[go: up one dir, main page]

JPS58126967A - Manufacture of hard aluminum alloy plate having low directional property - Google Patents

Manufacture of hard aluminum alloy plate having low directional property

Info

Publication number
JPS58126967A
JPS58126967A JP933982A JP933982A JPS58126967A JP S58126967 A JPS58126967 A JP S58126967A JP 933982 A JP933982 A JP 933982A JP 933982 A JP933982 A JP 933982A JP S58126967 A JPS58126967 A JP S58126967A
Authority
JP
Japan
Prior art keywords
aluminum alloy
low
alloy plate
rate
hard aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP933982A
Other languages
Japanese (ja)
Inventor
Mutsumi Abe
睦 安倍
Yoshio Asano
浅野 吉男
Shojiro Oya
大家 正二郎
Kazuhiko Asano
浅野 和彦
Takashi Inaba
隆 稲葉
Hideyoshi Usui
碓井 栄喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP933982A priority Critical patent/JPS58126967A/en
Publication of JPS58126967A publication Critical patent/JPS58126967A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To obtain a hard Al alloy plate having low directional properties, high strength and a very low edge forming rate by specifying the ratio of (Fe+Mn)/ Si in an Al alloy for a can and the heat treatment conditions. CONSTITUTION:An alloy consisting of 0.5-2.0% Mn, 0.5-2.0% Mg, 0.05-0.5% Cu, 0.2-0.7% Fe, 0.01-0.3% Ti and the balance Al with impurities or further contg. one or more among 0.01-0.3% Cr, 0.001-0.05% B, 0.01-0.3% V and 0.01-0.2% Zr and satisfying (Fe+Mn)/Si>=14 is heated to 450-600 deg.C at >=100 deg.C/ min heating rate, immediately cooled at >=100 deg.C/min cooling rate, and subjected to final cold rolling at >=20% draft. By regulating the ratio of (Fe+Mn)/Si to >=14, many effective coarse particles of an Al-Fe-Mn compound are dispersed, the reduction of the strength after baking finish is prevented, and the burning hardening can be accelerated.

Description

【発明の詳細な説明】 本発明は低方向性硬質アルミニウム合金板の製造法に関
し、さらに詳しくは、ビール%清涼飲料用缶等のキャン
ボディの成形に際して耳率発生の極めて低い低方向性硬
質アルミニウム合金板の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a hard aluminum alloy plate with low grain orientation, and more specifically, the present invention relates to a method for manufacturing a hard aluminum alloy plate with low grain orientation, and more specifically, to produce a hard aluminum alloy sheet with low grain orientation, which has an extremely low selvage rate when molding a canvas body such as a can for a beer soft drink. This invention relates to a method for manufacturing alloy plates.

現在、アルミニウム族の缶が多量に使用されているが、
次のような大きな問題がある。 jloち、(1)  
アルミニウム地金製造の際の膨大な消費電力(2)  
スチール製シゴキ加工缶の進出(3)  缶の回収問題 等があり、キャンボディ材料として薄肉硬質化、トリミ
ング量の低減化が要望畜れている。また、アルミニウム
地金の製造に際して鋳塊の大型化、広幅圧延、或いは、
連続焼鈍法を採用する等合理が図られている。
Currently, aluminum family cans are widely used,
There are major problems such as: jlochi, (1)
Huge amount of power consumption during aluminum metal production (2)
Advancement of steel ironed cans (3) Due to issues such as the collection of cans, there are growing demands for thinner, harder can body materials and reduced trimming amounts. In addition, when producing aluminum ingots, ingots are enlarged, wide rolled, or
Efforts are being made to make this process more efficient, such as by using a continuous annealing method.

j〜かして、このような状況下においてアルミニウムキ
ャンボディ材料として次のようなi性・が要求されるの
である。
Therefore, under these circumstances, the following i-properties are required for aluminum canvas body materials.

(o  9IJ度が高いこと、特に、焼付塗装後の強度
の高いこと (2)  耳率(二方向性)が低く、絞り加工性に優れ
ていること (3)  シゴキ加工性が優れていること。
(o) High 9IJ degree, especially high strength after baking coating (2) Low selvage rate (bidirectionality) and excellent drawing workability (3) Excellent ironing workability .

その外、耐蝕性、表面状II(焼付模様)が優れている
ことも重要なことである。
In addition, it is important that the material has excellent corrosion resistance and surface condition II (baked pattern).

さらに、現在使用されているアルミニウムキャンボディ
材料は、AA規格の3004合金が主であり、この含有
成分、成分割合はMg0.8〜1.3%。
Furthermore, the aluminum canvas body material currently used is mainly 3004 alloy of AA standard, and its content and component ratio are 0.8 to 1.3% Mg.

Mn 1.0〜1.5 s、  Cu O,25%以下
、FeO,716以下、sio、3%以下、Zn0.2
5憾以下、残アルミニウムよりなるものである。
Mn 1.0-1.5 s, Cu O, 25% or less, FeO, 716 or less, sio, 3% or less, Zn0.2
5 or less, the remainder consists of aluminum.

