[go: up one dir, main page]

JPS58133888A - Treatment of waste water - Google Patents

Treatment of waste water

Info

Publication number
JPS58133888A
JPS58133888A JP1597882A JP1597882A JPS58133888A JP S58133888 A JPS58133888 A JP S58133888A JP 1597882 A JP1597882 A JP 1597882A JP 1597882 A JP1597882 A JP 1597882A JP S58133888 A JPS58133888 A JP S58133888A
Authority
JP
Japan
Prior art keywords
wastewater
waste water
cod
sodium hypochlorite
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1597882A
Other languages
Japanese (ja)
Inventor
Toshihiko Hata
畑 俊彦
Yoshihisa Kono
吉久 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1597882A priority Critical patent/JPS58133888A/en
Publication of JPS58133888A publication Critical patent/JPS58133888A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To reduce the high concn. COD in waste water effectively by controlling the pH of the waste water, then adding a proper amt. of sodium hypochlorite and introducing ozone through said water to treat the waste water. CONSTITUTION:After the pH of waste water contg. oxyacid ions of nitrogen and chlorine, etc. is adjusted to >=7pH, sodium hypochlorite is added until the oxidation reduction potential of the waste water soln. attains the highest potential to decrease COD and the remaining chlorine in the waste water. Ozone is introduced through such waste water to minimize the remaining COD. This method decreases the COD in the waste water by oxidizing the reductive materials in the waste water effectively by the oxidative effect of both sodium hypochlorite and ozone.

Description

【発明の詳細な説明】 本発明は廃水の処理方法に係り、特に廃水中の高濃度C
ODを効率よ(低減するのに好適な廃水の処理方法K1
1lする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating wastewater, and particularly to a method for treating wastewater with high concentration of C.
Wastewater treatment method suitable for efficiently (reducing OD) K1
Take 1l.

実験室から排出されるNOs”などのNの酸素酸イオン
やCl0rなどのCIの酸素酸イオンを含む廃水、NO
を吸収した亜塩素酸ソーダ(NaCjOw)11液はC
OD濃度が高く排水規準を満足しないため。
Wastewater discharged from laboratories containing N oxygen acid ions such as NOs and CI oxygen acid ions such as Cl0r, NO
Sodium chlorite (NaCjOw) 11 liquid that absorbed C
This is because the OD concentration is high and does not meet the wastewater standards.

直接排水することができない。Cannot be drained directly.

このため、従来は上記のような廃水を溜池に放置する方
法や廃水中に適当な酸化剤を添加する方法が採用されて
い良。しかしながら前者の方法で溜水量の制限、臭気の
尭生等の問題があり、後者の方法でticODの低減効
率が充分なものでなめため処理後の溶液についてC0D
a&のIll定を行い、排水規準に適合するように多量
の水で希釈を行っていた。したがって廃水中の高−11
cODt効率的に、かつ充分に低減できる処理方法の確
立が望まれていた。
For this reason, conventional methods have been adopted such as leaving the wastewater in a reservoir or adding an appropriate oxidizing agent to the wastewater. However, the former method has problems such as limited amount of accumulated water and low odor, while the latter method has sufficient ticOD reduction efficiency and the solution after licking treatment has COD
A & Ill determination was carried out and dilution was performed with a large amount of water to comply with wastewater standards. Therefore, high −11 in wastewater
It has been desired to establish a treatment method that can efficiently and sufficiently reduce cODt.

本発明の目的は、廃水中の高濃RCODを効率的、かつ
充分に低減させて排水規準に適合し5る廃水の処理方法
を提供することにある。
An object of the present invention is to provide a wastewater treatment method that efficiently and sufficiently reduces highly concentrated RCOD in wastewater and complies with wastewater standards.

本発明は、次亜塩素酸ナトリウム(Na(JO)とオゾ
ン(01)との特性を巧みに利用し、 NaCj0につ
いてはその酸化速度を有効に利用し、かつ0畠の強い酸
化力を利用するとともにNaCJOの欠点である残留塩
素を発生をなくすようにしてNaCjOと01との両者
の酸化作用によって廃水中の酸化しにくい還元性物質を
も効率的に酸化し、廃水中のCODの低減を図るもので
ある。
The present invention skillfully utilizes the characteristics of sodium hypochlorite (Na(JO)) and ozone (01), effectively utilizes the oxidation rate of NaCj0, and utilizes the strong oxidizing power of NaCj0. At the same time, by eliminating the generation of residual chlorine, which is a drawback of NaCJO, the oxidizing action of both NaCjO and 01 efficiently oxidizes reducing substances that are difficult to oxidize in wastewater, thereby reducing COD in wastewater. It is something.

