[go: up one dir, main page]

JPS58137265A - Method for manufacturing solar cell module - Google Patents

Method for manufacturing solar cell module

Info

Publication number
JPS58137265A
JPS58137265A JP57019356A JP1935682A JPS58137265A JP S58137265 A JPS58137265 A JP S58137265A JP 57019356 A JP57019356 A JP 57019356A JP 1935682 A JP1935682 A JP 1935682A JP S58137265 A JPS58137265 A JP S58137265A
Authority
JP
Japan
Prior art keywords
resin sheet
elements
thermoplastic resin
solar cell
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57019356A
Other languages
Japanese (ja)
Inventor
Kuniyoshi Omura
尾村 邦嘉
Akira Hanabusa
花房 彰
Yutaro Kita
祐太郎 北
Hiroyuki Kitamura
北村 外幸
Mikio Murozono
幹夫 室園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57019356A priority Critical patent/JPS58137265A/en
Publication of JPS58137265A publication Critical patent/JPS58137265A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/80Encapsulations or containers for integrated devices, or assemblies of multiple devices, having photovoltaic cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To arrange a photovoltaic element simply and accurately by bonding and fixing the element onto a transparent thermoplastic resin sheet through heat seal and enclosing the sheet into predetermined synthetic resin. CONSTITUTION:The transparent thermoplastic resin sheet 2 is set up onto a cover glass plate 1, and the photovoltaic elements 3 connected by lead wires 9 are disposed at accurate positions on the sheet so that light-receiving surfaces are directed to a glass surface. The temperature of the elements 3 is elevated by using a soldering iron 6, and one parts of the light-receiving surfaces are heat-sealed to the resin sheet 2. A thermoplastic resin sheet 2 and a synthetic sheet 5 are set up on the side reverse to the light-receiving surfaces of the elements 3, and pressed and heated. Accordingly, the photovoltaic elements 3 can simply be positioned accurately, and defective characteristics due to the movement of the elements can be removed completely.

Description

【発明の詳細な説明】 本発明は、太陽電池モジュールの製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a solar cell module.

従来、太陽電池の用途は、僻地用独立電源が主体であっ
た。したがって、太陽電池出力は数十ワットの′ものが
中心であり、モジュールの出力も十ワット以下のものが
ほとんどであった。
Conventionally, solar cells have been mainly used as an independent power source for remote areas. Therefore, the output of solar cells was mostly in the tens of watts, and the output of most modules was less than ten watts.

しかし、昨今太陽電池のコスト低下とともに、応用範囲
が大幅に広がり、大出力の太陽電池のシステムが建設さ
れるに至った。したがりて、それに応じそモジュール出
力も年々大きくなり、40〜60Wの太陽電池モジュー
ルが、製品の中心を成している。これらの大型モジュー
ルは、60枚もしくはそれ以上の光起電力素子より構成
されており、とれ等の素子を規則的に配列することは、
モジュール構成の重要な要素技術とな?ている。
However, recently, as the cost of solar cells has decreased, the range of applications has expanded significantly, and high-output solar cell systems have been constructed. Accordingly, the module output increases year by year, and 40 to 60 W solar cell modules are now the mainstay of products. These large modules are composed of 60 or more photovoltaic elements, and regularly arranging the elements such as strips requires
What are the important elemental technologies for module configuration? ing.

これに対し、素子移動を防ぐ目的で第1図4で示すよう
なスペーサが考えられ、一部実用化されそはいるが、ス
ペーサの作成に高額の費用がかかるため大半は作業者の
熟練にまか去れているというのが実態である。なお、第
1図中1はカバーガラス板、2は透明な樹脂、3は光起
電力素子、6は裏カバー板である。
In order to prevent element movement, a spacer as shown in Figure 1-4 has been considered, and although some are on the verge of being put into practical use, the high cost of creating spacers leaves most workers unskilled. The reality is that it is being ignored. In FIG. 1, 1 is a cover glass plate, 2 is a transparent resin, 3 is a photovoltaic element, and 6 is a back cover plate.

