[go: up one dir, main page]

JPS58127780A - Preparation of formed coke - Google Patents

Preparation of formed coke

Info

Publication number
JPS58127780A
JPS58127780A JP928982A JP928982A JPS58127780A JP S58127780 A JPS58127780 A JP S58127780A JP 928982 A JP928982 A JP 928982A JP 928982 A JP928982 A JP 928982A JP S58127780 A JPS58127780 A JP S58127780A
Authority
JP
Japan
Prior art keywords
coke
heating medium
carbonization
temp
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP928982A
Other languages
Japanese (ja)
Other versions
JPS6245914B2 (en
Inventor
Kunihiko Nishioka
西岡 邦彦
Yukihiro Sugimoto
杉本 行廣
Yoshihiko Sunami
角南 好彦
Hideyuki Yamaoka
山岡 秀行
Tomio Miyazaki
宮崎 富夫
Michiharu Hatano
羽田野 道春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP928982A priority Critical patent/JPS58127780A/en
Publication of JPS58127780A publication Critical patent/JPS58127780A/en
Publication of JPS6245914B2 publication Critical patent/JPS6245914B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PURPOSE:To obtain formed coke with improved thermal efficiency and capable of substantially simplifying carbonization equipment, by carbonizing formed coal in contact with reduced iron or iron oxides heated to a particular temp. and using the resulting formed coke as a raw material for a blast furnace. CONSTITUTION:Carbonization of formed coal is effected by bringing it into contact with reduced iron or iron oxides, massive or formed in lumps, under laminated or mixed conditions heated to a temp of from 600 deg.C to the m.p. thereof. The resulting formed coke is used as a raw material for a blast furnace with or without separation from reduced iron or iron oxides. The reason why the heating temp. of said solid heating medium is 600 deg.C or higher is as follows: Generally, the temp. at which the strength of coke is developed as a result of carbonization of formed coal is assumed to be 500 deg.C or higher at which pyrolysis and heat polymn. of molten components or binders in coal are nearly completed. When the temp. of the heating medium is low, the longer carbonization period and reduced strength of formed coke result. Therefore the temp. of the heating medium is required to be 600 deg.C or higher.

Description

【発明の詳細な説明】 本発明は、成型コークスの製造方法、なかでも特に、成
型法を固体熱媒による直接加熱によシ乾留してコークス
化する方法に関する、 近年の著しい鉄鋼業の発展に伴い、製鉄原料の1つであ
るコークスの消費は膨大な量にのほっている。しかるに
、このコークスの製造に不可欠な原料炭の供給には限界
があるばかりでなく、現在の原料炭の品質を将来に亘っ
て維持することさえ困難とされている。そこで世界各国
では、地球上にほぼ普遍的に賦存し、かつ資源量も豊富
な非粘結炭や微粘結炭を主原料とした高炬用コークスの
製造研究が進められている。これらの研究の中で成型コ
ークスの製造方法は、将来の有力なコークス製造技術と
してその開発が急がれているものの、工業的規模で経済
的に成型コークスを製造する技術は未だ確立されていな
いのが実状である。
[Detailed Description of the Invention] The present invention relates to a method for producing molded coke, particularly a method in which the molding method is carbonized into coke by direct heating with a solid heating medium, in response to the remarkable development of the steel industry in recent years. As a result, the consumption of coke, one of the raw materials for steelmaking, has increased enormously. However, not only is there a limit to the supply of coking coal that is essential for producing coke, but it is also difficult to maintain the current quality of coking coal into the future. Therefore, research is underway in countries around the world to produce coke for high-fired coke using non-caking coal or slightly caking coal as the main raw material, which is almost universally present on earth and has abundant resources. Among these studies, the development of molded coke production methods is urgently needed as a promising coke production technology in the future, but the technology to economically produce molded coke on an industrial scale has not yet been established. This is the actual situation.