したがって、本発明において対象とされる廃水は、高濃
度のCOD含有廃水であり、特に廃水中にNa CI 
Oの添加によっても酸化しにくい還元性物質を含む廃水
が本発明に有効である。このような還元性物質を含む廃
水として、N01−などのNの酸素酸イオンおよび/又
tlcIch−などのCIの最素酸イオンを含む廃水が
挙げられる。これらの酸素酸イオンを含む廃水では、廃
水中に存在する各種のNおよびCl系の還元性の反応生
成物が考えられ、これらの成分がCODに対して負荷と
なり、高C0Dt−与えている。
Therefore, the wastewater targeted by the present invention is wastewater containing a high concentration of COD, and in particular, the wastewater contains Na CI
Wastewater containing reducing substances that are difficult to oxidize even when O is added is effective in the present invention. Examples of wastewater containing such reducing substances include wastewater containing N oxygen acid ions such as N01- and/or CI prime acid ions such as tlcIch-. In wastewater containing these oxygen acid ions, various N and Cl-based reducing reaction products present in the wastewater are considered, and these components become a load on COD, giving a high CODt-.

本発明において、第1工程において廃水のpHを7以上
に調整した後、次亜塩素酸ナトリウムを廃水溶液の酸化
還元電位(ORP)が最高電位に達するまで添加する。
In the present invention, after adjusting the pH of the wastewater to 7 or higher in the first step, sodium hypochlorite is added until the oxidation-reduction potential (ORP) of the wastewater solution reaches the highest potential.

第1工程で廃水のpHを7以上に調整する理由は廃水溶
液が酸性条件下では添加されるNaCjO自体の分解が
起こり、酸化反応に寄与しなくなるためである。第1工
程における廃水のpHは望ましくは7〜9の範囲に調整
するのがよい。廃水のpHが91!e趨えると、NaC
l0自体の分解は起らないが酸化反応速度が急激に低下
するので廃水中の高濃度CODをより効率的に酸化処理
するためには廃水のpHを9を超えない範Jのアルカリ
性条件とすることが望ましい。このようにして廃水のp
Hを調整した後、廃水中にNaCl0 ’に添加すると
、酸化還元電位(ORP)が上昇し、最高電位に達した
後は一定の電位を維持する。すなわち、第1図HNおよ
びCIの酸素酸イオンを含有し、これらのイオンによっ
て形成される還元性の反応生成物によって高濃[C0D
t与える廃水に対し。
The reason why the pH of the wastewater is adjusted to 7 or more in the first step is that when the wastewater solution is under acidic conditions, the added NaCjO itself decomposes and no longer contributes to the oxidation reaction. The pH of the wastewater in the first step is desirably adjusted to a range of 7 to 9. The pH of the wastewater is 91! If you fall, NaC
Although decomposition of 10 itself does not occur, the oxidation reaction rate sharply decreases, so in order to more efficiently oxidize high-concentration COD in wastewater, the pH of the wastewater should be kept under alkaline conditions in the range J that does not exceed 9. This is desirable. In this way, wastewater p
After adjusting H, adding NaCl0' into the wastewater increases the redox potential (ORP) and maintains a constant potential after reaching the highest potential. That is, it contains oxygen acid ions of HN and CI in Figure 1, and the reducing reaction products formed by these ions produce highly concentrated [C0D
t for the wastewater that gives.

NaCJOを添加した場合、廃水のpHが7〜9の範囲
ではいずれもNaCl0の添加量の増加につれてORP
が上昇するが最高電位(約900mV)に達するとその
後一定となることを示している。したがって第1工程に
おいて、NaCjOtORPの上昇を確認しながら廃水
中に添加し、ORPが最高電位KJL変化しなくなつ次
時、NaCノ0の添加を止める。このようなNa CI
 Oの添加によって、廃水中のCODの大部分を低減す
ることができる。
When NaCJO is added, ORP increases as the amount of NaCl0 increases in the pH range of 7 to 9.
The figure shows that the voltage increases, but once it reaches the highest potential (approximately 900 mV), it remains constant. Therefore, in the first step, NaCjOtORP is added to the wastewater while checking for a rise, and when ORP stops changing to the highest potential KJL, the addition of NaCjOt is stopped. Such Na CI
By adding O, a large part of the COD in wastewater can be reduced.

