[go: up one dir, main page]

JPS58129235A - Fuel property detector - Google Patents

Fuel property detector

Info

Publication number
JPS58129235A
JPS58129235A JP1009882A JP1009882A JPS58129235A JP S58129235 A JPS58129235 A JP S58129235A JP 1009882 A JP1009882 A JP 1009882A JP 1009882 A JP1009882 A JP 1009882A JP S58129235 A JPS58129235 A JP S58129235A
Authority
JP
Japan
Prior art keywords
fuel
light
refractive index
detector
property detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1009882A
Other languages
Japanese (ja)
Inventor
Teruo Yamauchi
山内 照夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1009882A priority Critical patent/JPS58129235A/en
Publication of JPS58129235A publication Critical patent/JPS58129235A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To decrease the change in the lapse of time, by irradiating light to a fuel from the outside or inside of the fuel and measuring the refractive index of light generated at the time of emanating the transmitting light transmitted the fuel from the liquid face of the fuel to gas. CONSTITUTION:A fuel property detector 31 is provided on the side of a cap 22 of a fuel injection pipe 21 of a fuel tank 4 and a measuring signal of this detector 31 is inputted into a control circuit 9 consisting of a microcomputer, etc. The fuel in the tank 4 measured its property by the variation of refractive index of light by the detector 31 at the time of injecting the fuel, is compressed by a pump 6 and the compressed fuel is set at a prescribed pressure by a regulator 8 and then, said fuel is sent to a fuel jetting valve 3. Opening and closing time and time width are controlled by carrying out operational processing of each signal of a crank angle sensor 11, a water temperature sensor 12, a throttle valve opening degree sensor 15 and a detector 31 by a control circuit 9 and compared with a correction factor stored in a storage circuit and then commanded from the circuit 9 to actuators such as a fuel jetting valve 3, an ignition plug 20, etc.

Description

【発明の詳細な説明】 本発明は、自動車、航空機等の燃焼器に供給される燃料
の性状t−測測定るセンナに係シ、特に、低質な燃料性
状を非接触で測定するに好適な燃料性状検出!11に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a senna for measuring the properties of fuel supplied to combustors of automobiles, aircrafts, etc., and is particularly suitable for non-contact measurement of low quality fuel properties. Fuel property detection! Regarding 11.

電容量を測定し、その燃料自身が持つ誘電率から燃料の
性状を測定する方式と、燃料に赤外mt−照射して、そ
の吸光匿を測定して燃料の性状を知る方式等がある。し
かし、前者の方式では測定の経時変化がToシ、後者の
方式ではコスト高等となる欠点を有し、それぞれ実用化
する場合のネックとなっている。
There are methods to measure the capacitance and determine the properties of the fuel from the dielectric constant of the fuel itself, and methods to know the properties of the fuel by irradiating the fuel with infrared mt-rays and measuring its absorption. However, the former method has disadvantages in that the measurement changes over time, and the latter method has the drawbacks of high costs, which are obstacles to practical use.

ここで、従来の燃料供給系の一伺をgllillに示す
。エンジンlo@気管内の絞シ弁2の下流には。
Here, a glimpse of a conventional fuel supply system is shown below. Engine lo @ downstream of throttle valve 2 in the trachea.

燃料噴射弁3が設置され、この燃料噴射弁3には燃料タ
ンク4からフィルタ5、ボンブー、サージタンク6及び
Vギュレータ8t−通して燃料が供給される。また、適
切な燃料量を決定する制御回路9からの出力信号がこの
燃料噴射弁3に入力されている。この制御回路9には、
クランク軸10に連動するクランク角センサ11.水温
センサ12、排気管13に設置される酸素センサ14、
絞9弁2に連動する絞シ弁開度センサ15及びエアクリ
ーナ16からの空気が通るバイパス通路17に設けられ
たホットワイヤセンナ18等の各櫨センサの出力信号が
入力されている。また、この制御回路9の出力信号が点
火コイル19に出力され、この点火コイル19はエンジ
ン1に城付けられた点火プラグ20に電気的接続されて
いる。
A fuel injection valve 3 is installed, and fuel is supplied to the fuel injection valve 3 from a fuel tank 4 through a filter 5, a bomb, a surge tank 6, and a V regulator 8t. Further, an output signal from a control circuit 9 that determines an appropriate amount of fuel is input to the fuel injection valve 3. This control circuit 9 includes
Crank angle sensor 11 linked to the crankshaft 10. A water temperature sensor 12, an oxygen sensor 14 installed in the exhaust pipe 13,
Output signals from various sensors such as a throttle valve opening sensor 15 linked to the throttle valve 9 valve 2 and a hot wire sensor 18 provided in a bypass passage 17 through which air from the air cleaner 16 passes are input. Further, the output signal of this control circuit 9 is outputted to an ignition coil 19, and this ignition coil 19 is electrically connected to a spark plug 20 attached to the engine 1.

次に燃料タンク4の断面構造例t−第2図に示す。Next, an example of the cross-sectional structure of the fuel tank 4 is shown in FIG.

