[go: up one dir, main page]

JPS58129193A - Heat accumulating member - Google Patents

Heat accumulating member

Info

Publication number
JPS58129193A
JPS58129193A JP57011133A JP1113382A JPS58129193A JP S58129193 A JPS58129193 A JP S58129193A JP 57011133 A JP57011133 A JP 57011133A JP 1113382 A JP1113382 A JP 1113382A JP S58129193 A JPS58129193 A JP S58129193A
Authority
JP
Japan
Prior art keywords
heat
heat storage
methanol
heat accumulating
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57011133A
Other languages
Japanese (ja)
Inventor
Chikau Yamanaka
矢 山中
Junji Hizuka
肥塚 淳次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57011133A priority Critical patent/JPS58129193A/en
Publication of JPS58129193A publication Critical patent/JPS58129193A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To improve the heat accumulating efficiency of a heat accumulating member by a method wherein the heat accumulating member is formed of a capsule made of a metallic mesh and filled with an inorganic salt. CONSTITUTION:When a heat medium is circulated through a heating pipe 6, methanol 7 in a storage tank 8 is heated to vaporize and the vaporized methanol is supplied to a heat accumulation tank 4 through a communication pipe 10. In this case, the vaporized methanol passes among, and diffused into, a plurality of the heat accumulating members 1 in the tank 4 through the meshes of the heat accumulating members and adsorbed by the surface of calcium chloride filled into the members 1 to thereby generate heat. The heat thus generated is then transferred to a heat transfer pipe 5 through which water circulates. As the capsule forming each of the heat accumulating members 1 is made of the metallic mesh, it excels in heat transfer property so that the heat exchange between the capsule and the calcium chloride filled therein is promoted. Further, as the methanol passes among the capsules and among the meshes of the capsules, it is diffused speedily and the adsorption and separation of the methanol are made uniformly and quickly over the entire surface of the calcium chloride filled into the capsules.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は熱エネルギーO回収、有用に有効な蓄熱体に関
し、特に蓄熱材の充填構造を改良したものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a heat storage material that is useful for recovering thermal energy O, and particularly relates to an improved filling structure of the heat storage material.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、蓄熱装置の蓄熱材としては水1石、無機塩類尋が
一般に利用されているが、水1石などを蓄熱材として用
いる一熱利用型の蓄熱装置においては、熱エネルギー保
存時における熱の放散を避ける丸め断熱する必畳がTo
9、長時間に凰りて熱エネルギーを蓄熱することは困−
である。
Conventionally, one stone of water and inorganic salts are generally used as the heat storage material for heat storage devices, but in one-heat type heat storage devices that use one stone of water as the heat storage material, the amount of heat during storage of thermal energy is To avoid radiation, it is necessary to round and insulate the mat.
9. It is difficult to store thermal energy for a long time.
It is.

一方、fJまたは蒸気を吸着して、そのM合エネルイー
により発熱あるいは吸熱する無機塩類による蓄熱材の熱
エネルイーの貯蔵は、無機塩類と、吸着質のガスまたは
蒸″気との接at遁断することにより、熱エネルギーを
半永久的に保存することができるという利点がある。
On the other hand, storage of thermal energy in a heat storage material by inorganic salts that adsorb fJ or vapor and generate heat or absorb heat due to the combined energy of the inorganic salts is achieved by disconnecting the inorganic salts from the adsorbate gas or vapor. This has the advantage that thermal energy can be stored semi-permanently.

