[go: up one dir, main page]

JPS58135690A - Vertical oscillation type semiconductor laser - Google Patents

Vertical oscillation type semiconductor laser

Info

Publication number
JPS58135690A
JPS58135690A JP17875381A JP17875381A JPS58135690A JP S58135690 A JPS58135690 A JP S58135690A JP 17875381 A JP17875381 A JP 17875381A JP 17875381 A JP17875381 A JP 17875381A JP S58135690 A JPS58135690 A JP S58135690A
Authority
JP
Japan
Prior art keywords
laser
active layer
wavelength
light
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17875381A
Other languages
Japanese (ja)
Inventor
Mutsuro Ogura
睦郎 小倉
Takafumi Yao
隆文 八百
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP17875381A priority Critical patent/JPS58135690A/en
Publication of JPS58135690A publication Critical patent/JPS58135690A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • H01S5/18347Mesa comprising active layer

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To form a wavelength selecting vertical type light resonator and thus obtain a vertical oscillation type semiconductor laser available to an integration and a high output with stable oscillation wavelength, by growing two kinds of thin film with different dielectric constants alternately above and under an active layer. CONSTITUTION:A GaAlAs-GaAs multilayer film for which a molecular beam epitaxy (MBE) technique is used is decided as the material, and the active layer 3 is sandwiched between interference type reflection layers 2 and 4, and forms a light cavity vertically to an N type GaAs substrate 5. By keeping the upper electrode 1 at the potential of approx. 2V in opposition to the lower electrode 2, electrons and hole current are supplied into the active layer 3 and then re- coupled resulting in a light emission. Among emission spectrums, only those of wavelength 0.8mum are confined in the upper and lower reflection layers 2 and 4 into the state of laser oscillation. A part of the laser light is vertically irradiated from a window provided at the center of the upper electrode 1.

Description

【発明の詳細な説明】 本発明は、半導体レーザの高集積化、大出力化を可能と
する垂直発振型半導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vertical oscillation type semiconductor laser that enables higher integration and higher output of semiconductor lasers.

半導体レーザの光キヤビテイ構造として最初IIc提案
されたのは、労關面を用いるファプリベロー痘であるが
、この構造は集積化が困難であること、また、共*aに
波長選択性がないために1発振波長が不安定であること
等の欠点があった@これらの欠点を補うために、先導波
路にエツチング等で周期W造を作や、ブラッグ反射を行
なわせるIIMが提案されている。しかし、半導体レー
ザ内の光の波長は、媒質の屈折率だけ短縮されるために
、加工積度の要求が大きくホトレジスト技術等を用いて
実際に作成された素子の反射効率も大きくないという問
題があった。また、従来の半導体レーザは、すべて端間
からレーザ光が出射される構造を持つために出射端の面
積が小さく、レーザ光の出力エネルギーが小さいこと、
集積化した場合も二次元アレイ構造は取れない等の問題
があった。
The first IIc optical cavity structure proposed for semiconductor lasers was Fabry-Bello's, which uses a laborator surface, but this structure was difficult to integrate and also lacked wavelength selectivity in the laser beam. It has drawbacks such as instability of the single oscillation wavelength. To compensate for these drawbacks, IIM has been proposed in which a periodic W structure is formed in the leading waveguide by etching or the like, and Bragg reflection is performed. However, since the wavelength of light in a semiconductor laser is shortened by the refractive index of the medium, there is a problem that the processing volume is large and the reflection efficiency of elements actually created using photoresist technology is not large. there were. In addition, all conventional semiconductor lasers have a structure in which the laser beam is emitted from between the ends, so the area of the emission end is small, and the output energy of the laser beam is small.
Even when integrated, there are problems such as the inability to obtain a two-dimensional array structure.