燃料タンク4に挿入されている燃料注入管21の先端部
に6るキャップ22を外して、この燃料注入管21内に
燃料を注入すると、燃料は防振プレート23を通シタン
ク内に拡がシ燃料液向レベルが上昇する。この液面レベ
ルの上昇はオーバーフロー防止管24が詰まる壕で上昇
し、フロート25が連結された燃料レベルセンサ26に
よって残油量が知らされる。なお、管27は第1図のボ
ンプロに*続される送油管、管28はポンプ6の吐出側
に接続されろリターンチューブ、管29はタンク内の熱
気を排出するペーパー回収管であり、タンク内の燃料は
ドレン抜き3oを開放することで外部に排出する。
When the cap 22 attached to the tip of the fuel injection pipe 21 inserted into the fuel tank 4 is removed and fuel is injected into the fuel injection pipe 21, the fuel spreads into the tank through the vibration isolating plate 23. Fuel level increases. This liquid level rises at the trench where the overflow prevention pipe 24 is clogged, and the amount of remaining oil is notified by the fuel level sensor 26 to which the float 25 is connected. Note that the pipe 27 is an oil feed pipe connected to the pump shown in Fig. 1, the pipe 28 is a return tube connected to the discharge side of the pump 6, and the pipe 29 is a paper recovery pipe for discharging hot air from the tank. The fuel inside is discharged to the outside by opening the drain 3o.

このような従来の燃料供給系に代替燃料等の低質な燃料
を使用した場合、燃料と空気の比である混合比の制御が
し切れない。そこで燃料の性状に対応して混合党議[を
制御することが必須要件となり、性I@O良い燃料性状
検出器の開発が望まれている。
When a low-quality fuel such as an alternative fuel is used in such a conventional fuel supply system, the mixture ratio, which is the ratio of fuel to air, cannot be fully controlled. Therefore, it is essential to control the mixing ratio according to the properties of the fuel, and it is desired to develop a fuel property detector with good I@O properties.

本発明の目的は、上記の欠点を解消し、低価格で、且つ
経時変化の少ない燃料性状検出器を提供することにある
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a fuel property detector that is low in cost and has little change over time.

本@明は、空気中から液体中へ、又は液体中から空気中
へ光線を照射すると、照射された液体の物性によって気
液の境界面での光線の進路が異なることに着目し、燃料
に光を照射し、この光の気液の弐面での屈折角度を測定
することにょシ、燃料の性状を測定するものである。
This book focuses on the fact that when a light beam is irradiated from the air into a liquid or from a liquid into the air, the path of the light beam at the gas-liquid interface differs depending on the physical properties of the irradiated liquid. The properties of the fuel are measured by irradiating light and measuring the angle of refraction of this light on the two sides of the gas and liquid.

以下本発明の実施例を従来内と同部品は同符号を用いて
図面に従って説明する。
Embodiments of the present invention will be described below with reference to the drawings, using the same reference numerals for the same parts as in the conventional art.

第3図は本発明の燃料性状検出器の一実施例を備えた燃
料供給系の構成を示したll!明図である。
FIG. 3 shows the configuration of a fuel supply system equipped with an embodiment of the fuel property detector of the present invention! This is a clear diagram.

燃料タンク4の燃料注入管21の中ヤップ22Hに、燃
料性状検出器31が設けられている。この燃料性状検出
器31の測定信号はマイクロコンビエータ等で構成され
九制御回路9に入力されている。燃料注入時に燃料性状
検出器31によりその性状を測定された、燃料タンク4
内の燃料は、フィルタst−通シ、ポンプ6で圧−され
、Vギュレータ8で所定の圧力に設定されて、吸気管3
2に城付けられた燃料噴射弁3に送られる。この燃料噴
射弁8の開弁時期及びその時間幅の制御は、クラ/り角
センサ11.水温センサ12.絞り弁開度センサ15及
び燃料性状検出′a31からの各信号を制御回路9に取
込み、ここで演算処理され、また記憶回路に記憶されて
いる修正ファクタと突き合わされ比較されて、燃料噴射
弁31点火プラグ20等のアクチュエータ類へ、この制
御回路9から指令を送ることによりなされる。なお、符
号33は吸気弁、符号34は排気弁及び符号35は制御
回路9等に電力を供給するバッテリを示している。
A fuel property detector 31 is provided at the middle end 22H of the fuel injection pipe 21 of the fuel tank 4. The measurement signal from the fuel property detector 31 is input to a control circuit 9, which is comprised of a micro combinator or the like. A fuel tank 4 whose properties are measured by a fuel property detector 31 when fuel is injected.
The fuel in the intake pipe 3 is passed through the filter ST, is pressurized by the pump 6, is set to a predetermined pressure by the V regulator 8, and is sent to the intake pipe 3.
The fuel is sent to the fuel injection valve 3 attached to the fuel injection valve 2. The opening timing and duration of the fuel injection valve 8 are controlled by the angle sensor 11. Water temperature sensor 12. Each signal from the throttle valve opening sensor 15 and the fuel property detection 'a31 is taken into the control circuit 9, where it is arithmetic processed, compared with the correction factor stored in the storage circuit, and the signal is sent to the fuel injection valve 31. This is done by sending commands from this control circuit 9 to actuators such as the spark plug 20. Note that the reference numeral 33 indicates an intake valve, the reference numeral 34 an exhaust valve, and the reference numeral 35 a battery that supplies power to the control circuit 9 and the like.