第1工(1において、ORPが一定となつ友後。In the 1st construction (1), the ORP is constant.

NaC10’に添加しても、廃水中の複雑な還元性のN
および/又はNの化合物等は漬化されないため。
Even when added to NaC10', the complex reducing N in wastewater
and/or N compounds etc. are not pickled.

C0D1に低減することができない。したがって。It cannot be reduced to C0D1. therefore.

ORPが最高電位に達し^後もNa CI Oを添加す
ることは、NaCl0の消費量を増大させるばかりでな
く、廃水溶液中の残留塩素量が増加して好ましくない。
Adding Na Cl O even after the ORP reaches its maximum potential not only increases the consumption of NaCl 0 but also increases the amount of residual chlorine in the wastewater solution, which is undesirable.

次に第2工程では、廃水中にOsを通過させることによ
って第1工程において酸化されずに残存するCODを低
減させる。すなわち、IEl工程にふ・けるNaCl0
処理では、完全[CODを低減す2)ことができず、特
にCODが各種のNおよびC1系の還元性の反応生成物
に寄因する場合C0DF!50〜100 ppm5lに
しが低減で舞ない、第2工程ではOIの酸化力を利用し
て、残留CODを更に低減するものである。このように
してc。
Next, in the second step, COD remaining without being oxidized in the first step is reduced by passing Os into the wastewater. That is, NaCl0 used in the IEl process
Treatment cannot completely reduce COD2), especially when COD is due to various N- and C1-based reducing reaction products. In the second step, the oxidizing power of OI is utilized to further reduce the residual COD. In this way c.

Dが低減され九処理水は、その後公知の方法に従い、排
水規準に適□合するよう[pH調整された後。
The D-reduced treated water is then pH-adjusted to meet wastewater standards according to known methods.

排水する。Drain.

以上のように本発明によれば、第1工程においてNaC
jOの絵加によってCODの大部分を効率的に低減し、
かつ廃水中の残留塩素を小さくするとともにl1lI2
工程において残存するCODを酸化力の強い0.によっ
て更に低減するものであるから、酸化しにくい還元性物
質を含む廃水に特に有効である。
As described above, according to the present invention, in the first step, NaC
Most of the COD can be effectively reduced by adding pictures of jO,
In addition to reducing residual chlorine in wastewater,
The COD remaining in the process is removed using 0. It is particularly effective for wastewater containing reducing substances that are difficult to oxidize.

実施例 NおよびClの酸素酸イオンを含むCOD4630pp
m(D廃lI200sj’lJ7ビーカーVC取り、H
(Jを用いて溶液のPHt8に調整した後、有効塩素1
2慢のNaCl0を溶液のORPが最高電位(約900
mV)  を示すまで添加してCODを低減パさせ、次
いで01処理(流量400 nil/mi n −On
#11″0.8jl/h、時間1h)を行った。その結
果。
Example N and COD 4630pp containing Cl oxyacid ions
m (D waste lI200sj'lJ7 beaker VC removal, H
(After adjusting the pH of the solution to 8 using J, available chlorine 1
The ORP of the NaCl0 solution is at its highest potential (approximately 900
mV) to reduce COD, and then 01 treatment (flow rate 400 nil/min -On).
#11''0.8jl/h, time 1h).The results.

表IK示すように廃液のCODは20 ppm !で低
減させる仁とができた。
As shown in Table IK, the COD of the waste liquid is 20 ppm! It was possible to reduce the amount of heat.

表  1Table 1

【図面の簡単な説明】[Brief explanation of drawings]

填1図は高濃#CODの廃水におけるNmCl0を添加
し九時の電位滴定曲線である。 代理人  鵜 沼 辰 之 (ほか2名) 第1図 0  5  10  15 NoCIO(12%)4加量(ml)
Figure 1 shows the potential titration curve at 9 o'clock when NmCl0 was added in highly concentrated #COD wastewater. Agent Tatsuyuki Unuma (and 2 others) Figure 1 0 5 10 15 NoCIO (12%) 4 additions (ml)

Claims (3)