しかしながら無機塩類は熱伝導率が低いため、蓄熱装置
への入熱時あるいは蓄熱装置からの出熱時における熱の
移動速度が遅く、熱エネル←を効率嵐く利用することが
できない、また無機塩類は熱交換手段を儂え友蓄熱槽内
に充填して使用されるが、充填量が多くなると吸着質の
Iスヤ蒸気が無機塩類内を拡散する速度が遅くなると共
に、無機塩類との接触面積が少なくなって、充填され九
無機塩類が有効に利用されず、蓄熱効率が低下するなど
の欠点があつた。
However, since inorganic salts have low thermal conductivity, the speed of heat transfer when heat is input to or output from the heat storage device is slow, and thermal energy cannot be used efficiently. is used by filling a thermal storage tank with a heat exchanger, but as the amount of filling increases, the speed at which adsorbent I-Sya vapor diffuses within the inorganic salts slows down, and the contact area with the inorganic salts decreases. There were drawbacks such as the inorganic salts being filled were not being utilized effectively and the heat storage efficiency was decreasing.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来の欠点に鑑みなされえもので、金mW
のメック、からなるカプセル内に、無機塩類を充填して
、無機塩類内の熱の移動速度を萬めると共に、吸着質の
ガス中蒸気の拡敏速f#を高めて、熱の出入りを均一に
且つ速やかに行なりて蓄熱効率を向上させた蓄熱体を提
供することを目的とするものである。
The present invention has been made in view of the above-mentioned conventional drawbacks, and is based on gold mW.
Inorganic salts are filled into a capsule made of MEC to increase the transfer speed of heat within the inorganic salts, and to increase the diffusion speed f# of vapor in the adsorbate gas to uniformly transfer heat in and out. It is an object of the present invention to provide a heat storage body whose heat storage efficiency can be improved quickly and efficiently.

〔発明の概要〕[Summary of the invention]

本発明の蓄熱体は金属製のメック、からなる力!セル内
に無機塩類を充填したものである。
The heat storage body of the present invention is made of metal MEC! The cell is filled with inorganic salts.

前記カプセルを形成する金属製のメ、り、とじては、例
えば鋼、アルミニウム、ステンレススチール等、熱伝導
率の大きいものが挙げられるが、特に鋼およびステンレ
ススチールカ最モ通している。また金属製メッ7.の大
きさは、無機塩類がメック、の網目を通過しないような
メツシュを選択する必要があるが、メック、の値が大き
く細かすぎると、吸着質のガス中蒸気O過過を妨げるこ
とになるため100メツシ。
The metal mesh forming the capsule may be made of materials with high thermal conductivity such as steel, aluminum, and stainless steel, but steel and stainless steel are particularly preferred. Also, metal mesh 7. It is necessary to select a mesh that does not allow inorganic salts to pass through the mesh of MEC, but if the value of MEC is too large and too fine, it will prevent the vapor O from passing through the adsorbate gas. 100 metsushi.

以下が適轟である。ま九カグ竜ル0大亀さ扛、カプセル
中に充填した無機塩類内ta着質のガス中1気が拡散し
て無機塩!l1lK@着する際の妨げとならず、しかも
充填する無機塩類の量と、これを支持するカプセルの機
械的強度とから決められる。[に力!セルの形状は、方
形あるいは球形など偏れでも良い。
The following is Suitoku. The inorganic salts are dispersed in the gas deposited in the inorganic salts filled in the capsule! l1lK@ does not interfere with the loading and is determined based on the amount of inorganic salts to be filled and the mechanical strength of the capsule that supports it. [Power to the power! The shape of the cell may be irregular, such as rectangular or spherical.

力f(ル内に蓄熱材として充填される無機塩類としては
、水蒸気やメタノール蒸気など吸着質のガスや蒸気¥t
eL着して発熱または吸熱する塩化マダネシウム(Mg
(’42人塩化カルシウム(CaCjz)等が挙げられ
る。またこれら無機塩類O選択にあ九りては、それぞれ
の熱利用系に適する温度で相変異点を持ち、そのliの
熱量が火車いもの會選択するのが好ましい。
The force f (inorganic salts filled in the chamber as a heat storage material include adsorbent gases and steam such as water vapor and methanol vapor)
Madanesium chloride (Mg
('42 Calcium chloride (CaCjz), etc.) In addition, when selecting these inorganic salts, O has a phase change point at a temperature suitable for each heat utilization system, and the calorific value of Li It is preferable to choose the meeting.

このように構成された蓄熱体は金属製のメ。The heat storage body configured in this way is made of metal.

シ、で形成された力!セル内に無機塩類會充填しである
ので、熱伝導性に優れ九カグセルによ)、無機塩類との
熱交換が促進される。*にカブセル関およびカプセルを
形成する金属製メVシ、の網目間がガスや蒸気の通路と
なる丸め拡散が速く、無機塩類の全体に亘りてむもなく
均一に、且つ迅速にガス中蒸気の吸着、脱離作用が行な
われる。
The power formed by shi! Since the cells are filled with inorganic salts, they have excellent thermal conductivity and promote heat exchange with the inorganic salts. *The mesh of the metal shell that forms the capsule and the capsule is rounded and forms a passageway for gas and steam, and diffusion is fast, allowing the vapor in the gas to flow uniformly and quickly over the entire inorganic salt. adsorption and desorption effects are carried out.

