[go: up one dir, main page]

JPS58133303A - Method for processing high melting point metal sintered body - Google Patents

Method for processing high melting point metal sintered body

Info

Publication number
JPS58133303A
JPS58133303A JP1663782A JP1663782A JPS58133303A JP S58133303 A JPS58133303 A JP S58133303A JP 1663782 A JP1663782 A JP 1663782A JP 1663782 A JP1663782 A JP 1663782A JP S58133303 A JPS58133303 A JP S58133303A
Authority
JP
Japan
Prior art keywords
sintered body
furnace
processing
heating
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1663782A
Other languages
Japanese (ja)
Other versions
JPS6221044B2 (en
Inventor
Kozo Yasuda
安田 興造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP1663782A priority Critical patent/JPS58133303A/en
Publication of JPS58133303A publication Critical patent/JPS58133303A/en
Publication of JPS6221044B2 publication Critical patent/JPS6221044B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To enhance the processing speed of the titled metal sintered body, by a method wherein the sintered body comprising a high, m.p. metal after hot processing is preheated in a heating furnace under a reductive atmosphere and the preheated sintered body is annealed in a high frequency heating furnace to heat the sintered body uniformly in good efficiency. CONSTITUTION:Hot processing such as hot rolling or hammering while rolling processing is applied to a sintered body 1 comprising a high m.p. metal powder to form the same into a rod like shape. The obtained rod shaped sintered body 1 is introduced into the furnace core tube 6 of a heating furnace 2 by a feed roller 10 and heated in a reductive atmosphere by a heat generating wire 5. By this preheating, the oxide formed on the surface of the sintered body 1 during hot processing is removed by falling and evaporation. The preheated sintered body 1 is directly moved into a high frequency furnace 3 after issued from the furnace 2 and heated to a temp. required in annealing in a reductive atmosphere by a coil 9. In this case, because the oxide is removed in the furnace 2, it is not adhered to the coil 9.

Description

【発明の詳細な説明】 本発明は高融点金属からなる焼結体を熱間加工し九恢に
焼鈍を行なう高融点金属焼結体の加工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for processing a sintered body of a high-melting point metal, in which a sintered body made of a high-melting point metal is hot worked and thoroughly annealed.

〔発明の技術的背景〕[Technical background of the invention]

タングステンやモリブデンなどの高融点金属からなる焼
結体を熱間加工して製品を製造する場合、例えばタング
ステン焼結体によりランゾ用線材を製造する場合におい
ては、タングステン焼結体に圧延や転打加工などの熱間
加工を施して焼結体を延伸し、また圧延中転打加工の途
中に焼結体に焼鈍処理を施して焼結体に蓄積した加工歪
を取シ除く操作を行ない、これら熱間加工と焼鈍を繰返
しながら伸線加工を行なっている。そして、焼結体を焼
鈍処理する場合には、加熱炉として高周波炉が用いられ
、熱間加工例えば転打加工され九ロッド状をなす焼結体
を、連続的に移動させながら高周波加熱炉の内部を通過
させることによシ焼鈍している。
When manufacturing a product by hot processing a sintered body made of a high-melting point metal such as tungsten or molybdenum, for example, when manufacturing a lanzo wire rod from a tungsten sintered body, the tungsten sintered body is rolled or rolled. The sintered body is stretched by hot processing such as machining, and annealing is performed on the sintered body during rolling and rolling to remove processing strain accumulated in the sintered body. Wire drawing is performed while repeating these hot working and annealing steps. When the sintered body is annealed, a high-frequency furnace is used as the heating furnace, and the sintered body, which has been hot-processed, for example, rolled and shaped into a nine-rod shape, is continuously moved through the high-frequency heating furnace. It is annealed by passing it through the inside.

〔背景技術の問題点〕[Problems with background technology]

従来、焼結体を焼鈍する場合には、工程のスピード化を
図るために熱間加工された焼結体を、加工したままの状
態で直接高周波炉の内部に送り込んで加熱するようにし
ている。
Conventionally, when annealing a sintered body, in order to speed up the process, the hot-processed sintered body is directly fed into a high-frequency furnace in its processed state and heated. .