本発明は、これらの諸問題を解決するためになされたも
ので、誘電率の異なる二種類の薄膜を、活性層の上下に
交互に成長させることにより、波長選択性を持った垂直
型光共振器を形成し、発振波長が安定で、集積化、大出
力化が可能な垂直発振型半導体レーザを提供するもので
ある・ 以下、本発明について説明する。第1図は本発明による
実施例の構成略図である。本発明による垂直発振型レー
ザけ、MBE (molecular beamepi
taxy )技術を用いたGaAlムB−Gaム8梁多
層展を材料としたものであり、上m電極1、上部干渉型
反射層2、活性層8、下部干渉型反射層4、n” Ga
As基板5、下部電極6から構成されている。第7図に
示すように、活性層8の上下は干渉型反射層2.4には
さまれており、n” GaAr;基板5に対して垂直に
光キャビティを形成する。
The present invention was made to solve these problems, and by growing two types of thin films with different dielectric constants alternately above and below the active layer, vertical optical resonance with wavelength selectivity is achieved. The present invention will be described below. FIG. 1 is a schematic diagram of the configuration of an embodiment according to the present invention. The vertical oscillation type laser beam according to the present invention, MBE (molecular beam
It is made of a GaAl B-Ga 8-beam multilayer structure using the taxy (taxy) technology, and includes an upper m electrode 1, an upper interference type reflective layer 2, an active layer 8, a lower interference type reflective layer 4, and an n'' Ga
It is composed of an As substrate 5 and a lower electrode 6. As shown in FIG. 7, the active layer 8 is sandwiched between upper and lower interference type reflective layers 2.4 to form an optical cavity perpendicular to the n''GaAr; substrate 5. As shown in FIG.

11層2図に、第1ailで示した垂直発振レーザのバ
ンド図を示す。上部および下部干渉型反射膜2弘は、そ
れぞれレーザ光(Qt声m)のhキャビティ波長に対応
する60n腫のGaAg薄膜2xs41と66層mtの
Ga@ 、?、ムlea、ム8層2m、 4mとの数十
層程度の積層構造を持つ。また、活性層8は、それぞれ
厚さ3声ml!度のP−GaAs層81およびn−Ga
As層33から構成される。上部電極1を下部電極2に
*して、2弘程度電位に保持することにより、電子およ
び正孔電流がそれぞれPIIiおよびn型の上部および
下部反射層を通じて中央の活性層に供給され、再結合し
て発光する0発光スペクトラムのうち、波長at声墓の
もののみは、上部および下部反射層8.4により閉じ込
められ、レーザ発振状態となる。レーザ光の一部は、上
部電極1の中央に設けられた窓から垂直に放射される〇 第2図においては、上部干渉型反射層Sは、ノンドープ
であっても導電性は訪けられな−。
11 Layer 2 shows a band diagram of the vertical oscillation laser shown in the first rail. The upper and lower interference reflective films 2 are a 60 nm GaAg thin film 2xs41 and a 66 layer mt Ga@, respectively, corresponding to the h cavity wavelength of the laser light (Qt voice m). It has a laminated structure of about several dozen layers, with 8 layers of 2m and 4m. In addition, each active layer 8 has a thickness of 3 ml! P-GaAs layer 81 and n-Ga
It is composed of an As layer 33. By changing the upper electrode 1 to the lower electrode 2 and keeping it at a potential of about 2 hiro, electron and hole currents are supplied to the central active layer through the PIIi and n-type upper and lower reflective layers, respectively, and are recombined. Of the zero emission spectrum emitted by the laser, only the wavelength at the lowest wavelength is confined by the upper and lower reflective layers 8.4, resulting in a laser oscillation state. A part of the laser light is emitted vertically from the window provided in the center of the upper electrode 1. In Fig. 2, the upper interference type reflective layer S does not exhibit conductivity even if it is non-doped. −.

また、第2図において、活性層8を省略し、上部および
下部反射層におけるQ&A8層j!is 41を発光領
域として利用することも可能である。
In addition, in FIG. 2, the active layer 8 is omitted, and the Q&A 8 layers j! in the upper and lower reflective layers are omitted. It is also possible to utilize IS 41 as a light emitting region.

