JPS58130996A - Method and apparatus for chemical heat accumulation - Google Patents
Method and apparatus for chemical heat accumulationInfo
- Publication number
- JPS58130996A JPS58130996A JP57014072A JP1407282A JPS58130996A JP S58130996 A JPS58130996 A JP S58130996A JP 57014072 A JP57014072 A JP 57014072A JP 1407282 A JP1407282 A JP 1407282A JP S58130996 A JPS58130996 A JP S58130996A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- reactor
- reaction
- condenser
- heat source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 18
- 239000000126 substance Substances 0.000 title claims description 9
- 238000009825 accumulation Methods 0.000 title 1
- 238000006243 chemical reaction Methods 0.000 claims description 35
- 238000005338 heat storage Methods 0.000 claims description 18
- 239000007787 solid Substances 0.000 claims description 8
- 150000003839 salts Chemical class 0.000 claims description 4
- 239000000376 reactant Substances 0.000 claims 1
- 238000004891 communication Methods 0.000 description 16
- 238000001816 cooling Methods 0.000 description 13
- 239000003507 refrigerant Substances 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 239000002918 waste heat Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000004134 energy conservation Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000001467 acupuncture Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 210000004262 dental pulp cavity Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 150000004681 metal hydrides Chemical class 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/003—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、太陽熱、産業廃熱、その他の廃熱)を化学蓄
熱反応により蓄熱させ、その放熱時に廃熱源よりより高
い温度の熱として回収する化学蓄熱方法および装置に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a chemical heat storage method and device for storing solar heat, industrial waste heat, and other waste heat through a chemical heat storage reaction, and recovering the heat at a higher temperature than the waste heat source when the heat is released. .
口→
現在、社会的に省エネルギーの必要性が呼ばれ、各種の
省エネルギー技術が見い出されているが、それ等の中で
も間欠的な廃エネルギーの有効利用法としての蓄エネル
ギーおよび蓄熱技術が重要な占
位置を清めるに到っている。→ Currently, there is a social need for energy conservation, and various energy conservation technologies have been discovered, but among these, energy storage and heat storage technology, which is an effective way to use intermittent waste energy, is an important area. The location has been cleared.
ところで、化学蓄熱体としては、現在じ、Ca0−H=
o 、 Mgo −HIO、金属水素化物、アンミン錯
体等その他多数空ありこれらはその利用温度範囲によっ
て分類され、(3aO−HsO系は300℃〜1,00
0℃の高温域で、H寝804− H雪0系は100℃〜
300℃の中温域で、そしてアンミン錯体系は100℃
以下の低温域で利用されている。しかし漸近では省エネ
ルギー技術により高温域の比較的良質と考えられる廃熱
の利用技術よりもむしろ中温域および低温域の廃熱源の
蓄熱技術の必要性が増加しつつある。By the way, at present, as a chemical heat storage body, Ca0-H=
o, Mgo-HIO, metal hydrides, ammine complexes, and many others.
In the high temperature range of 0℃, H-snow 804-H snow 0 series is 100℃~
In the intermediate temperature range of 300℃, and for the ammine complex system at 100℃
It is used in the following low temperature ranges. However, in the asymptote, due to energy saving technology, there is an increasing need for heat storage technology for waste heat sources in the medium and low temperature ranges, rather than technology for utilizing waste heat in the high temperature range, which is considered to be of relatively good quality.
本発明に関連する従来の化学蓄熱方法の原理と構成を載
設すると次のようKなる。The principle and structure of the conventional chemical heat storage method related to the present invention are as follows.