特に、充填用透明−樹脂で、光起電力素子を一体化する
工程において素子移動が生じ、その結果として素子間の
接触や重なりが生じ、素子の割れや素子間のショートに
よる太陽電池モジュールの特性不良が多発しており、そ
れを解決する手法が望まれていた。
In particular, during the process of integrating photovoltaic elements with transparent resin for filling, element movement occurs, resulting in contact and overlapping between elements, resulting in cracks in the elements and short-circuits between the elements, resulting in characteristics of the solar cell module. Defects occur frequently, and a method to solve them has been desired.

本発明は、これ等の問題を解決するために成されたもの
であり、さらに具体的にVえば、光起電力素子の表面温
度を上昇させることにより、上記素子を透明な熱可塑性
樹脂シートに熱融着させ、正確な素子配置を簡単に行う
方法を提供するものである。
The present invention was made to solve these problems, and more specifically, by increasing the surface temperature of the photovoltaic element, the above element is made into a transparent thermoplastic resin sheet. This provides a method for thermally fusing and easily arranging elements accurately.

次に、図示した実施例につき本発明を説明する。The invention will now be explained with reference to the illustrated embodiments.

ズ2図に示したカバーガラス板1上に、ガラス板と同寸
法に切断した透明な熱可塑性樹脂シート2、例えばポリ
ビニルブチラール樹脂(PVB )、酢酸ビニル−エチ
レン共重合樹脂(EVA)等のシートを設置し、その上
に、す1″′″−ド線で゛直列又は直並列に結線した光
起電力素子3を受光面が、ガラス面に向くように正確な
位置に配置する。配置した光起電力素子3の受光面7と
は反対面8よりハンダゴテ6を用いて同素子3の温度を
上昇させ、受光面の一部をガラス板1上に設置した透明
な熱可塑性樹脂シート2に熱融着させる。この際、同素
子3の受光面温度は、100°C≦T≦120″Cの範
囲で行うのが最も望ましい。5o″C≦T≦100°C
の温度領域では、同素子3を熱可塑性樹脂シート2に熱
融着させることは可能であるが、熱融着に時間がかかる
ため、作業能率の面で好ましくない。
A transparent thermoplastic resin sheet 2 cut to the same size as the glass plate, such as a sheet of polyvinyl butyral resin (PVB), vinyl acetate-ethylene copolymer resin (EVA), etc., is placed on the cover glass plate 1 shown in Figure 2. A photovoltaic element 3 connected in series or in series and parallel with a 1"'"-wire is placed thereon at an accurate position so that the light-receiving surface faces the glass surface. The temperature of the photovoltaic element 3 is raised using a soldering iron 6 from the opposite side 8 from the light-receiving surface 7 of the arranged photovoltaic element 3, and a part of the light-receiving surface is placed on a transparent thermoplastic resin sheet on the glass plate 1. 2. Heat fused. At this time, it is most desirable that the temperature of the light receiving surface of the element 3 be within the range of 100°C≦T≦120″C.5o″C≦T≦100°C
Although it is possible to heat-seal the element 3 to the thermoplastic resin sheet 2 in the temperature range of , it is not preferable in terms of work efficiency because heat-sealing takes time.

なお、50″C以下の温度領域に計いては、熱可塑性樹
脂シート2と素子3とは熱融着せず、同素子3の位置固
定は不可能である。また同素子3の光受光面温度が12
0°C<T≦200’Cとなる温度領域での熱融着は短
時間で熱融着できる反面、熱可塑性樹脂シート2が若干
変色して光透過率が低下することからこの温度領域で熱
融着を行うのはやはシ好ましくない。
Note that when measured in a temperature range of 50"C or less, the thermoplastic resin sheet 2 and the element 3 are not thermally bonded, and it is impossible to fix the position of the element 3. Furthermore, the temperature of the light-receiving surface of the element 3 is 12
Heat fusion in the temperature range of 0°C<T≦200'C can be done in a short time, but on the other hand, the thermoplastic resin sheet 2 will change color slightly and the light transmittance will decrease. It is no longer preferable to perform heat fusion.

素子3の受光面温讐が200”Cを越える温度領域で熱
融着を行った場合は、熱可塑性樹脂シート2が熱分解反
応を起こすため好ましくない。
If heat fusion is performed in a temperature range where the temperature of the light-receiving surface of the element 3 exceeds 200''C, it is not preferable because the thermoplastic resin sheet 2 will undergo a thermal decomposition reaction.

