ・ピ−エルシ− | Gas-liquid catalytic method and device |
Also Published As
Publication number | Publication date |
---|---|
JPS6357714B2 (en) | 1988-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7355978B2 (en) | Cryogenic air separation equipment | |
US5251451A (en) | Multiple reboiler, double column, air boosted, elevated pressure air separation cycle and its integration with gas turbines | |
US5257504A (en) | Multiple reboiler, double column, elevated pressure air separation cycles and their integration with gas turbines | |
JP2865274B2 (en) | Cryogenic distillation of air for the simultaneous production of oxygen and nitrogen as gaseous and / or liquid products | |
JPS61110872A (en) | Manufacture of nitrogen | |
US11353262B2 (en) | Nitrogen production method and nitrogen production apparatus | |
US20090320520A1 (en) | Nitrogen liquefier retrofit for an air separation plant | |
CN103988036B (en) | For the method and apparatus by separating air by cryogenic distillation | |
KR970075810A (en) | High Purity Nitrogen Generator and High Purity Nitrogen Generation Method | |
JPH102664A (en) | Low temperature distillating method for air flow of compressed raw material for manufacturing oxygen products of low purity and high purity | |
CA2082674C (en) | Efficient single column air separation cycle and its integration with gas turbines | |
JPH06241649A (en) | Method and device for manufacturing gaseous product under at least one pressure and at least one liquid by air rectification | |
US4895583A (en) | Apparatus and method for separating air | |
CN1163386A (en) | Process and device for producing nitrogen | |
JPH01502446A (en) | Compander Kinji LOXBOIL air distillation | |
JP3190013B2 (en) | Low temperature distillation method of air raw material for producing nitrogen | |
CN104296500A (en) | Device and method for cryogenic separation and purification of nitrogen and liquid ammonia | |
CN102788476B (en) | Air separation technology for mainly producing high-purity nitrogen and accessorily producing liquid oxygen by using cryogenic air separation device | |
RU2540032C2 (en) | Method and device for production of liquid nitrogen by air decomposition at low temperature | |
JPH1163810A (en) | Method and device for manufacturing low purity oxygen | |
JPS58138974A (en) | Method of separating air | |
CN112781321A (en) | Air separation device with nitrogen liquefier and method | |
CN112066643A (en) | Air separation process with reduced energy consumption | |
JP2859663B2 (en) | Nitrogen gas and oxygen gas production equipment | |
JPS61276680A (en) | Method of liquefying and separating air |