JPS58133405A - Welded turbine casing - Google Patents
Welded turbine casingInfo
- Publication number
- JPS58133405A JPS58133405A JP1490982A JP1490982A JPS58133405A JP S58133405 A JPS58133405 A JP S58133405A JP 1490982 A JP1490982 A JP 1490982A JP 1490982 A JP1490982 A JP 1490982A JP S58133405 A JPS58133405 A JP S58133405A
- Authority
- JP
- Japan
- Prior art keywords
- flange
- casing
- stress
- welded
- turbine casing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/24—Casings; Casing parts, e.g. diaphragms, casing fastenings
- F01D25/243—Flange connections; Bolting arrangements
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Hydraulic Turbines (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は蒸気タービンのケーシングに係す、ケーシング
上、下半シェル部材とフランジ部材を溶接してなるもの
において、これら部材間の溶接接続部に作用する発生応
力を低くしたini製タービンケーシングに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steam turbine casing in which upper and lower half shell members and a flange member are welded together, and the present invention reduces the stress generated at the welded connection between these members. This invention relates to an ini turbine casing.
従来の蒸気タービンケーシングは鋳造によって製作され
ていたが、ケーシングの大臘化に伴いその製造能力ある
いは経済性に限界があると考えられる。すなわち、鋳造
による一体構造のため、各部分の応力レベルに応じて材
料を使い分けたりケージジグの肉厚を自在に変化させた
りすることはできないこと力纂ら強度上不必要な肉厚を
設けなければならない経済的な問題もあった。また、大
型かつ厚内構造になると、鋳造欠陥が発生しやすい等の
性能上の問題があった。そこで、ケーシングを応力レベ
ルおよび形状の複雑性に応じて各構成部分に分割し、こ
れらの構成部分のブロック材を別個に製作し、ブロック
材を互いに溶接して形成される溶接製ケーシングが考え
られている。この場合、溶接接合部はブロック材と材質
等が異なるので、溶接接合部は、極力低り力の部所に選
定する必要がある。すなわち、各ブロック材間の溶接接
続部の位置選定は溶接製ケーシングの信頼性に非常に重
要な問題となる。Conventionally, steam turbine casings have been manufactured by casting, but as the casing becomes larger in size, there is a limit to its manufacturing capacity or economic efficiency. In other words, since it is a one-piece structure made by casting, it is not possible to use different materials depending on the stress level of each part or to freely change the wall thickness of the cage jig. There were also unavoidable economic problems. Additionally, large-sized and thick structures have performance problems such as easy casting defects. Therefore, a welded casing has been considered in which the casing is divided into component parts according to the stress level and complexity of the shape, blocks of material for these component parts are manufactured separately, and the blocks are welded together. ing. In this case, since the welded joint is made of a different material from the block material, the welded joint must be selected at a location where the shearing force is as low as possible. That is, the selection of the position of the welded joint between each block material becomes a very important issue for the reliability of the welded casing.
本発明の目的は、溶接製ケーシングの溶接接続部の位置
選定に関し、該溶接接続部をタービン運転中のケーシン
グにおいて低発生応力部所に位置さ、せることより、溶
接委ケーシングの信頼性を向上させることにある。An object of the present invention is to improve the reliability of the welded casing by locating the welded joint in a low stress area of the casing during turbine operation. It's about letting people know.
本発明の%IIkは、溶接製タービンケーシングにおり
てj11本重要な溶接接合部の一つである上下半シエル
部とフランジ部の溶接接合部に係り、該溶接接合部をタ
ービンケーシングの応力分布状態を考瀘し、シェル部及
びフランジ部の中で最も低応力部に位置さ誓ることKよ
り、該溶接製タービンケーシングの信頼性を向上をはか
ったものである。The %IIk of the present invention relates to the welded joint between the upper and lower half shell parts and the flange part, which is one of the 11 important welded joints in a welded turbine casing, and the welded joint is used to control the stress distribution of the turbine casing. Taking into consideration the condition, the reliability of the welded turbine casing is improved by locating it at the lowest stress part of the shell part and flange part.