ここで、事実、m1fiiの燃料性状検出器31(iD
構成について、詳述する。この燃料性状検出器31は、
燃料の物性の違いに↓9、それを透過する光の屈折率が
変化することを利用して、燃料性状を検出するものであ
る。第4図は従来のガンリンにメタノールを混合した混
合燃料の成分比による光の屈折率の変化を示したもので
める。即ち、純ガソリンだと屈折率nキ1.51相匿で
あるが、メタノールを40%混合するとn中1.4に変
化する。結局、メタノール混入率の増加に従って光の屈
折率は一義的に変化することが分る。
Here, in fact, m1fii's fuel property detector 31 (iD
The configuration will be explained in detail. This fuel property detector 31 is
Fuel properties are detected by utilizing the fact that the refractive index of light that passes through changes due to differences in the physical properties of the fuel. FIG. 4 shows the change in the refractive index of light depending on the component ratio of a conventional fuel mixture of Ganlin and methanol. That is, when pure gasoline has a refractive index of 1.51 in n, it changes to 1.4 in n when 40% methanol is mixed. As a result, it can be seen that the refractive index of light changes uniquely as the methanol mixing rate increases.

第5図は液中を透過する光の屈折率を測定する方法例を
示したものである。屈折率(nl )の知れた三角柱形
状を有する中実透明体36と、同形の中空透明体37と
を第5図に示し皮如く頂角ψを互いに逆に接合せしめ、
中空透明体37には未知の屈折率nの液体を満たす。そ
して、中空透明体37の底辺にめ友る面に直角方向から
光線を入射させると、未知の液体の屈折率nは次式で示
されるようになる。
FIG. 5 shows an example of a method for measuring the refractive index of light transmitted through a liquid. A solid transparent body 36 having a triangular prism shape with a known refractive index (nl) and a hollow transparent body 37 of the same shape are shown in FIG.
The hollow transparent body 37 is filled with a liquid having an unknown refractive index n. When a light beam is incident from a perpendicular direction onto the surface that meets the bottom of the hollow transparent body 37, the refractive index n of the unknown liquid is expressed by the following equation.

11=jl、−δ・cot tp      ・−・−
・・(1)但し、−は出射角を示しており、屈折率nは
この出射角δと三角柱の頂角ψが分れば、(1)式より
求めることができる。屈折率nなる中実透明体36は、
屈折率増111i1器の役をするもので、測定椙1it
−向上させるものでめる。従って、光線の経路がABC
DEで、出射光1iIE(D軸に光を検出するディテク
タを置けば未知の液体の屈折率を知ることができる。
11=jl, -δ・cot tp ・−・−
(1) However, - indicates the exit angle, and the refractive index n can be determined from equation (1) if the exit angle δ and the apex angle ψ of the triangular prism are known. The solid transparent body 36 with a refractive index n is
It functions as a refractive index intensifier 111i, and the measurement time is 1 it.
- Focus on things that will improve you. Therefore, the path of the ray is ABC
With DE, the refractive index of an unknown liquid can be determined by placing a light detector on the D axis.

第6図は第3図に示し九本実施例の燃料性状検出i!3
1の具体的構成例を示すものである。枠38に三角柱形
状の中実透明体36と中空透明体37が、それぞれの頂
角が互いに逆方向になるように接合して装着されている
。光源39からの光はスリット40を通って光線となシ
、この光線は中空透明体37の底面に直角な方向からこ
の中空透明体に入射し、中実透明体36を通って光量検
出板41に到達する。この光J1横出板41にはしだい
に幅が狭くなるスリット42がろけられている。このス
リット42を通った光線は集光レンズ43によプ、検出
器44上に集光される。この検出−44は光t−電気偏
号に変えて制御回路9に伝送する。中空透明体37内に
入れられる燃料の愉性によって、ここを通過する光線が
図の如く屈折されて、光量検出板41のスリット42に
当たるが、屈折率が大だと幅の広い部分のスリット42
を通過して検出器44に到達し、屈折率が小さいと幅の
狭い部分のスリット42を通過して検出器44に到達す
る九め、屈折率の変化が、検出器44では光量の変化と
して捉えられる。
FIG. 6 shows the fuel property detection i! of the nine embodiments shown in FIG. 3
1 shows a specific configuration example of No. 1. A triangular prism-shaped solid transparent body 36 and a hollow transparent body 37 are attached to a frame 38 so that their apex angles are in opposite directions. The light from the light source 39 passes through the slit 40 and becomes a light beam, which enters the hollow transparent body 37 from a direction perpendicular to the bottom surface of the hollow transparent body 37, passes through the solid transparent body 36, and reaches the light amount detection plate 41. reach. A slit 42 whose width gradually becomes narrower is formed in this light J1 side output plate 41. The light beam passing through this slit 42 is reflected by a condensing lens 43 and condensed onto a detector 44 . This detection 44 is converted into optical t-electrical polarization and transmitted to the control circuit 9. Depending on the nature of the fuel placed in the hollow transparent body 37, the light beam passing through it is refracted as shown in the figure and hits the slit 42 of the light amount detection plate 41, but if the refractive index is large, the slit 42 in the wide part
If the refractive index is small, the change in the refractive index passes through the narrow slit 42 and reaches the detector 44. It can be captured.

第7図は上記の場合の光量Iと燃料に混入されるメタノ
ールの混入率との関係を示したものでめる。このような
関係がある丸め検出器44の光量に対応する電気信号は
中空透明体37内の燃料の性状(メタノールの混入率)
を検出していることになる。
FIG. 7 shows the relationship between the amount of light I and the mixing rate of methanol mixed into the fuel in the above case. The electrical signal corresponding to the light intensity of the round detector 44 having such a relationship is based on the properties of the fuel in the hollow transparent body 37 (methanol mixing rate).
This means that it is detecting.