【特許請求の範囲】[Claims] (1)  廃水のPH17以上に調整した後1次亜塩素
酸す) IJウムを廃水溶液の酸化還元電位(0RP)
が最高電位に達するまで添加する第1工程と、第1工a
t経た廃水にオゾンを通過さぜる112工程と、を有す
る真水の処理方法。
(1) After adjusting the pH of the wastewater to 17 or higher, add primary hypochlorite (IJ) to the oxidation-reduction potential (0RP) of the wastewater solution.
The first step of adding until the maximum potential is reached, and the first step a
112. A method for treating fresh water, comprising: 112 steps of passing ozone through the wastewater that has passed through the wastewater.
(2)Ill工1i#IC供される廃水が、窒素の酸素
酸イオンおよび/又は塩素の酸素酸イオンを含有する廃
水であることを特徴とする特許請求の範囲第1項記載の
廃水の処理方法。
(2) The wastewater treatment according to claim 1, wherein the wastewater supplied to the Ill Process 1i#IC is wastewater containing nitrogen oxygen acid ions and/or chlorine oxygen acid ions. Method.
(3)  第1工程において、廃水のpHt 7〜9に
調整することを特徴とする特許請求0III!I第1項
又は1m2項に記載の廃水の処理方法。
(3) In the first step, the pH of the wastewater is adjusted to 7 to 9! I. The method for treating wastewater according to item 1 or 1m2.
JP1597882A 1982-02-03 1982-02-03 Treatment of waste water Pending JPS58133888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1597882A JPS58133888A (en) 1982-02-03 1982-02-03 Treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1597882A JPS58133888A (en) 1982-02-03 1982-02-03 Treatment of waste water

Publications (1)

Publication Number Publication Date
JPS58133888A true JPS58133888A (en) 1983-08-09

Family

ID=11903775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1597882A Pending JPS58133888A (en) 1982-02-03 1982-02-03 Treatment of waste water

Country Status (1)

Country Link
JP (1) JPS58133888A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108314151A (en) * 2017-01-17 2018-07-24 宝山钢铁股份有限公司 The method and apparatus of total nitrogen and total organic carbon in a kind of removal rolling effluent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108314151A (en) * 2017-01-17 2018-07-24 宝山钢铁股份有限公司 The method and apparatus of total nitrogen and total organic carbon in a kind of removal rolling effluent

Similar Documents

Publication Publication Date Title
Weavers et al. Degradation of triethanolamine and chemical oxygen demand reduction in wastewater by photoactivated periodate
US7572384B2 (en) Composition and method for reducing chemical oxygen demand in water
EP1364914A1 (en) Method and system for treating nitrogen-containing compound
JP3674939B2 (en) Deodorizing method and deodorizing agent for dehydrated cake
JP2009022940A (en) Method of decoloring livestock wastewater and colored wastewater containing hardly decomposable ingredient
US20060293179A1 (en) Composition and method for reducing chemical oxygen demand in water
JPS58133888A (en) Treatment of waste water
JP5334148B2 (en) Wastewater treatment method
JP2005246109A (en) Treating method of cyanide-containing waste water containing ammonia nitrogen
JPS5549191A (en) Purifying treatment method of waste water
JP2021053620A (en) Treatment method for cyanide-containing wastewater
JP2018030104A (en) Cyanogen-containing wastewater treatment agent and cyanide-containing wastewater treatment method using the same
DD262139A3 (en) METHOD FOR IMPROVING BATH WATER QUALITY
JPH10113678A (en) Method for making nitrate ion-containing waste liquid harmless and device therefor
JPS5535956A (en) Treating of waste water from factory including sizing process
JP2002079252A (en) Method and apparatus for treating seawater type ammonia-containing wastewater or ammonia-containing exhaust gas
Wada et al. Recycling of cyanide wastewater by ozone oxidation combined with UV radiation and ion exchange
TWI523816B (en) Wastewater treatment method and system for containing fluoride ion and iron ion
CN106830280A (en) The method for treating water of instability halogenated disinfection by-products in a kind of utilization persulfate in-situ control swimming-pool water
JPS6018475B2 (en) Treatment method for cyanide-containing plating solution wastewater
JPH11267666A (en) Treatment of water containing hydrogen peroxide and peracetic acid
CN109987692A (en) A method for enhanced treatment of organic wastewater by a Fenton-like system constructed based on glyoxylic acid
CN114933358A (en) Method for removing organic pollutants by using thiosulfate
JPH04313389A (en) Treatment of deodorized waste liquid
JP2004358422A (en) Treatment method for water containing oxidizable substances