従来法(そのl)
A −nx(固)+へH,:A(固)+n −x (気
) (イ)A −nx=水和物又は錯体、 △H=
反応熱A =無水塩 n =モル数X
=蒸気またはガス
の化学反応を利用した化学蓄熱体の蓄熱および放熱工程
を第1図および第2図で説明すると次のようである。第
2図中のft)Fi凝縮器で、冷媒流入管(7)、冷却
部(4)および冷媒出口管(6)により流入出する冷媒
により、連通管(3)から流入する蒸気を凝縮して液体
とする。一方反応器(2)には水和物または錯体が充填
され、熱源媒体入口(9)、加熱部(6)および熱源媒
体出口(8)を通過する熱源媒体でもって反応器(2)
内の充填物は加熱される。なお(lO)はパルプである
。Conventional method (part 1) A -nx (solid) + to H,: A (solid) + n -x (gas) (a) A -nx = hydrate or complex, △H =
Heat of reaction A = anhydrous salt n = number of moles X
=The heat storage and heat release process of a chemical heat storage body using a chemical reaction of steam or gas is explained as follows with reference to FIGS. 1 and 2. In the ft) Fi condenser in Fig. 2, the vapor flowing in from the communication pipe (3) is condensed by the refrigerant flowing in and out through the refrigerant inlet pipe (7), the cooling section (4), and the refrigerant outlet pipe (6). to make a liquid. On the other hand, the reactor (2) is filled with a hydrate or a complex, and the heat source medium passes through the heat source medium inlet (9), the heating section (6), and the heat source medium outlet (8).
The filling inside is heated. Note that (lO) is pulp.
A)蓄熱工程について
4g
まず反応器(2)内に水#智または錯体を充填し、ノ(
ルプ11(mを開とすると同時に冷媒流出入管+61
+71および冷却部(4)に冷媒を逸する。その后熱源
媒体流出入管+8) (91および加熱部(6)K熱源
媒体を流入させることにlり反応器(2)内の充填物は
加熱され、分解されて蒸気を発生する。この蒸気は連通
管(3)を通り、凝縮器(1)内圧流入して、その内部
の冷却部(4)によって冷却凝縮されて液体となる。こ
の反応は反応式(イ)のごとく左辺から右辺へと反応が
進行した仁とになる。このことは第1図の蒸気圧線図に
おいて矢印を有する実線に従って反応が進行したことと
なる。A) About the heat storage process 4g First, fill the reactor (2) with water or a complex,
When loop 11 (m) is opened, the refrigerant inlet/outlet pipe +61
+71 and cooling section (4). After that, the heat source medium inflow/outflow pipe +8) (91 and heating section (6)K) By letting the heat source medium flow in, the filling in the reactor (2) is heated and decomposed to generate steam. This steam is The internal pressure of the condenser (1) flows through the communication pipe (3) and is cooled and condensed into a liquid by the cooling section (4) inside.This reaction proceeds from the left side to the right side as shown in reaction formula (a). This means that the reaction has progressed according to the solid line with arrows in the vapor pressure diagram of FIG.
この反応が終了后、パルプ叫を閉じると両系は隔絶され
て蓄熱状態が成立する。After this reaction is completed, when the pulp scream is closed, both systems are isolated and a heat storage state is established.
B)放熱工程について
放熱の場合には、熱源媒体流出入管+81 、 +91
および加熱部(6)に熱回収用媒体を流通させた后、パ
ルプ叫を開とすると、反応器(2)内の内圧が凝縮器1
1+内の内圧よりも低いため、凝縮器(11内の項一で
ある無水塩と反応して水和物に変化し、この時化ずる反
応熱は熱回収媒体にょシ回収される。本工程においては
、凝縮液を蒸発させるために、低温熱源たとえば水が通
常使用される。B) Regarding heat radiation process In the case of heat radiation, heat source medium inflow and outflow pipes +81, +91
After the heat recovery medium is circulated through the heating section (6), when the pulp pump is opened, the internal pressure inside the reactor (2) increases to the condenser 1.
Since the internal pressure is lower than the internal pressure in the condenser (11), it reacts with the anhydrous salt in item 1 and changes into a hydrate, and the heat of reaction generated at this time is recovered by the heat recovery medium. This step In applications, a low temperature heat source, such as water, is usually used to evaporate the condensate.