〔発明の実施例〕[Embodiments of the invention]

第1図および第2図は本尭明〇一実施例を示すもので蓄
熱体1はステンレススチールll050メツシ、からな
る1辺20■の立方体力!セル2内に塩化カルシウム1
を充填しえ40である。
Figures 1 and 2 show the embodiment of the present invention, in which the heat storage body 1 is a cube of 20 cm on each side made of stainless steel 11050 mesh! Calcium chloride 1 in cell 2
40.

この蓄熱体1を第2図に示す蓄熱装置の蓄熱槽4内に塩
化カルシウム1の総量が1−となるように充填する。前
記蓄熱装置は、蓄熱体1を充填し、外部から引込まれ友
伝熱管1を儂え九番熱槽4と、外部から引込まれ九加熱
管6を備え、内部にメタノール1を貯ええ貯蔵槽1と、
これら両槽間に般けられ、凝縮器tを中間に取付けた連
通管1−とから構成されて込る。
This heat storage body 1 is filled into a heat storage tank 4 of a heat storage device shown in FIG. 2 so that the total amount of calcium chloride 1 becomes 1-. The heat storage device includes a heat storage tank 4 filled with a heat storage body 1, which is drawn in from the outside and uses a heat exchanger tube 1, and a heat tank 4 which is drawn in from the outside and stores methanol 1 therein. 1 and
It consists of a communicating pipe 1- which extends between these two tanks and has a condenser t installed in the middle.

先ず発熱作用について説−すると、加熱管Iに30℃の
熱媒体を流通させると、貯蔵槽1内Oメタノール1が加
熱されて蒸発し、このメタノール蒸気は連通管10を通
って蓄熱槽4に供給される。供給され九メタノール蒸気
は、蓄熱体1−間を通ると共に、カプセル2の網目間を
過って内部に拡散し、充填し九塩化カル7ウムat>*
面に吸着して発熱する。この熱を20℃O水を1001
00d1で流通させた伝熱管5に伝達して熱交換を行な
い、水を加熱した。この場合、水O加熱温度の峠時変化
を調べたところ、第3EOグI)7に曲線aで示すよう
になった。
First, to explain the exothermic effect, when a 30°C heat medium is passed through the heating tube I, the methanol 1 in the storage tank 1 is heated and evaporated, and this methanol vapor passes through the communication pipe 10 and enters the heat storage tank 4. Supplied. The supplied methanol vapor passes through the heat storage body 1 and diffuses into the interior of the capsule 2, filling it with calcium nonachloride at>*
It sticks to surfaces and generates heat. This heat is 20℃O water is 1001
The water was transferred to the heat exchanger tube 5 which was circulated at 00d1 to perform heat exchange and heat the water. In this case, when we investigated the change in the water O heating temperature during the mountain pass, we found that it came to be shown by curve a in the third EO group I)7.

次に蓄熱時における作用を説明すると、伝熱管1に12
0℃の熱媒体を流通して蓄熱体1を加熱す為と、蓄熱体
1内の塩化カルシウム3が加熱されて、吸着しているメ
タノール1が蒸発・脱離する。脱離し九メタノール蒸気
は連通管1#管通り凝at器9で#縮されて、再び貯蔵
槽aK貯められる。
Next, to explain the action during heat storage, 12
In order to heat the heat storage body 1 by circulating a heat medium at 0° C., the calcium chloride 3 in the heat storage body 1 is heated, and the adsorbed methanol 1 is evaporated and desorbed. The desorbed methanol vapor is condensed in the condenser 9 through the communication pipe 1 and stored in the storage tank aK again.

ξO場会、塩化カルシウム1に吸着しているメタノール
残留量(メ″−“)菖す/塩化カルシウム+メタノール
の重さ)の蓄熱開始後の経時変゛化it第4図のグラフ
に−@aで示すようKlkり九。
In the case of ξO, the graph in Figure 4 shows the change over time of the residual amount of methanol adsorbed on calcium chloride (weight of Calcium chloride + methanol) after the start of heat storage. Klk Riku as shown in a.