第S図は本実施例の燃料性状検出器31の他の具体的構
成例を示し九もので、ここでは光量検出板41の代わシ
に7オトデテクタ45を複数個配列させたもので、中実
透明体36、中空透明体37を通過してきた光線を受け
ている。フォトデテクタ45の出力側は選定回路46に
接続され。
FIG. S shows another specific example of the structure of the fuel property detector 31 of this embodiment, in which a plurality of 7-point detectors 45 are arranged in place of the light amount detection plate 41, and a solid structure is used. It receives light rays that have passed through the transparent body 36 and the hollow transparent body 37. The output side of the photodetector 45 is connected to a selection circuit 46.

こO選定回路46O出力は制御回路9へ入力されている
。この場合は、燃料の屈折率の違いにより光線が^なる
フォトデテクタ45に当九るため、光線Q当たったフォ
トデテクタ45を選定回路番6で判別することによシ肩
折率を知ることができ、との屈折率からメタノールの混
入率を算出できる。
The output of this O selection circuit 46O is input to the control circuit 9. In this case, because the light beam hits the photodetector 45 which is ^ due to the difference in the refractive index of the fuel, it is possible to know the shoulder refractive index by identifying the photodetector 45 that has hit the light beam Q using the selection circuit number 6. The mixing rate of methanol can be calculated from the refractive index of .

嬉9vAは上記燃料性状検出器31を燃料タンク4KM
着し皮場合の構成例でめる。タンク内に挿入され次燃料
注入管110途中に、上記中空透明体s7の三角柱管を
挿入し、この中空透明体内に燃料を流す、即ち、燃料メ
ンタ4内に燃料を注入する時に、その燃料の性状を検出
するようにしてるる。
9vA uses the above fuel property detector 31 in the fuel tank 4KM.
Let's look at an example of the configuration when wearing skin. The triangular prism tube of the hollow transparent body s7 is inserted in the middle of the fuel injection tube 110 inserted into the tank, and when fuel is flowed into this hollow transparent body, that is, when fuel is injected into the fuel mentor 4, the fuel I'm trying to detect the properties.

第10#Aは本発明の燃料性状検出器の他の実施例を示
したtので6.&、光源番7から照射され次光線は、レ
ンズ系4$、ミラー49及びV/ズ5Gを通過すること
で、平行光線とされ、燃料り/り4内の燃料Kjl射さ
れる。照射された光線の一部は、燃料中を透過し、この
透過した光線はデテクタ51によって受光される。
6. No. 10 #A shows another embodiment of the fuel property detector of the present invention. & The next light ray irradiated from the light source number 7 passes through the lens system 4$, the mirror 49, and the V/Z 5G to become a parallel ray, and is radiated onto the fuel Kjl in the fuel tank 4. A portion of the irradiated light beam is transmitted through the fuel, and this transmitted light beam is received by the detector 51.

デテクタ51は、検出部520廖53の前方にガイド筒
54t−取付は次もので、検出部5[)jlE部には窓
53を通過してきた光の量を検出する光量検出1i!5
5が設けられている。この光量検出−55の出力信号は
、出力端!$6によや外部に引出され、この出力端56
は図示されない制御回路に接続される。なお、窓53は
ガラス又は柵11製でデテクタ51t−保一している。
The detector 51 is equipped with a guide tube 54t in front of the detection section 520 and 53, and the detection section 5[)jlE section has a light amount detection 1i! which detects the amount of light passing through the window 53. 5
5 is provided. The output signal of this light amount detection-55 is the output terminal! This output end 56 is pulled out to the outside from $6.
is connected to a control circuit (not shown). Incidentally, the window 53 is made of glass or the fence 11, and is equipped with a detector 51t.

一定位置に設けたデテクタs1は、液内所定範囲におけ
る散乱光量を光量検出器s5によp検出する。この検出
量は、燃料中の光−の透過ノ(スが。
A detector s1 provided at a fixed position detects the amount of scattered light in a predetermined range within the liquid using a light amount detector s5. This detected amount is due to the amount of light transmitted through the fuel.

この燃料の気液の屈折率によp変化するため、前記屈折
率に応じて変化する。このため、このような構成の燃料
性状検出器によっても燃料中のメタノールの混入率を検
出することができる。なお、デテクタ51のガイド筒5
4は常に燃料内に浸漬されているのが良<、ti、ガイ
ド筒54は燃料が底をついても検出できるような位置に
設定するのが良い。
Since p changes depending on the refractive index of the gas and liquid of this fuel, it changes according to the refractive index. Therefore, the fuel property detector having such a configuration can also detect the mixing rate of methanol in the fuel. Note that the guide tube 5 of the detector 51
4 is preferably immersed in the fuel at all times, and the guide cylinder 54 is preferably set at a position where it can be detected even when the fuel runs out.

第11図は本発明の燃料性状検出器のj!に他の実施例
を示したものである。光源47から照射された光は、レ
ンズ57.スリット58を通ってオプティカルファイバ
89内に入射される。このオプティカル7アイパs9は
燃料タンク4の底部から内部に挿入されておル、前記オ
プティカルファイバ59に入射され次光は、このオプテ
ィカルファイバs9の他端から燃料夕/り4内の燃料中
に照射される。この照射され次光は燃料液面から出射す
る時KJII折し、光量検出941に入射する。
FIG. 11 shows the j! of the fuel property detector of the present invention. Another example is shown in FIG. The light emitted from the light source 47 passes through the lens 57. The light passes through the slit 58 and enters the optical fiber 89 . This optical fiber s9 is inserted into the fuel tank 4 from the bottom, and the light is incident on the optical fiber 59 and then irradiated into the fuel in the fuel tank 4 from the other end of the optical fiber s9. be done. When this irradiated light exits from the fuel liquid surface, it undergoes KJII bending and enters the light amount detection 941.