その原因については種々いわれているが、最も大きなも
のの1つは、成型コークス世造法が通常のコークス製造
法に比較して、乾留に要するエネルギーコストが大きい
ことである。
Various reasons have been proposed for this, but one of the biggest is that the energy cost required for carbonization is greater in the molded coke production method than in the normal coke production method.

すなわち、成型コークスの製造方法は、成型法を高温の
不活性ガスにより直接加熱する方法と、同じく成型法を
固体熱媒により直接加熱する方法の2つに大別されるが
、前者の方法では高温の不活性ガスが、成型法の乾留に
より発生したガス状の揮発成分と混合するため、総体的
なガスカロリーが低下するばかりでなく、ガス中のター
ル分の凝縮を防止する関係上、排出ガス湿度を必要以上
に高くしなければならず、その顕熱の分だけエネルギー
的に不利とならざるを爬ない欠点があるのである。また
、後者の成型炭を固体熱媒により直接加熱する方法では
、上記欠点は排除されるものの、固体熱媒を再加熱し循
環使用する際の熱効率が悪く、必ずしもエネルギーコス
トは低くならないことが指摘でれる。なお、ここで固体
熱媒としては、特公昭45−8660や同じく特公昭4
7−2125にみられるように仮焼石炭や砂、更には粉
コークスのような微粒状固体熱媒が用いられる。これは
成型コークスと熱媒との分離が容易で、かつ両者の伝熱
面積が増大され、乾留時間を短縮できるためと考えられ
る。
In other words, methods for producing molded coke can be roughly divided into two methods: a method in which the molding method is directly heated with a high-temperature inert gas, and a method in which the molding method is directly heated with a solid heating medium. Because the high-temperature inert gas mixes with the gaseous volatile components generated by the carbonization of the molding process, not only does the overall gas calorie decrease, but it also prevents the tar content in the gas from condensing. The disadvantage is that the gas humidity must be made higher than necessary, and the sensible heat generated is disadvantageous in terms of energy. In addition, it has been pointed out that although the latter method of directly heating briquette coal with a solid heating medium eliminates the above drawbacks, the thermal efficiency is poor when reheating and circulating the solid heating medium, and energy costs are not necessarily reduced. I can come out. In addition, here, as a solid heat medium, it is
As shown in No. 7-2125, calcined coal, sand, and even particulate solid heat medium such as coke powder are used. This is thought to be because the molded coke and the heating medium can be easily separated, the heat transfer area between the two is increased, and the carbonization time can be shortened.

本発明の目的は、固体熱媒による成型コークス製造法の
長所を活かしながら、その公知方法の欠点である熱効率
の低さを改善するとともに、乾留設備の大1]簡略化を
可能にする成型コークスの御造方法を提供することにあ
る。
The purpose of the present invention is to improve the low thermal efficiency, which is a drawback of known methods, while taking advantage of the advantages of a molded coke manufacturing method using a solid heating medium, and to produce molded coke that enables simplification of carbonization equipment. Our goal is to provide you with a manufacturing method.

ところで、従来の固体熱媒による成型コークスg(ν進
法の、固体熱媒に対する基本条件は循環使用することが
可能なことにある。このため、固体熱媒には成型コーク
スとの分M¥が容易で、再加熱し易く、かつ伝熱面積を
大きくとれる微粒状固体熱媒が望ましいものとされ、こ
の考えに沿って仮焼石炭、砂、粉コークスなどが用いら
れてきた。しかしながら、もしこの固体熱媒を、↑盾環
使用を前提としたものから循環使用しないもの、なかで
も特に、溶に溶用原料として再使用できるものに変更す
れば、固体熱媒が無駄にならないばかってなく、固体熱
媒の再加熱工程と循環工程とが省略され、乾留設備の大
巾簡略化が図れるとともに熱効率も著しく向上すること
になる。
By the way, the basic condition for a solid heating medium in conventional solid heating medium molded coke g (v base system) is that it can be used in circulation.For this reason, the solid heating medium has a fraction of the molded coke g It is believed that a solid heat medium in the form of fine particles is desirable because it is easy to heat, reheat, and has a large heat transfer area, and based on this idea, calcined coal, sand, coke powder, etc. have been used. If we change this solid heating medium from one that is intended to be used as a shield ring to one that is not reused, especially one that can be reused as a raw material for melting, the solid heating medium will not only be wasted. , the reheating step and the circulation step of the solid heating medium are omitted, the carbonization equipment can be greatly simplified, and the thermal efficiency is also significantly improved.