t/83図に、上記干渉型薄膜層の重畳回数と、これら
の反射層で両端をはさまれた光共振器のQIIIIII
Kおける反射損失とを示す。これらの反射層は、一層が
40層mのG&Aa層とu niiのGa@、yムl(
1、sムB層から構成されており、重畳回数1回   
1につ龜反射膜の厚みは(1/3μl増加する。図中の
横破線はGJLA B と空気との境界による反射を用
いた7アブリペロ型共振器の損失レペλを示す・損失曲
線との交点の位置から明らかなように、本反射型干渉層
が、GaAs−空気界面の反射率を示すには、約70層
、すなわち、t3声朧の厚さの干渉膜が活性層の上下に
必要であることが分゛かる◎活性層の厚さを≦7冨、順
方向通電時の平均利得を≦oocm″″1と仮定すると
、その利得は、図中の横*aiiで、モすレベルとなる
。損失曲線と約60層目の位置で交叉していることから
本垂直発振レーザは、60層、すなわち、約J:j声鳳
 の反射層を≦7冨の活性層の上下に形成することkよ
り、発振可能である−ことが分る。第≠WJは、上記干
渉型薄膜層を60層用いて光共振器を構成した場合の、
光共狐器損失の発振波長依存性を示す。光リソグツ7技
術を用いた平面ブラッグ回折導波路に比較して、薄い反
射層にて高い回折効率および波長選択性を持つことが分
る。IIS図は、前記垂直発振蓋レーザを用いて、Ga
ム8半絶縁性基板上にレーザマトリクスを作成した実施
例である0本実施例のレーザマトリクスは、上部電極1
1反射層8,4、活性層8からなるレーザ本体L8,4
、n”導電層7、素子分離用絶縁膜8およびGa11g
半絶縁性基板9とから構成されて−る。上部電極lとn
”lli層〕との組み合わ破を選ぶことにより、上部電
極1とn”導電層7とが交叉した場所でのレーザ本体2
.8.4を順方向通電することがで書ゐ。従って、n0
導電層7の任意の本数に負電圧を加えながら上部電極1
を順次アース電位に保持してゆくと、水平方向のレーザ
アレイの発光バタンを変化させながら順次垂直に掃引す
ることができる。本実施例はtxtのマトリクスを形成
した例であるが、適当な駆動装置を使用して、例えば、
文字発生器に用≠ることができる。また、lQコ弘列の
一直線状のレーザアレイを用いて高速ラインプリンタあ
るいは、2!&×2j6のレーザアレイを用いることに
よシ、画像パターン発生器や、立体ホログラム発生器を
構成することができろ。本発明の構造を持つ垂直発振型
半導体レーザの技術的な・利点を列挙すると、I レー
ザの出射方向を基板に垂直にしたために I −1出射光の面積を大きくすることができるた八 
数1以上の大出力レーザが作成できる。
The t/83 diagram shows the number of times the interference type thin film layer is overlapped and the QIII of the optical resonator whose ends are sandwiched between these reflective layers.
The reflection loss at K is shown. These reflective layers consist of a G&Aa layer with a thickness of 40 m and a unii Ga@, yml (
1. It is composed of SM B layer, and the number of superposition is 1.
The thickness of the reflective film increases by (1/3μl).The horizontal broken line in the figure shows the loss ratio λ of the 7 Abry-Pérot type resonator using reflection from the boundary between GJLA B and air. As is clear from the intersection of ◎Assuming that the thickness of the active layer is ≦7, and the average gain during forward current conduction is ≦oocm''''1, the gain is Since the loss curve intersects at about the 60th layer position, this vertical oscillation laser has 60 layers, that is, about J:j reflection layers above and below the active layer of ≦7 layers. From the formation k, it can be seen that oscillation is possible.No.
The dependence of optical resonance loss on oscillation wavelength is shown. It can be seen that the thin reflective layer has high diffraction efficiency and wavelength selectivity compared to the planar Bragg diffraction waveguide using optical lithograph 7 technology. The IIS diagram shows Ga using the vertical oscillation lid laser.
8 This is an example in which a laser matrix was created on a semi-insulating substrate.
Laser main body L8, 4 consisting of 1 reflective layer 8, 4 and active layer 8
, n'' conductive layer 7, element isolation insulating film 8, and Ga 11g
It is composed of a semi-insulating substrate 9. Upper electrodes l and n
By choosing a combination with the "lli layer", the laser body 2 at the place where the upper electrode 1 and the n" conductive layer 7 intersect.
.. 8.4 can be written in the forward direction. Therefore, n0
While applying a negative voltage to any number of conductive layers 7, the upper electrode 1
By sequentially holding the laser array at ground potential, it is possible to sequentially sweep the laser array vertically while changing the light emitting pattern of the laser array in the horizontal direction. This example is an example in which a txt matrix is formed, but by using an appropriate driving device, for example,
Can be used as a character generator. In addition, high-speed line printers or 2! By using a &×2j6 laser array, it is possible to construct an image pattern generator or a three-dimensional hologram generator. To enumerate the technical advantages of the vertical oscillation type semiconductor laser having the structure of the present invention, since the emission direction of the I laser is perpendicular to the substrate, the area of the I -1 emitted light can be increased.
It is possible to create a laser with a high output of several 1 or more.