以上の理由から、素子3と熱可塑性樹脂シート2との熱
融着による固定は、同素子3の受光面温度が6o″C≦
T≦200°Cの温度範囲であり、1.00°C≦T≦
12o′Cの温度範囲で行うのが最も好ましい。なお第
2図中9は素子5間を直列接続するリード線である。
For the above reasons, when fixing the element 3 and the thermoplastic resin sheet 2 by heat fusion, the temperature of the light-receiving surface of the element 3 is 6o''C≦
The temperature range is T≦200°C, and 1.00°C≦T≦
Most preferred is a temperature range of 12o'C. Note that 9 in FIG. 2 is a lead wire that connects the elements 5 in series.

光起電力素子3を熱可塑性樹脂シート2に熱融着10で
固定後、第3図に示す様に同素子3の受光面と反対面上
に、上記熱可塑性樹脂シート2と同寸法の同樹脂シート
2、さらにその上に同熱可塑性樹脂シート2と同寸法に
切断した合成樹脂シート例えば、塩化ビニール、テトラ
等のシート6を順次設置する。このようにして形成され
た合成樹脂シート61、熱可塑性樹脂シート2、光起電
力電力素子3を封入することが出来る。
After fixing the photovoltaic element 3 to the thermoplastic resin sheet 2 by heat-sealing 10, as shown in FIG. A resin sheet 2 and a synthetic resin sheet 6 cut to the same size as the thermoplastic resin sheet 2, such as a sheet 6 made of vinyl chloride or tetra, are sequentially placed on the resin sheet 2. The synthetic resin sheet 61, thermoplastic resin sheet 2, and photovoltaic power element 3 thus formed can be encapsulated.

以上の方法により形成された本発明による太陽電池モジ
ュ゛−ルは、 (1)光起電力素子を熱可塑性樹脂シートにノ・ンダゴ
テ等で熱融着させるため、非常に簡単に光起電力素子を
正確な位置に固定することが可能となった。
The solar cell module according to the present invention formed by the above method has the following features: (1) Since the photovoltaic element is thermally fused to the thermoplastic resin sheet using a soldering iron or the like, the photovoltaic element can be formed very easily. It is now possible to fix it in a precise position.

(It)光起電力の素子移動が完全になくなり、素子間
の接触、素子の重なり等による太陽電池モジュールの特
性不良が一掃された。
(It) Element movement of photovoltaic force is completely eliminated, and defects in characteristics of the solar cell module due to contact between elements, overlapping of elements, etc. are completely eliminated.

@)素子移動に伴うリード線の素子面からの剥離が一掃
された。
@) Peeling of the lead wire from the element surface due to element movement has been completely eliminated.

(財)光起電力素子の位置固定が、スペーサ等を使用す
る場合に比べ、非常に安価に行える様になった0 (v)光起電力素子の固定に、スペーサ、テープ等の他
の部材を樹脂内に封入する必要が無くなり、固定用部材
の劣化9分解等の心配が無くなった。
(Foundation) It has become possible to fix the position of photovoltaic elements at a much lower cost than when using spacers, etc.0 (v) Other materials such as spacers and tape can be used to fix photovoltaic elements. It is no longer necessary to encapsulate the fixing member in resin, and there is no need to worry about deterioration or decomposition of the fixing member.

等の著しい利点を持っている。It has significant advantages such as

以上に説明した様に、本発明により素子移動に伴う特性
不良が完全に一掃され、特性不良の極めて少ないすぐれ
た太陽電池が製造できる。
As explained above, according to the present invention, characteristic defects caused by element movement can be completely eliminated, and excellent solar cells with extremely few characteristic defects can be manufactured.

4、図面の説明 第1図はスペーサを用いた従来の太陽電池モジュールを
示す分解図、第2図はノ・ンダゴテを用いた太陽電池素
子の熱融着工程の側面図、第3図は本発明による太陽電
池モジュールの完成断面図を示す。
4. Explanation of the drawings Figure 1 is an exploded view showing a conventional solar cell module using spacers, Figure 2 is a side view of the thermal fusing process of solar cell elements using non-nandagote, and Figure 3 is an exploded view of a conventional solar cell module using spacers. 1 shows a completed sectional view of a solar cell module according to the invention.