本発明は斯かる考えに立脚するもので、成型炭を、60
0 ’C以上溶融温度以下に加熱された塊状もしくは塊
成化した還元鉄または酸化鉄と、積層状態乃至混合状態
のもとて接触てせて、前記成型炭の乾留を行なわしめ、
当該乾留により得られた成型コークスは前記還元鉄また
は酸化鉄と分用°し、または分6推することなく溶鉱炉
用原料とすることを特徴とする成型コークスの製造方法
を要旨とする。
The present invention is based on this idea, and the present invention is based on this idea.
carbonizing the briquette coal by bringing it into contact with lumpy or agglomerated reduced iron or iron oxide heated to a temperature of 0'C or more and below the melting temperature in a layered or mixed state;
The gist of the present invention is a method for producing molded coke, characterized in that the molded coke obtained by carbonization is used as a raw material for a blast furnace without being divided with the reduced iron or iron oxide or being separated.

すなわち、本発明の成型コークス製造法は基本的には固
体熱媒による方法であるが、固体熱媒として、別のプロ
セスで加熱された溶鉱・鯖用原料として支障のない塊状
もしくは塊成化された還元鉄また1l−1:酸化鉄を用
いるものであるため、固体熱媒を熱媒として循環使用し
ないにもかブ1〉わらず、固体薔S媒が無駄になること
がないので、原料コストの引上げが阻止されることはい
うにおよばず、固体熱媒を熱媒として循環使用しないこ
とに起因して乾留設備の大巾簡略化と熱効率の大巾向上
とが図られるのである。
In other words, the molded coke production method of the present invention is basically a method using a solid heating medium, but as a solid heating medium, it can be formed into lumps or agglomerates that are not a problem as a raw material for smelt or mackerel heated in another process. Reduced iron 1l-1: Since iron oxide is used, the solid heat medium is not recycled as a heat medium, and the solid S medium is not wasted. Not only does this prevent an increase in raw material costs, but because the solid heat medium is not used repeatedly as a heat medium, the carbonization equipment can be greatly simplified and its thermal efficiency can be greatly improved.

加えて、本発明法では、固体熱媒に、溶鉱炉用原料とし
て支障のないものを使用する上、得られたコークスも溶
鉱・溶用原料の1つであるため、従来法のように成型コ
ークスを固体熱媒から分離することは必ずしも必要でな
く、この面からも工数の節減を図ることが可能である。
In addition, in the method of the present invention, the solid heating medium used is one that does not pose a problem as a raw material for blast furnaces, and the coke obtained is also one of the raw materials for smelting and melting, so it cannot be molded as in the conventional method. It is not necessarily necessary to separate the coke from the solid heating medium, and from this point of view as well, it is possible to reduce the number of man-hours.

々お、本発明法においては固体熱媒が塊状もしくは塊成
化したものとなっているが、還元鉄または酸化鉄の熱伝
導率は仮焼石炭、砂、粉コークスより良好なため、微粒
状のこれら固体熱媒を用いる従来法と比較して乾留時間
が長くなることはない。
In the method of the present invention, the solid heating medium is in the form of lumps or agglomerates, but since the thermal conductivity of reduced iron or iron oxide is better than that of calcined coal, sand, and powdered coke, it is Compared to conventional methods using these solid heating media, the carbonization time does not become longer.

本発明法を従来の固体熱媒による成型コークス製造法と
比咳すると第1表のとおりである。
Table 1 shows the comparison of the method of the present invention with the conventional molded coke manufacturing method using a solid heating medium.