I−2活性層および出射端面における光強度を低くでき
るので、長寿命化が図られる。
Since the light intensity at the I-2 active layer and the output end face can be lowered, the life can be extended.

I 労11面を反射面として用鱒ないので、1−1  
集積化が容易である。特に2次元レーザマトリクスは1
本構造を用いて初めて作成可能である。
I Since the trout 11 is not used as a reflective surface, 1-1
Easy to integrate. In particular, the two-dimensional laser matrix is 1
It can be created for the first time using this structure.

1−2  g#開に伴う端面の損傷がないので生産の歩
留りが良−0 1−84!IIK伴って残留する弾性歪が発生しな―の
で長寿命化が期待できる。
1-2 Good production yield as there is no damage to the end face due to g# opening -0 1-84! Since residual elastic strain associated with IIK does not occur, a longer life can be expected.

l 干渉性薄膜を光共振器の反射層に用いるので、従来
の光レジスト技術では製作不可能であった、h波長周期
の反射器を精度良く作成できる。従って、反射層の反射
効率および波長選択性が高く、低閾値電流で、高−発振
波長安定性を得ることができる。
l Since a coherent thin film is used as the reflective layer of the optical resonator, a reflector with an h wavelength period, which could not be manufactured using conventional photoresist technology, can be manufactured with high precision. Therefore, the reflection efficiency and wavelength selectivity of the reflective layer are high, and high oscillation wavelength stability can be obtained with a low threshold current.