2・・・・・・透明は熱可塑性樹脂シー上、3@・・・
・Φ太陽電池素子、10・・・・・・融着面。
2...Transparent is on thermoplastic resin sheet, 3@...
・Φ Solar cell element, 10...Fusion surface.

Claims (3)

【特許請求の範囲】[Claims] (1)熱融着により、光起電力素子を透明な熱可塑性樹
脂シートに接着固定した後、所定の合成樹脂中に封入す
ることを特徴とする太陽電池モジュールの製造方法。
(1) A method for manufacturing a solar cell module, which comprises adhering and fixing a photovoltaic element to a transparent thermoplastic resin sheet by heat fusion, and then encapsulating it in a predetermined synthetic resin.
(2)前記熱可塑性樹脂シートが、ポリビニルブチラー
ルまたは酢酸ビニル−エチレン共重合体からなる特許請
求の範囲第1項に記載の太陽電池モジュールの製造方法
(2) The method for manufacturing a solar cell module according to claim 1, wherein the thermoplastic resin sheet is made of polyvinyl butyral or vinyl acetate-ethylene copolymer.
(3)前記光起電力素子の表面温度を60°C≦T≦2
00°Cの範囲に保持して光起電力素子を前記熱可塑性
樹脂シートに熱圧着させた特許請求の範囲第1項に記載
の太陽電池モジュールの製造方法。
(3) The surface temperature of the photovoltaic element is 60°C≦T≦2
2. The method of manufacturing a solar cell module according to claim 1, wherein the photovoltaic element is thermocompression bonded to the thermoplastic resin sheet while maintaining the temperature in the range of 0.000°C.
JP57019356A 1982-02-09 1982-02-09 Method for manufacturing solar cell module Pending JPS58137265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57019356A JPS58137265A (en) 1982-02-09 1982-02-09 Method for manufacturing solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57019356A JPS58137265A (en) 1982-02-09 1982-02-09 Method for manufacturing solar cell module

Publications (1)

Publication Number Publication Date
JPS58137265A true JPS58137265A (en) 1983-08-15

Family

ID=11997091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57019356A Pending JPS58137265A (en) 1982-02-09 1982-02-09 Method for manufacturing solar cell module

Country Status (1)

Country Link
JP (1) JPS58137265A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508205A (en) * 1994-03-29 1996-04-16 Amoco/Enron Solar Method of making and utilizing partially cured photovoltaic assemblies

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086992A (en) * 1973-12-03 1975-07-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086992A (en) * 1973-12-03 1975-07-12

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508205A (en) * 1994-03-29 1996-04-16 Amoco/Enron Solar Method of making and utilizing partially cured photovoltaic assemblies

Similar Documents

Publication Publication Date Title
US5733382A (en) Solar cell modules and method of making same
KR101476478B1 (en) Solar cell module manufacturing method
US5498297A (en) Photovoltaic receiver
US4118249A (en) Modular assembly of a photovoltaic solar energy receiver
EP2993708B1 (en) Laser welding method for connecting crystalline silicon solar cells
US20040112424A1 (en) Solar cell assembly, and photovoltaic solar electric generator of concentrator type
EP0710991A1 (en) Group of solar cell elements, and solar cell module and production method thereof
US20090314330A1 (en) Photovoltaic module
JPS6032352A (en) Solar battery module
US20040112423A1 (en) Solar cell, solar cell production method, and solar battery module
JPH07142756A (en) Solar battery module and its manufacture
JPS58137265A (en) Method for manufacturing solar cell module
JPS60214550A (en) Solar cell module
JP2009111122A (en) Solar cell module and manufacturing method thereof
JPS5848971A (en) solar cell module
KR20240128076A (en) Monolithic film for solar cell electrode assembly
CN117153918A (en) Packaging method for flexible solar cells with same-plane electrodes
JPS60250946A (en) Sheet material
JP3122536B2 (en) Solar cell module
JP2641794B2 (en) Method of manufacturing solar cell module
JPH10335686A (en) Flexible solar cell module
JPH0445256Y2 (en)
JP2703841B2 (en) Method of manufacturing solar cell module
JP2005136128A (en) Solar cell module sealing material and method for manufacturing solar cell module using the same
JPS62123782A (en) Solar battery module