従来法(その2)
B −n’c (固)+△H°二B(固)+n’C!(
気片…・・(ロ)D −n”E (固)十△H″:D(
固)+n”Ft(気> ・−−−−−eqB−n’c=
水和物または錯体 C=蒸気またはガスD −n”
E =水和物または錯体 E=蒸気またはガスΔH
’=反応熱 △「“2反応熱の化学反応を利用し
友化学蓄熱体の蓄−および放熱工程を第3図および第4
図で説明する。Conventional method (Part 2) B −n'c (solid) + △H°2B (solid) + n'C! (
Spirit piece...(b) D -n"E (hard) 10△H":D(
solid)+n"Ft(ki>・----eqB-n'c=
Hydrate or complex C=vapour or gas D −n”
E = hydrate or complex E = vapor or gas ΔH
' = Reaction heat
This will be explained with a diagram.
−4図中、反応器(!1)には熱源媒体および熱回収用
媒体の流通路である熱源媒体流出入管08) DIおよ
び加熱部■があり、反応器(I坤は2重構造で、外側に
は反応器(川から蒸気の凝縮液、内側には充填物が留保
されている。-4 In Figure 4, the reactor (!1) has a heat source medium inlet/outlet pipe (08) which is a flow path for the heat source medium and the heat recovery medium, DI and heating section (1), and the reactor (!1) has a double structure. The reactor (condensate of steam from the river) is stored on the outside, and the filling is stored on the inside.
また凝縮器−には冷却用冷媒通路となる冷媒流出入管−
圓および冷却部−がある。連通管(111は反応器(I
l)と反応器0乃の外側部分(12b)を連通ずるもの
であり、連通管αηは反応器α乃の内側部分(12a)
と凝縮器0′4を連通するものである。なお(14)(
l荀はパルプである。In addition, the condenser has refrigerant inlet and outlet pipes that serve as cooling refrigerant passages.
There is a circle and a cooling section. The communication pipe (111 is the reactor (I)
l) and the outer part (12b) of reactor 0, and the communication pipe αη communicates with the inner part (12a) of reactor α.
The condenser 0'4 is connected to the condenser 0'4. Note that (14) (
lxun is pulp.
A)蓄熱工程について
まず反応器(川および反応器(l@の内側部@12a)
に水和物または錯体を充填し、冷媒流出入管−(財)お
よび冷却部圀に冷媒を流入する。その后ノ(ルプ04)
(1@を開とし、熱源媒体流出入管H(IIに熱源媒
体を流入させると加熱部翰で反応器(11)内の充填物
は加熱される。この時反応式e→において左辺から右辺
に反応が進行する。反応器θ1)で発生した蒸気は反応
器(1′4の外側部分(12b)に流入し同反応器の内
側部分(12a)の充填物を加熱することにより、蒸気
は凝縮して液体となる。加熱された反応器H内の充填物
から発生した蒸気は連通管(lηを通り凝縮器01に到
って冷却部−と接触して熱交換を行い、凝縮する。A) Regarding the heat storage process, first the reactor (river and reactor (inner part of l@@12a)
The refrigerant is filled with hydrate or complex, and the refrigerant flows into the refrigerant inlet/outlet pipe and the cooling section. After that (Lupu 04)
When (1@ is opened and the heat source medium flows into the heat source medium inflow and outflow pipe H (II), the filling in the reactor (11) is heated by the heating section. At this time, in the reaction equation e→, the flow changes from the left side to the right side. The reaction progresses. The steam generated in the reactor θ1) flows into the outer part (12b) of the reactor (1'4), and by heating the filling in the inner part (12a) of the reactor, the steam is condensed. The vapor generated from the heated filling in the reactor H passes through the communication pipe (lη) and reaches the condenser 01, where it contacts the cooling section to exchange heat and condense.
この時の反応は反応式(財)において左辺から右辺て反
応が進行したことになる0反応終了后にパルプ(14)
DIを閉とすれば蓄熱工程は終了する。The reaction at this time is that the reaction progressed from the left side to the right side in the reaction equation. 0 After the reaction is completed, the pulp (14)
When DI is closed, the heat storage process ends.