この光量検出板41は第6図で示したものと同様で、幅
が変化するスリット40が設けられている。
This light amount detection plate 41 is similar to that shown in FIG. 6, and is provided with a slit 40 whose width varies.

この友め光線の出射角の変化はこの光量検出板41にて
光量の変化に変換され、図示されない第emlと同様な
検出器に受光される。この実施例では、光を任意の角度
方向から燃料中に入射可能なオプティカル7アイパ59
を使用したところにその特徴がめp、他はxi図で示し
た実施例と同様の厚層によp燃料中のメタノールの混入
率を検出することができる。
A change in the emission angle of this friendly light beam is converted into a change in light amount by the light amount detection plate 41, and the light is received by a detector similar to eml (not shown). In this embodiment, an optical 7-eyeper 59 that allows light to enter the fuel from any angle direction is used.
The mixing rate of methanol in the fuel can be detected using the thick layer, which has the same characteristics as the embodiment shown in the xi diagram.

第12図はこのオプティカル7アイノ(を使用した燃料
性状検出器を燃料タンク内Kft着する場合の一部を示
し九ものである。オプティカルファイバ59は燃料タン
ク4内の液面から挿入され、先端が5字状に曲けられて
いる。
Fig. 12 shows a part of the case where a fuel property detector using this optical 7 AINO is installed in a fuel tank.The optical fiber 59 is inserted from the liquid level in the fuel tank 4, and the tip is bent into a five-figure shape.

第13図は前記オプティカル7アイノ<tw用し九燃料
性状検出器を燃料夕/りに装着する場合の他の例を示し
たものでめる。オプティカルファイバ59は燃料タンク
4内の燃料液面から深く浸漬せしめ、燃料タンク4の底
面近くの先端は5字状に曲げられている。燃料タンク4
の底面近くの側壁面には屈折率が既知である透明窓60
が設けられており、この透明窓60に、前記オプティカ
ルファイバ59の先端が向けられている。この透明窓6
Gに対向する燃料タンク4の外部には複数個の7オトデ
テクタ45が配列漬れており、このフォトデテクタ45
の出力側は選定回路46に入力され、この選定回路46
の出力は制御回路9に入力されている。tた、燃料タン
ク4内の燃料中にはモータ61によって回転されるプロ
ペラ62が挿入されている。
FIG. 13 shows another example in which the fuel property detector for the optical 7<tw> is attached to the fuel tank. The optical fiber 59 is immersed deeply from the fuel liquid level in the fuel tank 4, and its tip near the bottom of the fuel tank 4 is bent into a 5-shape. fuel tank 4
A transparent window 60 with a known refractive index is provided on the side wall near the bottom of the
is provided, and the tip of the optical fiber 59 is directed toward the transparent window 60. This transparent window 6
A plurality of 7 photodetectors 45 are arranged on the outside of the fuel tank 4 facing G, and these photodetectors 45
The output side of is input to the selection circuit 46, and this selection circuit 46
The output of is input to the control circuit 9. Additionally, a propeller 62 rotated by a motor 61 is inserted into the fuel in the fuel tank 4.

オプティカル7アイパ591に通過した光が燃料中に照
射されると、この燃料中から透明窓60を通して気中に
出る時に、光が屈折して、複数個配列された7オトデテ
クタ4sのどれかに受光される0選定回路46では、ど
のフォトデテクタ45に光が受光されたかを判定し、こ
の判定信号を制御回路9に入力する。制御回路9では、
受光したフォトデテクタ4Bの位置から屈折率を算出し
When the light that has passed through the optical 7 eyeper 591 is irradiated into the fuel, when it exits from the fuel into the air through the transparent window 60, the light is refracted and received by one of the 7 Oto detectors 4s arranged in plurality. The zero selection circuit 46 determines which photodetector 45 receives the light, and inputs this determination signal to the control circuit 9. In the control circuit 9,
The refractive index is calculated from the position of the photodetector 4B that receives the light.

第4gのグラフに基づいて燃料中のメタノールの混入率
を算出する。なお、タンク内の燃料が均質になるように
プロペラ62により攪拌される。本gA−例では、オプ
ティカルファイバ59によシ燃料タンク4の底面近くに
光が照射されるまめ、このタンク4内の燃料fIL面の
変動によって生ずる恐れのある測定誤差を完全に防止す
る効果が特にるる、なお、この実施例以外の実施例では
、燃料タンク4内の燃料液面の変動によって#j定誤差
が生じる懸念があるが、燃料注入後直ちに燃料性状検出
a管用いて計測すれば燃料液面が調いため上記の問題は
起こらない。
The mixing rate of methanol in the fuel is calculated based on the fourth graph. Note that the propeller 62 stirs the fuel in the tank to make it homogeneous. In this gA-example, the optical fiber 59 is used to irradiate light near the bottom of the fuel tank 4, which has the effect of completely preventing measurement errors that may occur due to fluctuations in the fuel fl level in the tank 4. In particular, in embodiments other than this embodiment, there is a concern that #j constant error may occur due to fluctuations in the fuel level in the fuel tank 4, but if the fuel property detection tube a is used to measure immediately after fuel injection, the fuel The above problem does not occur because the liquid level is adjusted.