以下本発明による一実施例を第1図により説明する。第
1図において、符号1oはタービンヶー’/7f’fr
示f本のであって、このタービンケーシング10け上半
シェル部1、下半シェル部2、フランジs3.4とから
形成されて込る。まえ、前記上半7ランジ部3と下半フ
ランジ部4とは互いにボルト等5により内外の圧力差に
充分耐えるようfik続されている。An embodiment according to the present invention will be described below with reference to FIG. In Fig. 1, the symbol 1o indicates the turbine number'/7f'fr
The turbine casing 10 is made up of an upper half shell part 1, a lower half shell part 2, and a flange s3.4. First, the upper half 7 flange portion 3 and the lower half flange portion 4 are connected to each other by bolts or the like 5 so as to sufficiently withstand the pressure difference between the inside and outside.
ここで、各々別個のブロック材である上半シェル部1、
下半シェル部2、フランジ3,4を溶接にて接合する際
上述し九ようにその溶#接続部の位置が問題となる。そ
こで、第3図に示すようにケーシングのタービン軸方向
断面をとり、2次元4の応力分布状態を検討した。前記
有限要素法により求めた主応力分布を第2図に示すう第
2図によれば、フランジ部3.4の上部近傍にある/エ
ル部ia、2Jlにおいて主応力σは、最大引張応力を
生じ、当該部を離れ、ケーシング上部に移るKしたがっ
て主応力σは急速に低下し、はぼ一定値の引張応力にな
っている。一方、最大引張応力の発生するフランジ部の
上記近傍にあるシェル部la、2mより下部に移ると主
応力σけ急速に低下し、さらにフランジ部3.4では、
圧縮応力となってbる。このような応力分布け、第3図
に示すように、内外圧力差によるカフ、ポルト締付力6
との合成により生ずるものである。Here, upper half shell parts 1 each being a separate block of material,
When joining the lower half shell portion 2 and the flanges 3 and 4 by welding, the position of the welded joint becomes a problem as described above. Therefore, as shown in FIG. 3, a cross section of the casing in the turbine axial direction was taken to examine the two-dimensional stress distribution state. The principal stress distribution determined by the finite element method is shown in FIG. 2. According to FIG. Therefore, the principal stress σ rapidly decreases and becomes an almost constant tensile stress. On the other hand, when moving below the shell part la, 2 m near the flange part where the maximum tensile stress occurs, the principal stress σ rapidly decreases, and furthermore, in the flange part 3.4,
It becomes compressive stress. Due to this stress distribution, as shown in Figure 3, the cuff and port tightening force 6 due to the difference in pressure between the inside and outside
It is produced by the synthesis of
ケーシング内外圧力差によるカフによりケーシングシエ
4部1.2及びフランジ部3,4全面に−わたり、引張
応力が生ずるが、フランジ部の水平面3暑、4Jlに加
わるボルト締付応力6によりフランジ部3.4及びフラ
ンジ部近傍のシェル部には圧縮応力が作用する。し九が
って内外圧力差によるカフとボルト締付応力σの両者に
より生じる応力分布は第2図のようになる。Due to the cuff due to the pressure difference between the inside and outside of the casing, tensile stress is generated across the casing shell 4 part 1.2 and the entire surface of the flange parts 3 and 4, but due to the bolt tightening stress 6 applied to the horizontal surfaces 3 and 4 of the flange part 3, the flange part 3 .4 and the shell portion near the flange portion are subjected to compressive stress. Therefore, the stress distribution caused by both the cuff and the bolt tightening stress σ due to the difference in internal and external pressure is as shown in FIG.
本発明では溶接接続部の位置を低応力個所に指定すると
とKよって溶接部の信頼性の向上を計っている。フラン
ジ部とシェル部の溶接接続の位置として、第4図に示す
ようなフランジ部の水平面3a、4gにて接続する方法
、第5図に示すような応力σがほぼ一定値に低下したシ
ェル部1b。The present invention aims to improve the reliability of the welded joint by specifying the location of the welded joint at a low stress location. As for the position of welding connection between the flange part and the shell part, the method is to connect the flange part at the horizontal planes 3a and 4g of the flange part as shown in Fig. 4, and the shell part where the stress σ is reduced to an almost constant value as shown in Fig. 5. 1b.
2bKて接続する方法が考えられる。しかし、第4図の
方法では 最大主応力の発生する部分1a。A possible method is to connect using 2bK. However, in the method shown in Figure 4, the maximum principal stress occurs in the area 1a.