MBK (MO1ecul&r Beam Epita
xy )技術を用−ると、上記の反射層に必要な多層構
造をI −M sあるいはl−V族化合物半導体により
再現性良く製作す、ることは比較的容易である・以上述
べたように、本発#iは従来実用化もれて−る7アプリ
ベロー蓋、あるいはブラフグリ7レクタIj&牛導体レ
ーザに比較して、出力、寿命、発振波長安定性、集積の
i易さ、製造時の歩留シ等、はとんどすべでの点で優れ
てお少1今後半導体が進出するであろうすべての分野、
例えば、光通信、ビデオディスク、レーザプリンター、
画像パターン発生器、パワーレーザ等で従来の構造を置
き換えると思われる。
MBK (MO1ecul&r Beam Epita
xy) technology, it is relatively easy to manufacture the multilayer structure necessary for the above reflective layer using I-Ms or l-V group compound semiconductors with good reproducibility. Compared to the 7-applied bellow lid or the Brafgri 7-rector Ij & cow conductor laser, which have not been put into practical use in the past, the #i of this invention has improved output, lifespan, oscillation wavelength stability, ease of integration, and manufacturing time. It is excellent in all aspects such as yield, etc., and is suitable for all fields in which semiconductors will enter the future.
For example, optical communications, video discs, laser printers,
Image pattern generators, power lasers, etc. are expected to replace conventional structures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1fj!Jは本発明の垂直発振型レーザの構成略図、
第2WAti同垂直発振型レーザのバンド図、第3図は
干渉型薄膜の重畳回数と共振器損失を説明する図、第1
図は干渉薄膜の共振器損失の発振波長依存性を説明する
図、lj図←)は本発明による垂直発振蓋レーザを用い
たレーザマトリクスの平面図、(k)は同レーザマトリ
クスの断面図である。 図中、lは上部電極、2は上部干渉型反射層、3は活性
層、4は下部干渉反射層、5hn”caムS基板、6は
下部電極、7はn” GaAa導電層、8は素子分離用
絶縁膜、9#1Gans半絶縁性基板である。 手 続 補 正 書(自発) 昭$11j9年 2月 411 特許庁長官  着杉和夫 殿 1事件の表示 昭和56年特許m1ll/7g753号2g&明の名称 ―直置1itai亭導体レーザ 3 補正をす、る者 事件との関係 特許出願人 東京都千代[11区直参関1丁1」3番1 t;1]4
 工  集  技  術  院  長  石  坂  
誠  −4指定代理人 茨城県新治郡桜村梅園1丁目1番4X」(1)  明細
書中、’183頁第3行詰よびIIS行の「偵追I」を
「nGaAs J  と訂正する。 (2)  同、第3頁’1113行tD 「p−GaA
s層81およびn−GaA3 Jをr pGaAs層8
1およびnGaAs Jと訂正する。 (3)  同、第ダ頁第S行の「p”GaAs Zxと
p′″GaAugs28」をr p GaAs 2 l
とp GaAlAs 2 s Jと訂正する0(4) 
同、第9頁第7.1行の「n”GaAs 41とn”G
aAlAg43」を「n GaAs 41とn GaA
lA34 s Jと訂正する。 (5)同、INS頁第7行の「boocx−”」を「6
00S′″1」と訂正する。 (6)  同、tH9頁第j+ A行のr n”GaA
s Jを[n GaAs Jと訂正する。 (7)  図面のA2図および第3図を別紙のように訂
正する。 手続補正書(指令) ′ 昭和sr年 J ノ1λ参11 特許庁長官 若杉和夫 殿 1事件の表示 昭和36年特許願1i/7174t、i号2発明の名称 垂直発mWl半導体レーザ 東京都千代田区霞が関1丁目3番1号 114 工  業  技  術  院  長   石 
 坂  誠  −4指定代理人 茨城県新治郡桜村梅園1丁目1番4号 6補正の対象 ′ 補正の内容 昭和Sg年2月弘日付提出の手続補正書の())の欄を
次のとおり訂正する◇ 「()) 図面の第一図および1113図を別紙のよう
に訂正する。」を「())図面の第1図、第2図および
第3図を別紙のように訂正する。」と訂正する。
1st fj! J is a schematic diagram of the configuration of the vertical oscillation laser of the present invention,
The band diagram of the 2nd WAti vertical oscillation type laser, Figure 3 is a diagram explaining the number of superimpositions of the interference type thin film and the resonator loss, Figure 1
The figure is a diagram explaining the dependence of the resonator loss on the oscillation wavelength of an interference thin film, the lj figure (←) is a plan view of a laser matrix using a vertical oscillation lid laser according to the present invention, and (k) is a cross-sectional view of the same laser matrix. be. In the figure, l is the upper electrode, 2 is the upper interference type reflective layer, 3 is the active layer, 4 is the lower interference reflective layer, 5hn" cam S substrate, 6 is the lower electrode, 7 is the n" GaAa conductive layer, and 8 is the Insulating film for element isolation, 9#1 Gans semi-insulating substrate. Procedural amendment (voluntary) February 11, 1989 411 Commissioner of the Japan Patent Office Kazuo Chikusugi Tono 1 case display 1982 patent mlll/7g753 2g & name of Ming - Directly installed 1itaitei conductor laser 3 Correction, Relationship with the case of a patent applicant Chiyo, Tokyo [11-ku Jokusanseki 1-1” 3-1 t;1] 4
Ishizaka, Director of Institute of Technology
Makoto-4 Designated Agent 1-1-4X, Baizono, Sakuramura, Niiharu-gun, Ibaraki Prefecture” (1) In the specification, “Reioi I” in the third line of page 183 and in the IIS line is corrected to “nGaAs J.” ( 2) Same, page 3, line '1113 tD "p-GaA
s layer 81 and n-GaA3 J pGaAs layer 8
1 and nGaAs J. (3) Similarly, r p GaAs 2 l "p"GaAs Zx and p'"GaAugs28" in line S of page d.
and p GaAlAs 2 s J and correct 0(4)
``n''GaAs 41 and n''G on page 9, line 7.1.
aAlAg43” to “n GaAs 41 and n GaA
Correct it to lA34 s J. (5) Same, “boocx-”” on the 7th line of the INS page was changed to “6
00S′″1”. (6) Same, tH page 9, j+ line A, r n”GaA
Correct s J to [n GaAs J. (7) Figures A2 and 3 of the drawings are corrected as shown in the attached sheet. Procedural Amendment (Directive) ' Showa SR J No. 1 Lambda Reference 11 Commissioner of the Japan Patent Office Kazuo Wakasugi Tono 1 Indication of Case 1962 Patent Application 1i/7174t, i No. 2 Name of Invention Vertical emitting mWl semiconductor laser Kasumigaseki, Chiyoda-ku, Tokyo 1-3-1-114 Industrial Technology Director Ishi
Makoto Saka -4 Designated Agent, 1-1-4, Baizono, Sakuramura, Niiharu-gun, Ibaraki Prefecture 6 Subject of amendment' Contents of amendment The column ()) of the procedural amendment submitted dated February 1999, Showa Sg, was corrected as follows. ◇ "()) Correct Figures 1 and 1113 of the drawings as shown in the attached sheet." to "()) Correct Figures 1, 2, and 3 of the drawings as shown in the attached sheet." I am corrected.