B)放熱工程について
放熱の場合には、熱回収用媒体を反応器(1)内に熱源
媒体流出入管を通して流入させ九后K。B) Regarding the heat dissipation process In the case of heat dissipation, the heat recovery medium is flowed into the reactor (1) through the heat source medium inflow and outflow pipe.
パルプ(16) (11を開とすると、凝縮器α場内の
蒸気が連通管C1711を通って反応器(I乃の内側部
分(12a) Ic流入し充填物と反応して反応熱を発
生し、この熱により同反応器の外側部分(12b)の凝
縮液を加熱し蒸気を発生させる。この蒸気は連通管+1
6)を通って反応器(11)に入り充填物と反応し反応
熱を発生させる。発生した反応熱は熱源媒体流出入管Q
8) H内を流れる熱回収用媒体と熱交換し、外部に持
ち去られる。When the pulp (16) (11 is opened, the steam in the condenser α field flows through the communication pipe C1711 into the reactor (inner part (12a) of I), reacts with the filling material, and generates reaction heat. This heat heats the condensate in the outer part (12b) of the reactor and generates steam.
6) and enters the reactor (11) where it reacts with the filling and generates reaction heat. The generated reaction heat is transferred to the heat source medium inlet and outlet pipe Q.
8) It exchanges heat with the heat recovery medium flowing inside H and is carried away to the outside.
反応器(1匂で起る反応は反応式(1′4での右辺から
左辺へ進行する反応であり、反応器(11)で起る反応
る反応式ある。これは第3図の蒸気圧線図において点線
で示される放熱工程である0本工程においては従来法(
その1)と同様に凝縮液を蒸発させるための低温熱源が
必要となる。The reaction that occurs in the reactor (11) is a reaction that proceeds from the right side to the left side in the reaction equation (1'4), and there is a reaction equation that occurs in the reactor (11). This is the vapor pressure in Figure 3. The conventional method (
Similar to part 1), a low-temperature heat source is required to evaporate the condensate.
以上の2つの従来法では熱の回収は可能であるが熱源の
温度以上の温度を有する熱を回収することは不可能であ
る。現在では、低温熱源からそれ等の熱源の温度よりも
高い回収熱源を得る必要があり、本発明はこの要求を満
すために提供されたものである。In the above two conventional methods, it is possible to recover heat, but it is impossible to recover heat having a temperature higher than the temperature of the heat source. There is currently a need to obtain a recovered heat source from low temperature heat sources that is higher in temperature than those heat sources, and the present invention is provided to meet this need.
次に本発明を第5図、および第6図を用いて詳細に説明
する。Next, the present invention will be explained in detail using FIGS. 5 and 6.
反応器?蜀の内部には充填物と熱源媒体流出入管側、0
ηおよび加熱部翰があり、凝縮器t2BKは冷媒流出入
管側(イ)および肢管に連結する冷却部四が内設されて
いる。反応器−は内側部分(26a)と外側部分(26
b)とに隔絶された2重構造であり、内側部分(26a
)には熱源媒体流出入管f411および肢管に連結する
加熱部−が内設されている。また凝縮器(財)Kは冷媒
流出入管■(転)および肢管に連結する冷却部口υが内
設されている。連通管−は反応器(財)と凝縮器−とを
連絡する管で、連通管−は、連通管@四を通して反応器
(財)と反応器(イ)の外側部分(26b)とを連絡す
る管である。Reactor? Inside the Shu, there is a filling and a heat source medium inlet/outlet pipe side, 0
The condenser t2BK has a cooling section 4 connected to the refrigerant inflow/outflow pipe side (A) and the limb pipes. The reactor has an inner part (26a) and an outer part (26a).