2aが極近傍にあること、第5図の方法では、応力は特
に高くないが引張応力が発生していることから、充分な
信頼性があるとは言えないうすなわち、1IIkも信頼
性のある溶接接合方法として、第6図に示すようなフラ
ンジ鉛直面3b、4bとシェル外面1c、2cとを接続
することである。第2図に示すようにフランジ部3.4
では全面圧縮応力であ妙、特にフランジ部のシェル側は
低い圧縮応力埴であることから、より高い信頼性が期待
できる。さらに一般に鉄鋼材料は引張応力よりも圧縮応
力に強固であること、tた圧縮応力場であると、溶接時
に生じた内部欠陥が存在しても亀裂の道展が考えられな
いという利点がある。2a is very close, and the method shown in Figure 5 produces tensile stress, although the stress is not particularly high, so it cannot be said that there is sufficient reliability.In other words, 1IIk is also reliable. The welding method is to connect the flange vertical surfaces 3b, 4b and the shell outer surfaces 1c, 2c as shown in FIG. Flange part 3.4 as shown in Figure 2
The overall compressive stress is low, especially on the shell side of the flange, so higher reliability can be expected. Furthermore, steel materials are generally more resistant to compressive stress than tensile stress, and a compressive stress field has the advantage that cracks are unlikely to propagate even if there are internal defects generated during welding.
なお、本発明は溶接接合面を指定することにより、信頼
性の高いケーシングを提供することKあり、フランジ部
及びケーシング部の材質(鋳造、鋼板、鍛鋼等)は問わ
ない。また、フランジ部とケーシング部の材質が異なる
こともあり得る。Note that the present invention provides a highly reliable casing by specifying the welding joint surface, and the materials of the flange portion and the casing portion (casting, steel plate, forged steel, etc.) are not critical. Furthermore, the flange portion and the casing portion may be made of different materials.
以上説明したように本発明によれば、フランジの鉛直面
とケーシング上半あるいは下半の外面とKより溶接接続
部を形成すれば、信頼性を損なわずにフランジ、及び上
半部あるいは下半部の溶接接合が可能となる。したがっ
て、溶接性ケーシングを採用することkより、従来鋳物
構造では得られなかった信頼性の向上、費用の低減等が
計れる。As explained above, according to the present invention, if a weld connection is formed between the vertical surface of the flange and the outer surface of the upper or lower half of the casing, the flange and the upper or lower half can be welded together without impairing reliability. It becomes possible to weld and join the parts. Therefore, by employing a weldable casing, it is possible to improve reliability, reduce costs, etc., which could not be obtained with conventional cast structures.
第1図は従来のタービンケーシングを示す断面図、第2
図は従来のタービンケーシングの上半部の主応力分布図
、第3図はタービンケーシングに作用する力の説明図、
第4図、#15図は従来のり−ビンケーシングの溶接法
を示す既略図、第6図は本発明の一実施例であるタービ
ンケーシングの溶接接続部の位置を示すケーシング既略
図であるう1・・・上半シェル部、2・・・下半シェル
部、3・・・上半フランジ部、4・・・下半フランジ部
、5・・・ボルト、6・・・ボルト締付力、7・・・内
外圧力差による力、10・・、タービンケーシング、1
a・・・上半シェル最大主応力発生部、2a・・・下半
シェル最大主応力発生部、3a・・・上半フランジ水平
ffi、4a・・・下半フランジ水平面、lb・・・上
半シェルにおいて応力が一定値に低下する部、2b・・
・下半シェルにおいて応力が一定値に低下する部、IC
・・・上半シェル外面溶接接続部、2C・・・下半シェ
ル外面溶接接続部、3b・・・上半フランジ鉛直面溶接
接続部、4b・・・下半フランジ鉛直面接接続部。
′Hl 図
12 図
茅 3 躬
y!J4IiJ
¥5 図Figure 1 is a sectional view showing a conventional turbine casing, Figure 2 is a sectional view showing a conventional turbine casing;
The figure is a principal stress distribution diagram of the upper half of a conventional turbine casing, and Figure 3 is an explanatory diagram of the forces acting on the turbine casing.
Fig. 4 and Fig. #15 are schematic diagrams showing a conventional glue-bin casing welding method, and Fig. 6 is a schematic diagram of a casing showing the positions of welded joints of a turbine casing according to an embodiment of the present invention. ...Upper half shell part, 2...Lower half shell part, 3...Upper half flange part, 4...Lower half flange part, 5...Bolt, 6...Bolt tightening force, 7... Force due to pressure difference between inside and outside, 10... Turbine casing, 1
a... Upper half shell maximum principal stress generation part, 2a... Lower half shell maximum principal stress generation part, 3a... Upper half flange horizontal ffi, 4a... Lower half flange horizontal surface, lb... Upper The part where the stress decreases to a constant value in the half shell, 2b...