Claims (1)

【特許請求の範囲】[Claims] 半導体レーザの活性層の上部および下部に導電性誘電体
薄膜の多層構造を設けることにより、波長選択性垂直型
光共振器を形成したことを特徴とする垂直発振型半導体
レーザ。
A vertical oscillation semiconductor laser characterized in that a wavelength-selective vertical optical resonator is formed by providing a multilayer structure of conductive dielectric thin films above and below an active layer of the semiconductor laser.
JP17875381A 1981-11-07 1981-11-07 Vertical oscillation type semiconductor laser Pending JPS58135690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17875381A JPS58135690A (en) 1981-11-07 1981-11-07 Vertical oscillation type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17875381A JPS58135690A (en) 1981-11-07 1981-11-07 Vertical oscillation type semiconductor laser

Publications (1)

Publication Number Publication Date
JPS58135690A true JPS58135690A (en) 1983-08-12

Family

ID=16053985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17875381A Pending JPS58135690A (en) 1981-11-07 1981-11-07 Vertical oscillation type semiconductor laser

Country Status (1)

Country Link
JP (1) JPS58135690A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985004531A1 (en) * 1984-03-28 1985-10-10 Japan Represented By President Of Tohoku Universit Junction semiconductor light-emitting element
JPH03190181A (en) * 1989-12-19 1991-08-20 Nec Corp Planar emission laser and manufacture thereof
US5093746A (en) * 1988-01-06 1992-03-03 Australian Telecommunications Corporation Current injection modulator
US5101293A (en) * 1988-01-06 1992-03-31 Australian Telecommunications Corporation Electrooptic device for modulation of intensity and phase of transmitted or reflected light at discrete operating wavelengths
JP2005107348A (en) * 2003-10-01 2005-04-21 Semiconductor Energy Lab Co Ltd Projector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985004531A1 (en) * 1984-03-28 1985-10-10 Japan Represented By President Of Tohoku Universit Junction semiconductor light-emitting element
US5093746A (en) * 1988-01-06 1992-03-03 Australian Telecommunications Corporation Current injection modulator
US5101293A (en) * 1988-01-06 1992-03-31 Australian Telecommunications Corporation Electrooptic device for modulation of intensity and phase of transmitted or reflected light at discrete operating wavelengths
JPH03190181A (en) * 1989-12-19 1991-08-20 Nec Corp Planar emission laser and manufacture thereof
JP2005107348A (en) * 2003-10-01 2005-04-21 Semiconductor Energy Lab Co Ltd Projector

Similar Documents

Publication Publication Date Title
US5031187A (en) Planar array of vertical-cavity, surface-emitting lasers
JP2923442B2 (en) Semiconductor laser device
US8492863B2 (en) Optical modulator
US4509173A (en) Phase-locked semiconductor laser device
US4178604A (en) Semiconductor laser device
WO2021142962A1 (en) High-contrast grating vertical-cavity surface-emitting laser and manufacturing method therefor
JP7689112B2 (en) Two-dimensional photonic crystal laser
US5163064A (en) Laser diode array and manufacturing method thereof
JPS5936988A (en) Vertical oscillation type semiconductor laser
JPS58135690A (en) Vertical oscillation type semiconductor laser
GB1521726A (en) Beam collimation using multiple coupled elements
JP2658291B2 (en) Light emitting element
JP2757633B2 (en) Surface emitting semiconductor laser
US5452316A (en) Semiconductor laser having stacked active layers with reduced drive voltage
JP2546150B2 (en) Three-dimensional cavity surface emitting laser
JPH055391B2 (en)
JP3141430B2 (en) Semiconductor laser
JPS6257275A (en) Semiconductor laser array device
CN119362162B (en) Quasi-PT symmetry based semiconductor laser bar and spectrum beam combining device
JPH10256665A (en) Semiconductor light emitting device and computer system using the same
JPH0590636A (en) Quantum effect device
JPS6257259A (en) Light emitting semiconductor element
WO2021157431A1 (en) Light-emitting device
US4023118A (en) Superheterojunction laser
JP2891756B2 (en) Tunable semiconductor laser