しかしながら、この方法では熱間加工によシ焼結体の表
面に形成された酸化物をつけたtま焼結体を高周波炉内
にそのまま挿入して加熱することになる。焼結体を酸化
物をつけたfまの状態で急減に加熱すると、酸化物が蒸
発または脱落し、高周波炉の内部に設けた高周波コイル
上に付着堆積する。コイルに付着した酸化物が焼結体と
接触するとス・f−りを発し、焼結体表面に溶融痕を生
じさせ、焼結体の品位を低下させるとともに電源にも渦
電流が流れ高負荷をかける原因となる。
However, in this method, the sintered body with the oxide formed on the surface of the sintered body due to hot working is directly inserted into a high frequency furnace and heated. When the sintered body is heated rapidly with oxide attached, the oxide evaporates or falls off, and is deposited on the high frequency coil provided inside the high frequency furnace. When the oxide adhering to the coil comes into contact with the sintered body, it generates flames, causing melting marks on the surface of the sintered body, reducing the quality of the sintered body, and causing eddy currents to flow into the power supply, causing high loads. This causes the

一方、焼結体の焼鈍作業では、高周波炉において焼結体
を短時間で必要とする最高温度まで加熱できて加熱効率
を高め、これKよシ高周波炉内を通過する焼結体のスピ
ードを速めることが要望されている。高周波加熱におけ
る焼結体にかかる電力(発熱量)は、次式で示される。
On the other hand, in annealing sintered bodies, the sintered body can be heated to the required maximum temperature in a short time in a high-frequency furnace, increasing heating efficiency and increasing the speed of the sintered body passing through the high-frequency furnace. There is a demand for speeding up. The electric power (heat amount) applied to the sintered body during high-frequency heating is expressed by the following equation.

P =0.629 Hm 8 X 10−’ (W/l
s″)但し、a/ρ〉7 ここで、ρ:固有抵抗、μ:透磁率、f:コイル電流の
周波数1 & +焼結体半径、un:コイル電流とコイ
ル巻数とによる最大磁化力、P:電力8.この式によシ
焼結体の抵抗、透磁率は一定であるから、加熱効率を高
めるために焼結体の加熱時間を短縮するKは、電流周波
数を大きくすることが一般的に行なわれている。
P = 0.629 Hm 8 X 10-' (W/l
s″) However, a/ρ〉7 Here, ρ: Specific resistance, μ: Magnetic permeability, f: Frequency of coil current 1 & + radius of sintered body, un: Maximum magnetizing force due to coil current and number of coil turns, P: Power 8. According to this formula, the resistance and magnetic permeability of the sintered body are constant, so K, which shortens the heating time of the sintered body to increase heating efficiency, generally increases the current frequency. It is carried out according to

しかしながら、電流周波数を大きくすると焼結体の表面
に渦電流が流れ、表面から温度が上昇する。このため、
焼結体の表面と内部の温度が均一になるまでにある程度
の時間を要し、短時間で焼鈍処理する場合に最高到達温
度が内部と表面とで異なり不均一となるきらいがある。
However, when the current frequency is increased, eddy currents flow on the surface of the sintered body, and the temperature rises from the surface. For this reason,
It takes a certain amount of time for the temperature on the surface and inside of the sintered body to become uniform, and when annealing is performed in a short time, the maximum temperature reached differs between the inside and the surface and tends to become non-uniform.

従りて、周波数を上げずに焼結体を均−Kjl^到達ま
で加熱しようとすると、加熱効率が低下し高周波炉を通
過する焼結体のスピードを上昇させることができなかっ
た。
Therefore, if an attempt is made to heat the sintered body until uniformly -Kjl^ is reached without increasing the frequency, the heating efficiency decreases, making it impossible to increase the speed of the sintered body passing through the high frequency furnace.

〔発明の目的〕[Purpose of the invention]

本発明は熱間加工された高融点金属焼結体を高周波炉に
よ如行なう焼鈍処理において、焼結体の酸化物がコイル
へ付着することを防止し、焼結体を均一に効率良く加熱
して焼結体のスピードを上昇させることができる高融点
金属焼結体の加工方法を提供するものである。
The present invention prevents oxides of the sintered body from adhering to the coil during annealing treatment of a hot-processed high-melting point metal sintered body using a high-frequency furnace, and heats the sintered body uniformly and efficiently. The present invention provides a method for processing a high-melting point metal sintered body, which can increase the speed of the sintered body.

〔発明の概要〕[Summary of the invention]

本発明の高融点金属焼結体の加工方法は、焼結体を熱間
加工後に高周波炉によシ焼鈍処理を行なうに際して、そ
の前段階において焼結体を加熱炉で加熱することKより
、予備加熱として焼結体の温度を高めるとともに、この
ことKより焼結体の抵抗を高め高周波加熱の効率を向上
させる。又、焼結体の酸化物を除去するものである。
The method for processing a high melting point metal sintered body of the present invention includes heating the sintered body in a heating furnace in a preliminary step before annealing the sintered body in a high frequency furnace after hot working. As the temperature of the sintered body is increased as a preheating process, K increases the resistance of the sintered body and improves the efficiency of high-frequency heating. It also removes oxides from the sintered body.