第   1   表 以下、本発明法をく成型炭〉、〈固体熱媒〉、〈成型コ
ークス〉および〈比較試験〉の順で更に詳しく説明する
Below in Table 1, the method of the present invention will be explained in more detail in the following order: shaped coal, solid heating medium, shaped coke, and comparative test.

く成型炭〉 本発明法に使用する成型炭は通常の成型炭であるが、望
1しくけこれを事前に乾燥および/または250℃以下
の温度に予熱しておくことである。
Molded Charcoal> The molded coal used in the method of the present invention is a normal molded coal, but it is preferable to dry it and/or preheat it to a temperature of 250° C. or lower in advance.

なぜなら、後記する固体熱媒の温度としては高いほど乾
留時間が短縮され、生産性向上に寄与するものの、成型
炭と固体熱媒との温度差が大きくなると、成型炭の表面
部と中心部とで大きな温度差を生じ、成型炭中に多くの
亀裂が発生してコークス強度を低下させる一因と々るが
、成型炭を乾燥して訃〈か、石炭やバインダーの弊分解
温度である250℃以下に予熱しておくか、更には両者
を実施しておくことによシ、この亀裂の発生が抑制され
、コークス強度の低下を防ぐことが可能になるためであ
る。
This is because, although the higher the temperature of the solid heating medium (described later), the shorter the carbonization time and contributing to improved productivity, the larger the temperature difference between the briquette coal and the solid heating medium, the more This causes a large temperature difference in the briquettes, which causes many cracks in the briquettes and reduces coke strength. This is because by preheating the coke to a temperature below .degree. C. or by performing both, the occurrence of these cracks can be suppressed and a decrease in coke strength can be prevented.

く固体熱媒〉 上記成型炭に接触させる固体熱媒としては、との熱媒を
溶鉱・爛用原料として再利用することから還元鉄または
酸化鉄である。これらの熱媒ば、溶鉱°炉内での通気性
を保持する必要上、塊状″!、たは塊成化されたものに
しておくことが重要である。
Solid heating medium> The solid heating medium to be brought into contact with the briquette coal is reduced iron or iron oxide, since the heating medium is reused as a raw material for smelting and burning. It is important that these heating media be in the form of lumps or agglomerates in order to maintain air permeability within the blast furnace.

このような熱媒としては、直接還元鉄製造法によって得
られる還元鉄や、高炉装入原料として一般に使用されて
いる焼成ベレットもしくに焼結鉱などを、冷却前の状態
で用いればよく、そうすることによりこれら熱媒の顕熱
が成型炭の乾留に有効に転用されて、熱媒を別途加熱す
る工程が不用になシ、工数面、エネルギーコスト而で一
層有利になる。
As such a heating medium, reduced iron obtained by the direct reduced iron manufacturing method, fired pellets or sintered ore, which are generally used as blast furnace charging raw materials, may be used in a state before cooling. By doing so, the sensible heat of these heating mediums is effectively diverted to the carbonization of briquette coal, eliminating the need for a separate process of heating the heating medium, and making it even more advantageous in terms of man-hours and energy costs.

上記固体熱媒の加熱温度を600 ”C以上溶融温度以
下としたのけ次の理由による。
The heating temperature of the solid heating medium is set to 600"C or higher and lower than the melting temperature for the following reasons.

−4に、成型炭が乾留されてコークスとしての強度が発
現してくるのは、石灰中の溶融成分もしくはバインダー
が熱分解と加熱重合とをほぼ完了する500℃以上と考
えてよい。従って、固体熱媒を用いて成型炭を乾留する
に(d少々くとも500℃以上の温度域に侵害媒を加熱
しておく必要がある。
-4, briquette coal is carbonized and develops its strength as coke at temperatures above 500°C, where the molten component or binder in the lime has almost completed its thermal decomposition and thermal polymerization. Therefore, in order to carbonize briquette coal using a solid heating medium, it is necessary to heat the noxious medium to a temperature range of at least 500° C. or higher.