・The part where stress decreases to a constant value in the lower half shell, IC
... Upper half shell outer surface welding connection portion, 2C... Lower half shell outer surface welding connection portion, 3b... Upper half flange vertical surface welding connection portion, 4b... Lower half flange vertical surface contacting portion. 'Hl Figure 12 Figure 3 謬y! J4IiJ ¥5 Diagram
Claims (1)
ぞれ分割して形成されるタービンケーシングにおいて、
前記上、下半シェル部&c#フランジ部を溶接固着して
一体に形成する際に、その溶接接続部が該フランジの船
直面と上下半シエル外面との間に位置するように溶接す
ることを特徴とする溶接製タービンケーシング。1. In a turbine casing in which an upper half shell part, a lower half shell part, and a flange part are formed separately,
When the upper and lower half-shell parts &c# flange parts are welded and fixed to form one body, the welded joints are welded so that they are located between the ship surface of the flange and the outer surface of the upper and lower half-shells. Features a welded turbine casing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1490982A JPS58133405A (en) | 1982-02-03 | 1982-02-03 | Welded turbine casing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1490982A JPS58133405A (en) | 1982-02-03 | 1982-02-03 | Welded turbine casing |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58133405A true JPS58133405A (en) | 1983-08-09 |
Family
ID=11874100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1490982A Pending JPS58133405A (en) | 1982-02-03 | 1982-02-03 | Welded turbine casing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58133405A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2158996A1 (en) * | 2008-09-02 | 2010-03-03 | Rolls-Royce plc | A method of joining articles |
EP3561242A1 (en) * | 2018-04-24 | 2019-10-30 | Siemens Aktiengesellschaft | Welded turbine housing segment and turbine housing |
EP3871818A1 (en) | 2020-02-25 | 2021-09-01 | Mitsubishi Heavy Industries Compressor Corporation | Manufacturing method of casing |
-
1982
- 1982-02-03 JP JP1490982A patent/JPS58133405A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2158996A1 (en) * | 2008-09-02 | 2010-03-03 | Rolls-Royce plc | A method of joining articles |
EP3561242A1 (en) * | 2018-04-24 | 2019-10-30 | Siemens Aktiengesellschaft | Welded turbine housing segment and turbine housing |
EP3871818A1 (en) | 2020-02-25 | 2021-09-01 | Mitsubishi Heavy Industries Compressor Corporation | Manufacturing method of casing |
CN113369802A (en) * | 2020-02-25 | 2021-09-10 | 三菱重工压缩机有限公司 | Method for manufacturing machine room |
US11484934B2 (en) | 2020-02-25 | 2022-11-01 | Mitsubishi Heavy Industries Compressor Corporation | Manufacturing method of casing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lehnhoff et al. | Member stiffness and contact pressure distribution of bolted joints | |
JP2556825B2 (en) | Metal sealing element | |
JPS58133405A (en) | Welded turbine casing | |
JPS6078196A (en) | pipe lock | |
JPS63231087A (en) | flange fittings | |
EP1472484B1 (en) | Flange member comprising a first flanged end designed with a, in a radial direction, concave endsurface and a flange joint comprising flange members | |
US4796423A (en) | Sheet metal panel | |
US6692041B1 (en) | Piping to component connector | |
US3541785A (en) | Exhaust gas line connected to the cylinder heads of an internal combustion engine | |
JPS5970813A (en) | Steam turbine expansion joint retainer ring | |
JP4000055B2 (en) | Segment ring structure with different segment height in the segment ring | |
JPS6015587A (en) | Nuclear fusion device | |
JP2829683B2 (en) | Lining structure | |
JPH04285888A (en) | Piping connection device in vacuum vessel | |
JPS6023705A (en) | Water wall tube for combustion apparatus | |
JPS6147320B2 (en) | ||
JP3887759B2 (en) | Core support structure | |
EP0347617B1 (en) | Pressure vessel | |
JPS6030889A (en) | Bellows expansion pipe joint | |
JPS63123591A (en) | Welding method for pipe joints | |
JPS6090902A (en) | Crossover pipe | |
JPH08189585A (en) | Vacuum flange | |
SU959961A1 (en) | Non-detachable tube-to-vessel connection | |
SU989224A1 (en) | Pipeline passage sealing assembly | |
JPS5926143Y2 (en) | Kannoketsu goukouzo |