上記各実施例によれば、燃料タンク4円の燃料に光を照
射し、この光の屈折率の変化を光量変化として検出器4
4、あるいはデテクタ51により受光するか、又は、屈
折した光を複数個のフォトデテクタ45に選択的に受光
させることにより。
According to each of the above embodiments, light is irradiated onto the fuel in the fuel tank 4, and the change in the refractive index of this light is detected as a change in the amount of light by the detector 4.
4, or by receiving the light by the detector 51, or by selectively receiving the refracted light by a plurality of photodetectors 45.

燃料タンク4内の燃料性状(この場合は燃料中のメタノ
ールの混入率)t−積置に検出し得る効果がめる。また
、構造が比較的単純で、且つ既に市場に出ている卓にも
装着可能なため、燃料性状の精密測定を安価に実現し得
る効果がめ夛、ま九、光の屈折角で燃料性状が分るため
、検出値の経時変化を極少にする効果がおる。更に、*
aZに示した実施例の如く中空透明体37は屈折率を増
幅することができるため、測定を容易にし、且つ渕定精
IiLを向上させる効果がある。また、どの実施例にお
いても燃料タンク番に燃料を注入する時にその性状を検
出することができる。なお、上記実施例では、燃料の性
状、41にメタノールの混入率についてi1!明したが
、メタノールの混入率に限定されるものでなく1種々の
燃料の性状をその屈折率から検出することが可能である
。また、光源としては白色光、単色光いずれでも良いが
、被測定燃料に吸収されにくい波長の光4Iilを選ぶ
のが望ましい。
The effect can be detected on the fuel properties in the fuel tank 4 (in this case, the mixing rate of methanol in the fuel) t-storage. In addition, since the structure is relatively simple and it can be installed on tables already on the market, it has the advantage of being able to accurately measure fuel properties at low cost. This has the effect of minimizing changes in detected values over time. Furthermore, *
Since the hollow transparent body 37 can amplify the refractive index as in the embodiment shown in aZ, it has the effect of facilitating measurement and improving the Fuchishing precision IiL. Furthermore, in any of the embodiments, when fuel is injected into the fuel tank, its properties can be detected. In addition, in the above example, i1! regarding the fuel properties and the mixing rate of methanol in 41! However, the present invention is not limited to the mixing rate of methanol, and it is possible to detect the properties of various types of fuel from its refractive index. Further, the light source may be either white light or monochromatic light, but it is desirable to select light 4Iil with a wavelength that is difficult to be absorbed by the fuel to be measured.

以上記述した如く本発明の燃料性状検出器によれば、低
価格で、且つ経時変化金少なくすることがで自る。
As described above, according to the fuel property detector of the present invention, it is possible to reduce the cost and change over time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の燃料供給系の一部を示した構成図、第2
図は従来の燃料タンクの構造例を示した説1jIm、第
3図は本発明の燃料性状検出器の一実施例を備えた燃料
供給系の構成図、第4図はガソリン中のメタノール混入
率と光の屈折率との関係會示した線図、第5図は第3図
に示した実施例の一定原塩を示す説明図、第6図は本発
明の燃料性状検出器の一実施例を示す説明図、第7図は
燃料中のメタノール混入率と光量■との関係を示し九繍
図、第8図は第6図に示した燃料性状検出器の他の構成
例を示す説明図、ljgQ図は第6図又は第8図に示し
た燃料性状検出器を燃料夕/りに装着し次側を示した説
明図、第1θ図は本発明の燃料性状検出器の他の実施例
を示した説明図、第11図乃至第13図は本発明の燃料
性状検出器の艶に他の夾m例を示した説明図でめる。 9・・・制御回路、36・・・中実透明体、37・・・
中空透明体、39.47・・・光源、40.42.58
・・・スリット、41・・・光電検出板、しト・・集光
レンズ。 44・・・検出器、45・・・フォトデテクタ%46・
・・選定回路、48・・・レンズ系、49・・・ミラー
、50゜5フ・・・レンズ、51・・・デテクタ、54
−・・ガイド筒。 ’   20  40  5Q   80  1Q(1
θ゛ソリシ中シタ/−+仁d入4’  ”χ箭50 茗I1口 暦120
Figure 1 is a configuration diagram showing part of a conventional fuel supply system, Figure 2
The figure shows an example of the structure of a conventional fuel tank, Figure 3 is a configuration diagram of a fuel supply system equipped with an embodiment of the fuel property detector of the present invention, and Figure 4 shows the methanol mixing rate in gasoline. 5 is an explanatory diagram showing the constant raw salt of the embodiment shown in FIG. 3, and FIG. 6 is an embodiment of the fuel property detector of the present invention. FIG. 7 is an explanatory diagram showing the relationship between the methanol mixing rate in fuel and the amount of light. FIG. 8 is an explanatory diagram showing another configuration example of the fuel property detector shown in FIG. 6. , ljgQ is an explanatory diagram showing the next side of the fuel property detector shown in Fig. 6 or 8 attached to the fuel port, and Fig. 1θ is another embodiment of the fuel property detector of the present invention. 11 to 13 are explanatory diagrams showing other examples of impurities in the gloss of the fuel property detector of the present invention. 9... Control circuit, 36... Solid transparent body, 37...
Hollow transparent body, 39.47... Light source, 40.42.58
...Slit, 41...Photoelectric detection plate, Shito...Condensing lens. 44...detector, 45...photodetector%46.
...Selection circuit, 48...Lens system, 49...Mirror, 50°5 lens, 51...Detector, 54
-...Guide tube. ' 20 40 5Q 80 1Q (1
θ゛Sorishi middle position/-+Jind enter 4' ``χ箭50 茗I1 oral history 120