しかし、熱媒の温度が低いと、乾留時間が長くなりかつ
成型コークスの強度も低くなる。これらのことから、熱
媒の温度は600℃以上が要求されるのである。
However, when the temperature of the heating medium is low, the carbonization time becomes long and the strength of the molded coke becomes low. For these reasons, the temperature of the heating medium is required to be 600°C or higher.

なお、熱媒湿度の上限が当該熱媒の溶融温度に設定され
ることについて(は多くの説明を要しないであろう。
Note that the fact that the upper limit of the heat medium humidity is set to the melting temperature of the heat medium does not require much explanation.

上記固体熱媒と成型炭との接触のさせ方については、混
合、積層のいずれでもよく、更にその間の態様を採って
もよい。
The solid heating medium and the briquette charcoal may be brought into contact with each other by either mixing or lamination, or any method in between.

く成型コークス〉 上記固体熱媒との接触により乾留された成型コークスは
、固体熱媒から分離して溶鉱・脳圧原料として使用する
ことも前輪可能であるが、固体熱媒も溶鉱炉用原料の1
つであることから、固体熱媒から分離することなく固体
熱媒とともに溶鉱1頃用原料として用いることができ、
前記のとおシこの点も本発明法の大きな特徴の1つであ
る。
Molded coke〉 Molded coke carbonized by contact with the solid heating medium can be separated from the solid heating medium and used as raw material for smelting and brain pressure, but solid heating medium can also be used as raw material for blast furnaces. 1
Therefore, it can be used as a raw material for the first stage of smelting together with the solid heating medium without being separated from the solid heating medium.
The above point is also one of the major features of the method of the present invention.

く比較試験1〉 第1図に示すような内径1050朋、奥行600關の回
分式回転炉(1)に直径10〜20藺の酸化鉄ベレツ)
 100 kqを装入し、第2表に示す各温度に加熱後
、各ペレットを上記回転炉(1)より排出し、直ちに第
3表に示すような原料配合の縦651ffX横65w肩
x厚さ45朋のマセツク型成型p 25 kqと混合し
、保温容器にて乾留を行なわしめた。保温容器は、第2
園に示すように、4種かの熱電対(装入物尚度測定用郊
電対(9)、成型炭中心部温度測定用熱電対Q[)、側
壁保熱温度測定用熱電対(1,1)および底部保熱温度
測定用熱電対α2)と電気ヒーターα■とにより装入物
の温度変化に応じて外部の保熱4度を調整して、装入物
の断熱状態が確保できるよう(F、工夫したものである
Comparison Test 1〉 As shown in Figure 1, a batch-type rotary furnace (1) with an inner diameter of 1050 mm and a depth of 600 mm was equipped with an iron oxide bezel with a diameter of 10 to 20 mm.
After charging 100 kq and heating to each temperature shown in Table 2, each pellet was discharged from the rotary furnace (1) and immediately made into a pellet with a raw material composition of 651 ff (length) x 65 w (width) x shoulder x thickness (width) as shown in Table 3. The mixture was mixed with 25 kq of 45 mm mass molded p.sub.25 kq, and carbonized in a heat insulating container. The thermal container is the second one.
As shown in the picture, there are four types of thermocouples (suburban couple for measuring the temperature of the charged material (9), thermocouple Q for measuring temperature at the center of briquettes, thermocouple for measuring side wall heat retention temperature (1). , 1) and the thermocouple α2) for measuring the bottom heat retention temperature and the electric heater α■ can adjust the external heat retention of 4 degrees according to the temperature change of the charge, ensuring the insulation state of the charge. Yo (F, it's something I've devised.

なお、第11¥?Iにおいて、(2)は試料装入蓋、(
3)は測/□Im孔、(4)はバーナー、(5)(はア
フターバーナー室、(6)はダスト抜、(7)は煙道、
(8)はミキサーを表わしている。
In addition, the 11th yen? In I, (2) is the sample loading lid, (
3) is the measurement/□Im hole, (4) is the burner, (5) is the afterburner chamber, (6) is the dust extraction, (7) is the flue,
(8) represents a mixer.