〔発明の実施例〕[Embodiments of the invention]

本発明の高融点金属焼結体の加工方法の一実施例を図面
について説明する。この実施例はタングステン焼結体に
よシ線材を製造する場合に適用したものである。
An embodiment of the method for processing a high melting point metal sintered body of the present invention will be described with reference to the drawings. This embodiment is applied to the production of a wire rod using a tungsten sintered body.

まず、焼結工程によシ成形されたタングステン粉末から
なる焼結体1に対して、圧延加工および転打加工の熱間
加工を施し、この焼結体1を伸線してロッド状に形成す
る。
First, a sintered body 1 made of tungsten powder formed through a sintering process is subjected to hot working such as rolling and rolling, and this sintered body 1 is drawn into a rod shape. do.

次いで、とのロッド状をなす焼結体IK対して加熱炉2
で加熱した後に高周波炉3によシ焼鈍処理を施す。加熱
炉2は水素等の還元雰囲気を有するもので、加熱は電気
炉からなるものである。すなわち、炉本体4の内部に発
熱線5を巻装したセラ2.りからなる炉芯管6を設けた
もので、炉芯管6内に水素ガスが供給される。
Next, the rod-shaped sintered body IK is heated in a heating furnace 2.
After heating in the high frequency furnace 3, annealing treatment is performed. The heating furnace 2 has a reducing atmosphere such as hydrogen, and is heated by an electric furnace. That is, a cellar 2. A furnace core tube 6 is provided, and hydrogen gas is supplied into the furnace core tube 6.

高周波炉3は水冷・ダイf1を備えた炉本体8の内部に
コイル9を設けたもので、炉本体8内の雰囲気には水素
ガスが使用され、その他にアルfン、ヘリウムなどの不
活性ガスが使用される。
The high frequency furnace 3 has a coil 9 installed inside a furnace body 8 equipped with water cooling and a die f1, and hydrogen gas is used in the atmosphere inside the furnace body 8, and inert gas such as argon, helium, etc. gas is used.

また、加熱炉2と高周波炉Sとは互に出来るだけ接近し
て同一軸線上に並べて設けられ、加熱炉2から出た焼結
体1が直ちに高周波炉3に入ることができるようにしで
ある。
Further, the heating furnace 2 and the high-frequency furnace S are arranged on the same axis as close as possible to each other, so that the sintered body 1 coming out of the heating furnace 2 can immediately enter the high-frequency furnace 3. .

そして、転打加工を終了したロッド状をなす焼結体1を
フィードローラ10により加熱炉2に向けて移動し、焼
結体1を加熱炉2の炉芯管6内を通過させる。この過程
で焼結体1は還元雰囲気中において発熱線5によシ加熱
される。
Then, the rod-shaped sintered body 1 that has been subjected to rolling processing is moved toward the heating furnace 2 by the feed roller 10, and the sintered body 1 is passed through the inside of the furnace core tube 6 of the heating furnace 2. In this process, the sintered body 1 is heated by the heating wire 5 in a reducing atmosphere.

ここで、焼結体1は高周波炉3で加熱される最高到達温
度の20〜504@度の温度まで加熱される。との加熱
によシ焼結体1は熱間加工によシ表面に形成された酸化
物が脱落、蒸発して除去される。また、この焼結体1の
加熱は高胸波加熱に対する予備加熱の役割をもつ。
Here, the sintered body 1 is heated in the high frequency furnace 3 to a maximum temperature of 20 to 504 degrees Celsius. By heating the sintered body 1, the oxides formed on the surface of the sintered body 1 during hot working are removed by falling off and evaporating. Further, the heating of the sintered body 1 has the role of preheating for high chest wave heating.