b) It has a double structure separated from the inner part (26a
) is internally provided with a heat source medium inflow/outflow pipe f411 and a heating section connected to the limb pipe. Further, the condenser K is internally provided with a refrigerant inlet/outlet pipe (1) and a cooling part port υ connected to the limb pipe. The communication pipe - is a pipe that connects the reactor (goods) and the condenser -, and the communication pipe - connects the reactor (goods) and the outer part (26b) of the reactor (a) through the communication pipe @4. It is a tube that
連通管(財)は凝縮器(至)と反応器−の外側部分(2
6b)とを連絡するもので、連通管−は反応器−の内側
部分(26a)と凝縮器(ロ)とを連絡する管である。The communication pipe (goods) connects the condenser (to) and the outer part (2) of the reactor.
6b), and the communication pipe is a pipe that connects the inner part (26a) of the reactor and the condenser (b).
←4)(憎囮〔ηに〜−−〇pはパルプである。←4) (Hate decoy [ηni ~---〇p is pulp.
A)蓄熱工程について
まず反応器(24および(イ)の内側部分(26a)
Ic水和物あるいは錯体を充填した后に、パルプ瞥−を
開にして冷却媒体を凝縮器(財)および(財)にそれぞ
れ冷媒流出入管(3I19(至)■禰およびそれぞれの
冷却部(2!1taoを通して循項させる。その后パル
ブー−ηを開にすると共にパルプKI IIを開にして
反応器例および反応器(イ)の内側部分(26a)にそ
れぞれ熱源媒体流出入管!61@ηf41f41)およ
び加熱部(至)−に熱源媒体を流入させる。すると各反
応器中の水和物または錯体は熱源の有する温度(TI)
まで上昇すると同時に蒸気圧(式)、蒸気が発生する。A) Regarding the heat storage process, first, the inner part (26a) of the reactor (24 and (a))
After filling the Ic hydrate or complex, open the pulp door and transfer the cooling medium to the condenser (goods) and (goods), respectively, through the refrigerant inlet and outflow pipes (3I19 (to)) and the respective cooling sections (2). After that, the parbu-η is opened and the pulp KI II is opened to connect the heat source medium inflow and outflow pipes to the reactor example and the inner part (26a) of the reactor (a), respectively!61@ηf41f41) Then, the hydrate or complex in each reactor is heated to the temperature (TI) of the heat source.
At the same time, the vapor pressure (formula) increases and steam is generated.
反応器例で発生した蒸気は連通管−およびパルプ(44
Iを経て凝縮器(ハ)内の冷却部四と接触して凝縮液体
となってたまる。この時の凝縮液体の温度は(T1)で
ある。また反応器−の内側部分(26a)に充填された
水和物あるいは錯体も加熱されて反応器e241と同様
に蒸気圧(P* )y (TI )の温度を有する蒸気
を発生し、その蒸気は連通管−およびパルプ(4ηを経
て凝縮器(財)で、冷媒流出入管IQ f43)および
冷却部(30と接触して(Tりの温度を有する凝縮液体
となる。このように各々の反応器における反応が終了し
た后、各パルプを閉とすれば蓄熱工程は完了となる。こ
の反応は反応式(イ)の左辺から右辺への反応の進行と
なる。The steam generated in the reactor example is passed through the communication pipe and the pulp (44
It comes into contact with the cooling section 4 in the condenser (c) through I and becomes a condensed liquid and accumulates. The temperature of the condensed liquid at this time is (T1). In addition, the hydrate or complex filled in the inner part (26a) of the reactor is also heated and generates steam having a temperature of vapor pressure (P*)y (TI) as in reactor e241, and the steam is in contact with the communication pipe and the pulp (through 4η to the condenser, refrigerant inflow/outflow pipe IQ f43) and the cooling section (30) to become a condensed liquid with a temperature of (T).In this way, each reaction After the reaction in the vessel is completed, the heat storage process is completed by closing each pulp.This reaction progresses from the left side to the right side of reaction equation (a).