上記各乾留試験後の成型コークス強度および成型コーク
ス中心部における最高乾留温度、さらには最高乾留温度
寸での加熱時間を第2表に併記する。
The strength of the molded coke after each of the above carbonization tests, the maximum carbonization temperature at the center of the molded coke, and the heating time at the maximum carbonization temperature are also listed in Table 2.

寸だ、参孝のために、固体隋I某としてQ、5 龍〜3
、 Q vzに整粒した妙を1000℃に加熱して、同
様の乾留試験を行ったものを第2表にテスト扁6として
示す。
For the sake of filial piety, as a solid Sui I, Q, 5 Dragon ~ 3
, Q vz sized grains were heated to 1000° C. and subjected to a similar carbonization test, and are shown in Table 2 as test flat 6.

第   2   表 ※)成型コークスの強度測定には、酸化鉄ベレットを3
0闘の角ぶるいで除去し、ふるい上の成型コークスを強
度測定に供した。
Table 2 *) To measure the strength of molded coke, three iron oxide pellets were used.
The coke was removed using a square sieve with zero resistance, and the molded coke on the sieve was subjected to strength measurement.

第   3   表 これらの試験結果から明らかなように、本発明法を用い
ることによシ、良好なコークス強度を有する成型コーク
スが短時間で製造できることが確認された。
Table 3 As is clear from these test results, it was confirmed that molded coke having good coke strength could be produced in a short time by using the method of the present invention.

すなわち、テスト筋1〜5は、熱媒として酸化鉄ペレッ
トを用いたものであるが、はぼ熱媒温度が高いほど成型
コークス強度が向上する傾向を示し、乾留時間も短くて
すむことがわかる。しかし。
In other words, test strips 1 to 5 used iron oxide pellets as the heating medium, and it can be seen that the higher the heating medium temperature is, the stronger the formed coke tends to be, and the carbonization time is shorter. . but.

熱媒温度が最も低い(本発明範囲外の)テスト煮■では
、乾留時間が長いばかりでなく成型コークス強度が極め
て低く、側底溶鉱炉使用に耐えないものである。これは
、最高乾留温度が低いためにコークヌ化が不充分なため
と考えられる。従って、熱媒温度としては600℃以上
が必要と判断される。
In test boiling (2), where the heating medium temperature is the lowest (outside the range of the present invention), not only the carbonization time is long, but also the strength of the molded coke is extremely low, and it cannot withstand use in a side-bottom blast furnace. This is thought to be due to insufficient carbonization due to the low maximum carbonization temperature. Therefore, it is determined that a heating medium temperature of 600° C. or higher is required.

なお、熱に温度が本発明範囲内ではあるが最も高い12
0(lであるテスト塵5では、最高乾留温度が高く乾留
時間も短いにもかかわらず、成型コークス強度は熱媒温
度が低いテスト筋4よりむしろ低下している。これは、
熱媒温度が高すぎると、前記したように成型コークスに
多くの亀裂が生成するためと考えられ、これを溶鉱炉用
原料とするには若干の品質改善を施すことが望まれる。
In addition, although the temperature is within the range of the present invention, the highest temperature is 12
0(l), the molded coke strength is lower than that of test strip 4, which has a lower heating medium temperature, even though the maximum carbonization temperature is high and the carbonization time is short.This is because
It is believed that if the heating medium temperature is too high, many cracks will form in the molded coke as described above, and it is desirable to make some quality improvements in order to use this as a raw material for blast furnaces.