加熱炉2を通過して加熱された焼結体1は、加熱炉2か
ら出た後に直ちに加熱炉2と並べて設けられた高周波炉
3の内部に移動される。なお、焼結体1のスピードは加
熱炉2で加熱された焼結体1が冷えないうちに高周波炉
3に入る速さを選ぶ。焼結体1は高周波炉Jにおいて還
元雰囲気中でコイル9によりタングステンの焼鈍に必要
な最高温度まで加熱される。ここで、焼結体lit高周
波加熱に先立ち加熱炉2により加熱されて酸化物が除去
されておシ、酸化物が無い状態で高周波炉3内に入るの
で、高周波炉3の加熱で酸化物がコイル9に付着堆積す
ることがない。このため、コイル9に付着した酸化物に
焼結体1が付着して焼結体10品位を低下させおよび電
源に高負荷を与えることを防止できる。しかも、焼結体
1を高周波炉3に移動させながら加熱炉2を通過させな
がら加熱するので、転打工程から焼鈍工程Kかけて焼結
体1を休止させることなく連続的に移動させながら酸化
物除去および予備加熱を行なえる。また、焼結体1は高
周波加熱の前段階で加熱炉2によプ予備加熱されて既に
最高到達温度に近い温度に加熱されているので、高周波
炉2では焼結体1を短時間の加熱によシ最高温度まで迅
速に温度上昇させることができる。そして、焼結体1は
温度を上昇させて抵抗を高めることにより、前述した式
からコイル9を流れる電流の周波数を増大させることな
く焼結体1の発熱量を増大できる。すなわち、焼結体1
を短時間で最高温度まで加熱でき加熱効率を高めること
ができる。
After passing through the heating furnace 2 and being heated, the sintered body 1 is immediately moved into a high-frequency furnace 3 provided side by side with the heating furnace 2 after coming out of the heating furnace 2 . The speed of the sintered body 1 is determined by selecting the speed at which the sintered body 1 heated in the heating furnace 2 enters the high frequency furnace 3 before it cools down. The sintered body 1 is heated in a high frequency furnace J in a reducing atmosphere by a coil 9 to the maximum temperature required for annealing tungsten. Here, the sintered body lit is heated in the heating furnace 2 to remove oxides before high-frequency heating, and enters the high-frequency furnace 3 without oxides, so the oxides are removed by heating in the high-frequency furnace 3. There is no possibility of deposition on the coil 9. Therefore, it is possible to prevent the sintered body 1 from adhering to the oxides attached to the coil 9, thereby reducing the quality of the sintered body 10 and preventing a high load from being applied to the power source. Moreover, since the sintered body 1 is heated while being moved to the high-frequency furnace 3 and passed through the heating furnace 2, the sintered body 1 is oxidized while being moved continuously from the rolling process to the annealing process K without stopping. Material removal and preheating can be performed. In addition, the sintered body 1 is preheated in the heating furnace 2 before high-frequency heating and has already been heated to a temperature close to the maximum temperature, so the high-frequency furnace 2 heats the sintered body 1 for a short time. The temperature can be quickly raised to the maximum temperature. By raising the temperature of the sintered body 1 and increasing its resistance, the amount of heat generated by the sintered body 1 can be increased without increasing the frequency of the current flowing through the coil 9 from the above-mentioned equation. That is, the sintered body 1
can be heated to the maximum temperature in a short time, increasing heating efficiency.

従って、高周波炉2を通過する焼結体1のスピードを速
めることができる。しかも、高周波炉1のコイル9上の
酸化物除去の必要がないので、より一層効率が向上する
。さらに1焼結体1は既に最高温度に近い温度に加熱さ
れているので、高周波炉3での加熱によシ短時間で焼結
体1の内部および表面を均一に最高温度に加熱できる。
Therefore, the speed of the sintered body 1 passing through the high frequency furnace 2 can be increased. Furthermore, since there is no need to remove oxides on the coil 9 of the high frequency furnace 1, efficiency is further improved. Further, since the sintered body 1 has already been heated to a temperature close to the maximum temperature, the inside and surface of the sintered body 1 can be uniformly heated to the maximum temperature in a short time by heating in the high frequency furnace 3.

焼鈍処理は焼結体1の材料組織を均一化するととも目的
の一つであるので、最高温度を均一化することが重要で
ある。
One of the purposes of the annealing treatment is to make the material structure of the sintered body 1 uniform, so it is important to make the maximum temperature uniform.

そして、高周波炉3による焼鈍処理を終了した後に、焼
結体1はフィードロール1oにょシ高周波炉3から次の
加工工程へ移動されゐ。
After completing the annealing process in the high frequency furnace 3, the sintered body 1 is transferred to the feed roll 1o from the high frequency furnace 3 to the next processing step.

なお、加熱炉2は電気炉に限らず、還元炎を有するがス
炉などを用いても良い。本発明はタングステンに限らず
モリブデンの焼結体を加工する場合にも適用できる。
Note that the heating furnace 2 is not limited to an electric furnace, but a gas furnace having a reducing flame or the like may be used. The present invention is applicable not only to processing sintered bodies of tungsten but also of molybdenum.