(2)放熱工程について
放熱の場合には、まずパルプ顛を開にし、連通y
管(財)を通して、凝縮器窯内の凝縮液を反応器外側部
分(26a )に流下させた后にパルプ(46)を閉に
する。(2) Heat radiation process In the case of heat radiation, the pulp chamber is first opened, and the condensate in the condenser kiln is allowed to flow down to the outer part (26a) of the reactor through the communication pipe. 46) close.
そして熱回収用媒体を反応器例および(イ)の内側部分
(26a) K熱源媒体流出入管−に71f41 f4
1+および加熱部間−を経て流入させる。次にパルプ←
η−を開とすると凝縮器(財)内の蒸気は連通管−を通
って反応器内側部分(26a)に到り、そこで反応式(
イ)の右辺から左辺への反応が生じ反応熱が発生する。Then, the heat recovery medium is inserted into the reactor and the inner part (26a) of (a).
1+ and between the heating parts. Next is pulp←
When η- is opened, the steam in the condenser passes through the communication pipe and reaches the inner part of the reactor (26a), where the reaction formula (
A reaction occurs from the right side to the left side of b), and reaction heat is generated.
この反応熱により反応器外側部分(26b)の凝縮液を
第5図に示されている温度(TI)まで加熱する。This heat of reaction heats the condensate in the outer part of the reactor (26b) to the temperature (TI) shown in FIG.
そこでは温度(T1)に相当する蒸気圧力(P”l)の
蒸気が発生する。この蒸気は連通管UNを通ってより低
圧の状態にある反応器−まで到り、反応式(イ)の右辺
から左辺への反応により発熱して水和物または錯体の蒸
気圧(PII、)に相当する温度(Ts)にまで上昇し
て熱回収用媒体によって熱源よりも高い温度の熱が回収
されることKなる0木工11においと
でも、蓄熱工程の場合を同じく凝縮液を蒸発させるため
の水がW#媒R出入賃關−■−に通しることが必要であ
る。本発明はこのような方法を用いることにより、従来
熱源の有する温度以上の温度を持つ熱の回収は不可能で
6つ九ものを可能にすることができるという絶大なる効
果を有するものである。There, steam with a steam pressure (P"l) corresponding to the temperature (T1) is generated. This steam passes through the communication pipe UN and reaches the reactor, which is in a lower pressure state, and the reaction formula (a) is expressed. The reaction from the right side to the left side generates heat and rises to a temperature (Ts) corresponding to the vapor pressure (PII, ) of the hydrate or complex, and the heat at a higher temperature than the heat source is recovered by the heat recovery medium. Even in the case of woodworking 11, it is necessary for the water to evaporate the condensate to evaporate the condensate in the case of the heat storage process. By using this method, it is possible to recover heat having a temperature higher than that of conventional heat sources, which has been impossible, and has the tremendous effect of making it possible.
第1図%$3図は従来公知の蒸気圧線図にして第2図は
第1図の第4図は第3図にもとづく化学蓄熱方法を示す
概要図、さらに第5図は本発明を説明するための蒸気圧
線図にして第6図は本発明の実施例を示す概要図である
。Fig. 1%$3 is a conventionally known vapor pressure diagram, Fig. 2 is a schematic diagram showing the chemical heat storage method based on Fig. 1, Fig. 4 is a schematic diagram showing the chemical heat storage method based on Fig. 3, and Fig. FIG. 6 is a vapor pressure diagram for explanation, and is a schematic diagram showing an embodiment of the present invention.