また、従来法であるテストA6の結果を、本発明法の同
じ条件で実施したテスト筋4と比較すれば、成型コーク
ス強度および乾留時間の面で両者に大きな差はなく、こ
れらの面で本発明法が従来法と比較して何ら遜色がない
ばかVか、本発明法では熱媒の再加熱工程と循環工程と
がなく、乾留設備の大巾簡略化と熱効率の大巾改善が達
成されることを考え合せると、その工業的価値の極めて
大きいことが理解される。
Furthermore, if we compare the results of Test A6, which is the conventional method, with Test Strip 4, which was conducted under the same conditions using the method of the present invention, there is no significant difference between the two in terms of molded coke strength and carbonization time, and the results show that the results of Test A6, which is the conventional method, are not significantly different between the two in terms of molded coke strength and carbonization time. Are you saying that the inventive method is in no way inferior to the conventional method?The inventive method does not require a reheating process or a circulation process for the heating medium, and has achieved a large simplification of the carbonization equipment and a large improvement in thermal efficiency. When you consider these things, you can understand that its industrial value is extremely large.

く比較試@2〉 く比較試@1〉と同じ方法で得られた加熱温度1200
℃の酸化鉄ベレツl−101に、同じくく比校試吟1〉
で使用したのと同じ成型炭25kqを、第4表に示すよ
うに事前に乾燥および/または予熱して混合し、第2図
に示す保温容器にて乾留せしめた。これらの試験結果を
第4表に併記する。
Comparative test @2 Heating temperature 1200 obtained using the same method as Comparative test @1
℃ iron oxide beretsu l-101, same as the Japanese school exam 1〉
25 kq of the same briquette charcoal used in Example 1 was dried and/or preheated and mixed as shown in Table 4, and carbonized in a heat-insulating container shown in FIG. These test results are also listed in Table 4.

第4表 第4表から明らかなように、く比較試験1〉で行ったテ
スト遡5と比較し、成型炭を事前に乾燥および/または
予熱するテスト蔦7〜IOでは、乾留時間の短縮はもと
よシ成型コークスの強度が大きく改善されておシ、成型
炭の乾燥および/または予熱が、乾留時間の短縮と成型
コークス強度の改善(特に熱媒温度が高い場合)vc有
効なことが確認された。
Table 4 As is clear from Table 4, compared to Test 5 conducted in Comparative Test 1, in Tests 7 to IO, which dry and/or preheat the briquette coal in advance, the carbonization time was reduced. The strength of the molded coke has been greatly improved, and drying and/or preheating of the molded coal is effective in shortening the carbonization time and improving the strength of the molded coke (especially when the heating medium temperature is high). confirmed.

なお、成型炭を250℃に予熱するテスト属10では成
型コークスに若干の強度低下が見られるが、これは、成
型炭中のバインダーに熱分解が若干生じているためと考
えられる。
In Test Group 10, in which the molten coal was preheated to 250°C, a slight decrease in strength was observed in the molten coke, which is thought to be due to slight thermal decomposition of the binder in the molten coal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は比較試験に使用した回転炉の説明図、第2図は
同じく保温容器の説明図である。 図中゛、1:回転炉、4:バーナー、9〜12:熱電対
、13:電気ヒーター。 出願人  住友金属工業株式会社 【J              −〜第1頁の続き ■発 明 者 羽田野道春 尼崎市西長洲本通1丁目3番地 住友金属工業株式会社中央技術 研究所内
FIG. 1 is an explanatory diagram of the rotary furnace used in the comparative test, and FIG. 2 is an explanatory diagram of the heat-insulating container. In the figure, 1: rotary furnace, 4: burner, 9 to 12: thermocouple, 13: electric heater. Applicant: Sumitomo Metal Industries, Ltd. [J - Continued from page 1] Inventor: Michiharu Hadano, 1-3 Nishinagasu Hondori, Amagasaki City, Sumitomo Metal Industries, Ltd., Central Technology Research Laboratory

Claims (1)