〔発明の効果〕〔Effect of the invention〕

本発明の高融点金属焼結体の加工方法は、熱間加工され
た焼結体を高周波炉で焼鈍処理する前段階に1加熱炉で
焼結体を加熱処理することによし、焼結体の酸化物を除
去するとともに予備加熱を行なうので、焼鈍時に酸化物
が高周波炉のコイルに付着することを防止でき、高周波
炉の加熱効率を高めて処理スピーiを速めることができ
るとともに焼結体を均一に加熱できる。
The method for processing a high-melting point metal sintered body according to the present invention includes heat-treating the sintered body in one heating furnace before annealing the hot-processed sintered body in a high-frequency furnace. Since preheating is performed while removing the oxides of can be heated evenly.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の加工方法の一実施例を示す説明図である
。 1・・・焼結体、2・・・加熱炉、3・・・高周波炉。
The drawings are explanatory diagrams showing one embodiment of the processing method of the present invention. 1... Sintered body, 2... Heating furnace, 3... High frequency furnace.

Claims (1)

【特許請求の範囲】[Claims] 高融点金属からなる焼結体に熱間加工を施す工程と、こ
の焼結体を還元雰囲気を有する加熱炉にて予備加熱しさ
らKこの焼結体を高周波加熱炉にて加熱して焼鈍処理す
る工程とを具備することを特徴とする高融点金属焼結体
の加工方法。
A process of hot working a sintered body made of a high-melting point metal, preheating the sintered body in a heating furnace with a reducing atmosphere, and then heating the sintered body in a high-frequency heating furnace for annealing. A method for processing a high melting point metal sintered body, comprising the steps of:
JP1663782A 1982-02-04 1982-02-04 Method for processing high melting point metal sintered body Granted JPS58133303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1663782A JPS58133303A (en) 1982-02-04 1982-02-04 Method for processing high melting point metal sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1663782A JPS58133303A (en) 1982-02-04 1982-02-04 Method for processing high melting point metal sintered body

Publications (2)

Publication Number Publication Date
JPS58133303A true JPS58133303A (en) 1983-08-09
JPS6221044B2 JPS6221044B2 (en) 1987-05-11

Family

ID=11921869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1663782A Granted JPS58133303A (en) 1982-02-04 1982-02-04 Method for processing high melting point metal sintered body

Country Status (1)

Country Link
JP (1) JPS58133303A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093886A (en) * 2005-09-28 2007-04-12 Olympus Corp Endoscope cooling apparatus and heat-resistant endoscope equipped with same
JP2017113800A (en) * 2015-12-25 2017-06-29 株式会社徳力本店 MANUFACTURING METHOD OF Ir ALLOY WIRE, AND Ir ALLOY WIRE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093886A (en) * 2005-09-28 2007-04-12 Olympus Corp Endoscope cooling apparatus and heat-resistant endoscope equipped with same
JP2017113800A (en) * 2015-12-25 2017-06-29 株式会社徳力本店 MANUFACTURING METHOD OF Ir ALLOY WIRE, AND Ir ALLOY WIRE

Also Published As

Publication number Publication date
JPS6221044B2 (en) 1987-05-11

Similar Documents

Publication Publication Date Title
JPWO2009066659A1 (en) Method for manufacturing tungsten wire
US2431690A (en) Consolidation of metal powder
DE878504C (en) Method and arrangement for the heat treatment of metal parts, in particular steel and iron parts
JP5271512B2 (en) Hot rolling equipment
JPS58133303A (en) Method for processing high melting point metal sintered body
WO2006098346A1 (en) Method for heat-treating steel material
JPS59166626A (en) Continuous spheroidizing heat treatment of rod steel
CN111495984A (en) Production method of reducing round bar rolled steel
US1089786A (en) Method of working refractory metals.
RU2071990C1 (en) Method of strip heat treatment
JPH03249156A (en) Method for manufacturing metal wire for electron tubes
JPS6235441B2 (en)
RU2064356C1 (en) Method for manufacturing hollow blanks
Sykes Metallurgy of tungsten and molybdenum
JPS5959867A (en) Manufacture of rhenium-tungsten alloy material
JPS5829522A (en) Manufacture of tungsten wire
JP2002146433A (en) Double tapered steel wire, and method and system for its continuous heat treatment
JPH0881713A (en) Spheroidizing method of carbide in steel by direct current heating
JP2000328104A (en) Sintering method of ferrous sintered alloy
JP2001192771A (en) Small diameter hot rolled wire
JP2575696B2 (en) Wire rod manufacturing method
JPS6221042B2 (en)
JP2533987B2 (en) Hot rolling method for continuous cast slab for unidirectional electrical steel sheet.
JP2001234249A (en) Heat treatment method and heat treatment apparatus for metal strip
JPS5942152A (en) Manufacture of roll by gradient heating forging process