(2蜀・・・・・・・・・反応器 □□□・・・・
・・用凝縮器鍼・・・・・・・・・反応器 □□□
・・・・・・・・・凝縮器シ0〔・・・・・加熱部
(2I@υ・・・・・・冷却部オニ1劉
才z1ml
f 31狽
″7′4−lΔ
ロ
声気五゛ −(2 Shu・・・・・・Reactor □□□・・・・
・・Condenser acupuncture・・・・・・・Reactor □□□
......Condenser 0 [...Heating part
(2I@υ・・・・・・Cooling part oni 1 Liu Saiz 1ml f 31狽″7′4−lΔ ロ Voice Qi 5゛ −
Claims (1)
お△H=反応熱 いては、無水塩と結合して固
体となる)の反応系を利用した化学蓄熱法において、該
反応系をすくなくとも2系列直列に組合せることにより
熱源媒体の有する温度よりも高い温度の熱を回収するこ
とを特徴とした化学蓄熱方法 (2] A−X+△H;:A十x A−X−水和物または錯体 八 −無水塩 X −蒸気もしくはガス(但し左辺に
お△H=反応熱 いては、無水塩と結合して固
体となる) の反応系を利用して蓄熱する装置において、少なくとも
2つの反応器と2つの凝縮器を有し、反応器のうちの1
つは反応物と凝縮液を隔絶された状態で同時に収容可能
な構造とし、凝縮器のうちの1つは蒸発器の機能をもっ
た構造を有し、他方の[Claims] (+) A−X+△H2A+X A4 = hydrate or complex A - anhydrous salt A chemical heat storage method that utilizes a reaction system (which becomes solid when the heat source is heated), characterized in that heat at a temperature higher than that of the heat source medium is recovered by combining at least two series of said reaction systems in series. Method (2) A-X + △H: Ax A-X - Hydrate or complex 8 - Anhydrous salt A device for storing heat using a reaction system (which becomes a solid when it becomes a solid), which has at least two reactors and two condensers, and one of the reactors
One of the condensers has a structure that can accommodate the reactant and the condensate at the same time in an isolated state, one of the condensers has a structure that has the function of an evaporator, and the other has a structure that has the function of an evaporator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57014072A JPS58130996A (en) | 1982-01-29 | 1982-01-29 | Method and apparatus for chemical heat accumulation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57014072A JPS58130996A (en) | 1982-01-29 | 1982-01-29 | Method and apparatus for chemical heat accumulation |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58130996A true JPS58130996A (en) | 1983-08-04 |
Family
ID=11850895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57014072A Pending JPS58130996A (en) | 1982-01-29 | 1982-01-29 | Method and apparatus for chemical heat accumulation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58130996A (en) |
-
1982
- 1982-01-29 JP JP57014072A patent/JPS58130996A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2615602A1 (en) | PROCESS FOR PRODUCING COLD BY SOLID-GAS REACTION AND DEVICE THEREFOR | |
JPS59107160A (en) | Method of operating two mode type heat pump and two mode type heat pump for operating said method | |
JPH076708B2 (en) | Chemical heat storage system | |
KR101665452B1 (en) | MEG regeneration system | |
JPS58130996A (en) | Method and apparatus for chemical heat accumulation | |
JPH0332709B2 (en) | ||
JPS5921503A (en) | Heat recovering device | |
JPH06507008A (en) | Cold air and/or hot air generator using solid-gas reaction | |
CN205448814U (en) | A middle medium heat transfer device for supercritical water oxidation system | |
JPH03282190A (en) | Heat accumulating device | |
JPS62255760A (en) | Hot water heat recovery method | |
JPH06109388A (en) | Chemical heat storage method and device | |
JPS6048467A (en) | Method of driving heat pump device | |
JPH0268463A (en) | chemical heat pump | |
JP5652190B2 (en) | Heat recovery system | |
JPS6213971A (en) | Method and device for recovering waste heat | |
JPH04126961A (en) | Chemical storage heat pump | |
JPS63259391A (en) | chemical heat storage device | |
JPS61186791A (en) | Heat storage device | |
JPS6314947Y2 (en) | ||
JPS63243607A (en) | Condenser | |
JPS6280459A (en) | Absorption type heat pump | |
JP5123666B2 (en) | Generation of cryogenic cooling in thermochemical equipment. | |
JPS61134551A (en) | Metallic hydride heat pump device | |
JPH08233477A (en) | Two-phase heat exchanger at controlled temperature |