【特許請求の範囲】[Claims] (1)成型法を、600C以上溶融温度以下に加熱され
た塊状もしくは塊成化した還元鉄または酸化鉄と、積層
状態乃至混合状態のもとで接触させて、前記成型法の乾
留を行なわしめ、当該乾留によシ得られた成型コークス
は前記還元鉄または酸化鉄と分離し、または分離するこ
となく溶鉱・炉用原料とすることを特徴とする成型コー
クスの製造方法。
(1) The molding method is brought into contact with lumpy or agglomerated reduced iron or iron oxide heated to 600 C or above and below the melting temperature in a layered or mixed state to carry out carbonization in the above molding method. A method for producing shaped coke, characterized in that the shaped coke obtained by the carbonization is separated from the reduced iron or iron oxide, or used as a raw material for blast oring and furnaces without separation.
JP928982A 1982-01-22 1982-01-22 Preparation of formed coke Granted JPS58127780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP928982A JPS58127780A (en) 1982-01-22 1982-01-22 Preparation of formed coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP928982A JPS58127780A (en) 1982-01-22 1982-01-22 Preparation of formed coke

Publications (2)

Publication Number Publication Date
JPS58127780A true JPS58127780A (en) 1983-07-29
JPS6245914B2 JPS6245914B2 (en) 1987-09-29

Family

ID=11716314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP928982A Granted JPS58127780A (en) 1982-01-22 1982-01-22 Preparation of formed coke

Country Status (1)

Country Link
JP (1) JPS58127780A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103370396A (en) * 2010-12-21 2013-10-23 Posco公司 Method for manufacturing partially carbonized coal briquettes, apparatus for manufacturing partially carbonized coal briquettes, and apparatus for manufacturing molten iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103370396A (en) * 2010-12-21 2013-10-23 Posco公司 Method for manufacturing partially carbonized coal briquettes, apparatus for manufacturing partially carbonized coal briquettes, and apparatus for manufacturing molten iron
CN103370396B (en) * 2010-12-21 2016-02-24 Posco公司 The preparation method of partially carbonized coal briquette, the preparation facilities of partially carbonized coal briquette and molten iron preparation facilities

Also Published As

Publication number Publication date
JPS6245914B2 (en) 1987-09-29

Similar Documents

Publication Publication Date Title
KR101304686B1 (en) Part reduced iron for blast furnace and method thereof
US4141793A (en) Process for preparation of coke and carbonizer therefor
JPH0665579A (en) Raw material blending method for forming coal for the production of forming coke for metallurgy
CN108676951A (en) A kind of hydrocarbon joint direct-reduction technique of iron ore concentrate
CN102689882A (en) Method for producing yellow phosphorus by virtue of low grade phosphate rotary hearth furnace method
US3093474A (en) Process of reducing metal oxides
US3802864A (en) Sintered agglomerates and method of producing same
JPH11241125A (en) Production of reduced iron pellet and reduced iron pellet produced by this method
US3335094A (en) Agglomerated carbonaceous phosphate furnace charge of high electrical resistance
US2663632A (en) Reduction of iron ores
JP2001181720A (en) Method of manufacturing reduce iron with rotary hearth furnace
JPS58127780A (en) Preparation of formed coke
JPH026815B2 (en)
CA1147965A (en) Process of directly reducing iron oxide-containing materials in a rotary kiln
US2823109A (en) Process for manufacturing high grade pig iron
US1334004A (en) Process for the treating of titaniferous iron ore
JP4843445B2 (en) Manufacturing method of carbonized material agglomerates
CN1042346C (en) Hot pressed carboniferous ore ball fast direct reducing or calcining process
CN107089661B (en) A kind of calcium focal sphere group classification oxygen thermal method produces calcium carbide production technology
CN112250323A (en) A kind of method for preparing sintered magnesia by one-step method of powdery magnesite
CN111944994B (en) A kind of preparation method of manganese-containing powder pressed pellet with self-reduction performance
JPS61103986A (en) Continuous production method and equipment for blast furnace coke
KR100778683B1 (en) Manufacturing method of high strength reduced iron for blast furnace
JPH0333763B2 (en)
CN116377149A (en) A kind of preparation method of iron-carbon composite charge and iron-carbon composite charge