壇九本発明と比較する九めに、総量l神の塩化カルシウ
ム1をカプセル2に充填せずに、その着ま蓄熱槽4内に
充填した従来0蓄熱装鐙を用い、上記実施例と同様に発
熱時0水oii*変化を調べて、七〇M来を第3図のダ
27に麹纏すで示した。また蓄熱時のメタノール残留量
についても同様に調べたところIII!41iCのグラ
フに曲41bで示すようになりた。
As a ninth comparison with the present invention, a conventional heat storage stirrup in which the total amount of calcium chloride 1 was not filled into the capsule 2 but into the heat storage tank 4 was used, and the same as in the above embodiment was used. The change in 0 water oii* during heat generation was investigated, and the temperature after 70M was shown in Da 27 in Figure 3 with koji matte. We also investigated the residual amount of methanol during heat storage and found that it was III! The graph of 41iC now shows the song 41b.

〔発明の効果〕〔Effect of the invention〕

以上説明し九如く本発明に係わゐ蓄熱体によれば、金0
11のメッシ、からなるカフ”−4Eル内に無機塩類を
充填して、無機塩類内Ct*O移動遭fを高めると共に
、吸着質のガス中蒸気の拡散速度を嶌めて熱の山人参を
拘−に且っ速かに行なりて蓄熱効率を向上させることが
でき、しがも蓄熱体との熱交換を行なう伝熱管轄金属製
カグセルがフィン作用をなす丸め、電価なフィン付亀管
を用いずにストレート管を利用で龜る〇で装置−安価と
なるなど原著な効果を有すゐもO″fToる。
As explained above, according to the heat storage body according to the present invention, there is no gold.
The cuff consisting of 11 meshes is filled with inorganic salts to increase the Ct*O movement within the inorganic salts, and also to reduce the diffusion rate of vapor in the adsorbent gas, thereby reducing heat. The heat storage efficiency can be improved by quickly and efficiently, and the heat transfer metal cag cells that perform heat exchange with the heat storage body are rounded and have electric fins that act as fins. Using a straight tube instead of a tortoise tube has significant advantages, such as making the device faster and cheaper.

41ElliiO簡単な説明 @1図は本発明の一実施例による蓄熱体を一部砿断して
示す斜視図、第2図は11図の蓄熱体を用いた蓄熱装置
の断面図、第3図は発熱時における水の出口装置の軽時
変化を示すグラフ、llll4Eは蓄熱時におけるメタ
ノール残留量の経時費化を示すグラフである。
41ElliiO Brief explanation@1 Figure 1 is a partially cutaway perspective view of a heat storage body according to an embodiment of the present invention, Figure 2 is a sectional view of a heat storage device using the heat storage body shown in Figure 11, and Figure 3 is a cross-sectional view of a heat storage device using the heat storage body shown in Figure 11. A graph showing changes in the water outlet device over time during heat generation, llll4E is a graph showing changes in the amount of methanol remaining over time during heat storage.

1−・蓄熱体、2・・・力!セル、1・・・塩化カルシ
ウム、4・・・蓄熱槽、5・・・伝熱管、6・・・加熱
管、r・−メタノール、8・・・貯蔵槽、9・・・凝縮
器、10・・・連通管。
1- Heat storage body, 2... Power! Cell, 1... Calcium chloride, 4... Heat storage tank, 5... Heat exchanger tube, 6... Heating tube, r-methanol, 8... Storage tank, 9... Condenser, 10 ...Communication pipe.

出願人代理人  弁理士 鈴 江 武 彦子Q羽口東蔓
 ρ
Applicant's agent Patent attorney Hikoko Suzue Takeshi Q. Higashi Tsune tuyere ρ

Claims (2)

【特許請求の範囲】[Claims] (1)  金輌製のメ、シ、からなる力f−にル内に、
ガスまたは蒸気を吸着して、発熱あるいは吸熱する無機
塩類を充填したこと1−特徴とする蓄熱体。
(1) In the force f-, which consists of metal metal,
1. A heat storage body characterized by being filled with an inorganic salt that adsorbs gas or vapor and generates heat or absorbs heat.
(2)  カブセルが銅、アルミニウム、ステンレスス
チールなどの熱伝導率の大暑い金属製のメ、シュで形成
されていることを特徴とする特許請求の範囲第1項記載
の蓄熱体。
(2) The heat storage body according to claim 1, wherein the capsule is formed of a metal mesh having high thermal conductivity such as copper, aluminum, or stainless steel.
JP57011133A 1982-01-27 1982-01-27 Heat accumulating member Pending JPS58129193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57011133A JPS58129193A (en) 1982-01-27 1982-01-27 Heat accumulating member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57011133A JPS58129193A (en) 1982-01-27 1982-01-27 Heat accumulating member