Claims (1)

【特許請求の範囲】 1、燃料の外部又は内部から燃料に光を照射する手段と
、この照射光が気中から燃料1%[菌中に入射する際、
又は、燃料を透過する透過光が燃料の敵向から気中に出
射する際に生ずる元の屈折率を測定する手段とを有する
ことを特徴とする燃料性状検出器。 2、燃料を満たす中空透明体と、この中空透明体に元t
pIA射する手段と、中空透明体を透過してきた元が燃
料のWL面と気中との境で屈折する屈折率を測定する手
段とt−有することt%黴とする燃料性状検出器。 3、スリット幅が長手方向に沿って変化するスリットと
、このスリットを通過し次光を受光する光量検出器とを
設け、透過光の屈折率の変化を前記スリットを通過する
光量変化に変換して測定することを特徴とする特許請求
の範囲第2項記載の燃料性状検出器。 4、透過光の当たる位置に配列される複数個の7オトデ
テクタと、これらフォトデテクタの出力端が接続される
選定回路とを設け、透過光を受光したフォトデテクタを
区別することにより、透過光の屈折率を測定することを
!!IIIkとする特許請求の範囲第2項記載の燃料性
状検出器。 5、燃料内に所定の姿勢を保持するように挿入される光
ファイバと、この光ファイバに光を入射させる手段とを
有し、前記光7アイパの先端から燃料内に放射された光
が燃料液面から出射する―に生じる光の屈折率を測定す
る手段を有することを特徴とする燃料性状検出器。 6、スリット幅が長手力向く沿って変化するスリットと
、このスリットを通過した光を受光する光量検出器とを
設け、透過光の屈折率の変化を前記スリットを通過する
光量変化に変換して測定することを特徴とする特許請求
の範囲第5項記載の燃料性状検出器。 7、透過光の当たる位置に配列される複数個のフォトデ
テクタと、これらフォトデテクタの出力端が嵌絖される
選定回路とt−設け、透過光を受光したフォトデテクタ
を区別することにより、透過光の屈折率を測定すること
t−%黴とする特Wtf梢求の範囲第5項記載の燃料性
状検出器。 S、平行光線を燃料液面に照射する手段と、この照射さ
れ次元の燃料液中での散乱光を所定の範囲で受光する手
段とを有し、受光した散乱光の光量の変化により、照射
光の燃料液面と気中との境界向での屈折率を測定するこ
とを特徴とする燃料性状検出器。 9、散乱光の受光手段として、有底の筒状体の底部に光
量検出!Iを取付け、この筒状体の開口部を燃料中に所
定の姿勢で浸漬し、この開口部より前記散乱光を導入す
るものを備えたことを特徴とする特許請求の範囲第8項
記載の燃料性状検出器。
[Claims] 1. A means for irradiating the fuel with light from outside or inside the fuel, and this irradiation light is applied to 1% of the fuel from the air [when it enters the bacteria,
Alternatively, a fuel property detector characterized in that it has means for measuring the original refractive index that occurs when transmitted light that passes through the fuel is emitted into the air from the opposite direction of the fuel. 2. A hollow transparent body filled with fuel, and a source t in this hollow transparent body.
A fuel property detector having means for emitting pIA, means for measuring the refractive index of the source transmitted through the hollow transparent body and refracted at the boundary between the WL surface of the fuel and the air, and t% mold. 3. A slit whose slit width changes along the longitudinal direction and a light amount detector that receives the light passing through the slit are provided, and changes in the refractive index of the transmitted light are converted into changes in the amount of light passing through the slit. 3. The fuel property detector according to claim 2, wherein the fuel property detector measures: 4. By providing a plurality of 7 photodetectors arranged at the position where the transmitted light hits and a selection circuit to which the output ends of these photodetectors are connected, and distinguishing between the photodetectors that have received the transmitted light, the transmitted light can be detected. Measuring the refractive index! ! The fuel property detector according to claim 2, which is defined as IIIk. 5. It has an optical fiber inserted into the fuel so as to maintain a predetermined attitude, and a means for inputting light into the optical fiber, and the light radiated into the fuel from the tip of the optical fiber 7 is connected to the fuel. A fuel property detector comprising means for measuring the refractive index of light emitted from a liquid surface. 6. A slit whose width changes along the longitudinal direction and a light amount detector that receives the light passing through the slit are provided, and changes in the refractive index of the transmitted light are converted into changes in the amount of light passing through the slit. 6. The fuel property detector according to claim 5, which measures: 7. A plurality of photodetectors are arranged at positions where the transmitted light hits, and a selection circuit into which the output ends of these photodetectors are fitted is provided to distinguish between the photodetectors that have received the transmitted light. 6. The fuel property detector according to item 5, which measures the refractive index of light to determine t-% mold. S. It has a means for irradiating the fuel liquid surface with parallel light beams and a means for receiving the irradiated scattered light in the fuel liquid in a predetermined range, and the irradiation is caused by a change in the amount of the received scattered light. A fuel property detector characterized by measuring the refractive index of light in the direction of the boundary between the fuel liquid level and the air. 9. The amount of light is detected at the bottom of the bottomed cylindrical body as a means of receiving scattered light! Claim 8, characterized in that the cylindrical body is provided with a cylindrical body whose opening is immersed in fuel in a predetermined posture, and which introduces the scattered light through the opening. Fuel property detector.
JP1009882A 1982-01-27 1982-01-27 Fuel property detector Pending JPS58129235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1009882A JPS58129235A (en) 1982-01-27 1982-01-27 Fuel property detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1009882A JPS58129235A (en) 1982-01-27 1982-01-27 Fuel property detector