Publications (1)

Publication Number Publication Date
JPS58129193A true JPS58129193A (en) 1983-08-02

Family

ID=11769515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57011133A Pending JPS58129193A (en) 1982-01-27 1982-01-27 Heat accumulating member

Country Status (1)

Country Link
JP (1) JPS58129193A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248374A (en) * 2009-04-15 2010-11-04 Denso Corp Thermal storage agent-metal structure and manufacturing method thereof
JP2011196661A (en) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc Heat accumulator
FR3003937A1 (en) * 2013-03-29 2014-10-03 Hevatech THERMO-CHEMICAL ENERGY STORAGE DEVICE COMPRISING A DRYING NETWORK AND METHOD OF OPERATING THE DEVICE
WO2015099063A1 (en) * 2013-12-26 2015-07-02 カルソニックカンセイ株式会社 Adsorption-type heat exchanger
WO2018066407A1 (en) * 2016-10-06 2018-04-12 株式会社豊田自動織機 Chemical heat storage device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248374A (en) * 2009-04-15 2010-11-04 Denso Corp Thermal storage agent-metal structure and manufacturing method thereof
JP2011196661A (en) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc Heat accumulator
FR3003937A1 (en) * 2013-03-29 2014-10-03 Hevatech THERMO-CHEMICAL ENERGY STORAGE DEVICE COMPRISING A DRYING NETWORK AND METHOD OF OPERATING THE DEVICE
WO2015099063A1 (en) * 2013-12-26 2015-07-02 カルソニックカンセイ株式会社 Adsorption-type heat exchanger
WO2018066407A1 (en) * 2016-10-06 2018-04-12 株式会社豊田自動織機 Chemical heat storage device

Similar Documents

Publication Publication Date Title
Pons et al. Design of an experimental solar-powered, solid-adsorption ice maker
Xu et al. A zeolite 13X/magnesium sulfate–water sorption thermal energy storage device for domestic heating
Anbarasu et al. Thermal modeling of LmNi4. 91Sn0. 15 based solid state hydrogen storage device with embedded cooling tubes
US4329407A (en) Electrochemical storage battery
CN105651091B (en) Conduct heat enhanced chemical regenerative apparatus and the hold over system using the regenerative apparatus
JP2017525933A (en) Solar energy water heating auxiliary heat storage device and power plant boiler solar energy water heating supply system formed from solar energy water heating auxiliary heat storage device
JP2005024231A (en) Thermal storage heat pump system
JPS58129193A (en) Heat accumulating member
Parashar et al. Experimental study on charging and discharging characteristics of copper finned metal hydride reactor for stationary hydrogen storage applications
US3504494A (en) Intermittent power source
US20160206989A1 (en) Regeneration of a hydrogen impurity trap using the heat exiting a hydride tank
CN108800353A (en) A kind of air dehumidifier using solution
JP2002031426A (en) Heat storage device
US3065609A (en) Absorption refrigeration system
CN209197547U (en) A kind of full liquid type steam accumulator
CN109297339A (en) A kind of flooded steam heat accumulator and preparation method of composite phase change heat storage material
CN114307619B (en) Novel device and method for capturing carbon dioxide in circularly regenerated flue gas
CN210135815U (en) Liquid-solid immersion type adsorption heat storage system
JPS5848480Y2 (en) Hydrogen storage device using metal hydride
CN114935273A (en) A multi-stage phase change ball heat storage device
JPS61143689A (en) Heat pipe
JPS5890A (en) Structure of heat exchanger utilizing metal hydride
Dadda et al. Numerical simulation of fins' effect on the performance of a metal hydride reactor
JP3046975B2 (en) Hydrogen storage container
JP6365016B2 (en) HEAT PUMP AND CRYSTAL GENERATION METHOD