Publications (1)

Publication Number Publication Date
JPS58129235A true JPS58129235A (en) 1983-08-02

Family

ID=11740841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1009882A Pending JPS58129235A (en) 1982-01-27 1982-01-27 Fuel property detector

Country Status (1)

Country Link
JP (1) JPS58129235A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749274A (en) * 1986-01-24 1988-06-07 Toyota Jidosha Kabushiki Kaisha Apparatus for detecting fuel mixture ratio
US5015091A (en) * 1988-04-13 1991-05-14 Mitsubishi Denki K.K. Device for detecting alcoholic content
DE4103873A1 (en) * 1990-02-08 1991-08-14 Mitsubishi Electric Corp DEVICE FOR DETECTING THE ALCOHOL CONCENTRATION
DE4123178A1 (en) * 1990-07-13 1992-01-16 Mitsubishi Electric Corp FUEL SUPPLY CONTROL DEVICE
US5157453A (en) * 1990-08-03 1992-10-20 Mitsubishi Denki Kabushiki Kaisha Liquid content detecting device for alcohol regular gasoline and premium gasoline fuel mixture
US8072604B2 (en) * 2006-07-05 2011-12-06 Komatsu Ltd. Apparatus for detecting properties of fuel for working machine
JP2020531822A (en) * 2017-08-21 2020-11-05 東京エレクトロン株式会社 Optical sensor for phase determination

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522775A (en) * 1975-06-24 1977-01-10 Yuasa Battery Co Ltd Device for measuring the refractive index of a fluid
JPS5751920A (en) * 1980-07-15 1982-03-27 Tno Fuel feeding system of combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522775A (en) * 1975-06-24 1977-01-10 Yuasa Battery Co Ltd Device for measuring the refractive index of a fluid
JPS5751920A (en) * 1980-07-15 1982-03-27 Tno Fuel feeding system of combustion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749274A (en) * 1986-01-24 1988-06-07 Toyota Jidosha Kabushiki Kaisha Apparatus for detecting fuel mixture ratio
US5015091A (en) * 1988-04-13 1991-05-14 Mitsubishi Denki K.K. Device for detecting alcoholic content
US5074659A (en) * 1988-04-13 1991-12-24 Mitsubishi Denki K.K. Device for detecting alcoholic content
DE4103873A1 (en) * 1990-02-08 1991-08-14 Mitsubishi Electric Corp DEVICE FOR DETECTING THE ALCOHOL CONCENTRATION
DE4123178A1 (en) * 1990-07-13 1992-01-16 Mitsubishi Electric Corp FUEL SUPPLY CONTROL DEVICE
US5157453A (en) * 1990-08-03 1992-10-20 Mitsubishi Denki Kabushiki Kaisha Liquid content detecting device for alcohol regular gasoline and premium gasoline fuel mixture
US8072604B2 (en) * 2006-07-05 2011-12-06 Komatsu Ltd. Apparatus for detecting properties of fuel for working machine
JP2020531822A (en) * 2017-08-21 2020-11-05 東京エレクトロン株式会社 Optical sensor for phase determination

Similar Documents

Publication Publication Date Title
US6333512B1 (en) Optical gauge for determining the level of a medium in a container
US5065037A (en) Corrosion resistant refractive and adsorptive type optical liquid level sensors
KR910004217B1 (en) Alcohol content detection device
US4187025A (en) Device for producing a light signal corresponding to the refractive index of a fluid
US4803470A (en) Substance detector device
EP0441056B1 (en) Optical fuel composition sensor
JP4906583B2 (en) Fuel property detection device
WO1989003978A1 (en) Optical liquid level sensor
JP2008107098A (en) Fuel property detection device
KR940002500B1 (en) Apparatus for detecting alcohol concentration
US5157453A (en) Liquid content detecting device for alcohol regular gasoline and premium gasoline fuel mixture
CN101561517A (en) Non-contact type detector and detecting method of liquid in pipe
JPS58129235A (en) Fuel property detector
WO2020097847A1 (en) Liquid level detection system and liquid level detection method
US7750824B2 (en) Optical system and element for detecting ice and water
JPH01257245A (en) Measuring apparatus for mixing ratio of fuel for internal combustion engine
JP2011043462A (en) Optical fiber sensor and fuel supply apparatus having the same
EP0292097B1 (en) Device for detecting the mixing ratio of petrol and an alcohol or the like
JPS6291840A (en) Fuel property detector
US4771181A (en) Method for detecting dripping droplet with refracted and reflected light
US5396079A (en) Fiber optic detector and depth sensor and method for doing same
JPS5760239A (en) Pressure sensor
RU93542U1 (en) CAR REFRACTOMETER
RU2729170C1 (en) Device for determining content of water and other impurities diesel fuel
KR820000672B1 (en) Refractive-index responsive light-signal system