通常、この合金を500℃以上の温度で均質化焼鈍した
後、熱圧焼、または、さらに冷間圧延したコイルt、4
00℃近くの温度で数時間バッチ焼鈍し、所望の板厚に
冷間圧延し、必要に応じて150℃近くの温度で数時間
焼鈍して硬質アルミニウム板を製造するのである。
Usually, this alloy is homogenized and annealed at a temperature of 500°C or higher, and then hot pressed or further cold rolled into a coil t, 4.
A hard aluminum plate is produced by batch annealing at a temperature near 00°C for several hours, cold rolling to a desired thickness, and annealing at a temperature near 150°C for several hours as necessary.

しかしながら、近年になって製造法の合理化によって連
続焼鈍法(連続焼鈍炉)が採用され、最終冷間圧延前後
の中間焼鈍、及び、最終焼鈍に適用しようとしているが
、焼鈍方法がノくツチ焼鈍とは異なっているので、今ま
での含有成分、成分割合のアルミニウム合金の製造方法
において連続焼鈍を採用しても充分に満足できる低方向
性硬質アルミニウム合金板を製造することはできなかっ
たのである。
However, in recent years, continuous annealing methods (continuous annealing furnaces) have been adopted due to rationalization of manufacturing methods, and attempts are being made to apply them to intermediate annealing before and after final cold rolling, as well as final annealing. Therefore, it has not been possible to produce a fully satisfactory hard aluminum alloy plate with low orientation even if continuous annealing is used in the conventional method of producing aluminum alloys with the same content and proportions. .

本発明は、上記に説明した従来のアルミニウムキャンボ
ディ材料の製造法における種々の間M点、或いは、欠点
を解決したものであって、特に、耳率を低くし、トリミ
ング代金減少し、かつ、高強度である低方向性硬質アル
ミニウム合金板の製造法を提供するものである。
The present invention solves the various disadvantages and shortcomings in the conventional method of manufacturing aluminum canvas body materials described above, and in particular lowers the selvage rate, reduces the trimming cost, and The present invention provides a method for producing a hard aluminum alloy plate with high strength and low orientation.

本発明に係る低方向性硬質アルミニウム合金の  。A low directional hard aluminum alloy according to the present invention.

製造法は、Mn015〜2.0 L  Mg 0.5〜
2.OL Cu O,Ob〜0.5%、F’eQ、2%
 〜0,7s+  ’riα01〜(L3sを含有し、
かつ、f;’e + Mn /Siが14以上で、残部
アルミニウム及び不純物よりなるアルミ二りム合金圧延
材を、100℃/−以上の加熱速度で450〜6o。
The manufacturing method is Mn015~2.0L Mg0.5~
2. OL Cu O, Ob~0.5%, F'eQ, 2%
~0,7s+'riα01~ (contains L3s,
And, an aluminum alloy rolled material having f;'e + Mn /Si of 14 or more and the balance consisting of aluminum and impurities is heated at a heating rate of 100°C/- or more to 450 to 6o.

℃の温度に加熱し、直ちに100℃/−以上の冷却速度
で冷却し、その後、圧延率20%以上の最終冷間圧延を
行なうことを特徴とする低方向性硬質アルミニウム合金
板の製造法を第1の発明とし、さらK、Mn 0.5〜
2.0%、  Mg 0.5〜2.0%、CuO,05
〜0.5qb、Fecl、2〜I]、7%、  Ti0
.01〜0.3%を含有し、CrO,01〜(L3L 
 BcL001〜0.05%、Vo、01〜0.3%。
℃, immediately cooled at a cooling rate of 100℃/- or more, and then subjected to final cold rolling at a rolling reduction of 20% or more. As the first invention, further K, Mn 0.5~
2.0%, Mg 0.5-2.0%, CuO,05
~0.5qb, Fecl, 2~I], 7%, Ti0
.. 01~0.3%, CrO,01~(L3L
BcL001-0.05%, Vo, 01-0.3%.

ZrO,01〜0.2sのうちから選んだ1種または2
種以上を含有し、がっ%  Fe+Mン/s4 が14
以上で、残部アルミニウム及び不純物よりなるアルミニ
ウム合金圧焼材を、100℃以上の加熱速度で450@
〜600℃の温度に加熱し、直ちに100℃/−以上の
冷却速度で冷却し、その後、圧延率2o囁以上のIlk
終冷[iを行なうことを特徴とする低方向性硬質アルミ
ニウム合金板の製造法を第2の発明とする2つの発明よ
シなるものである。
ZrO, one or two selected from 01-0.2s
Contains more than 14% Fe+Mn/s4
As described above, the aluminum alloy compacted material consisting of the balance aluminum and impurities was heated to 450 @ at a heating rate of 100°C or more.
Heating to a temperature of ~600°C, immediately cooling at a cooling rate of 100°C/- or more, then Ilk at a rolling rate of 2o or more
The present invention is a combination of two inventions, the second invention being a method for manufacturing a low-directional hard aluminum alloy plate characterized by performing final cooling [i].

本@明に係る低方向性硬質アルミニウム合金板の製造法
について以下詳細に説明する(以下単に本発明に係る製
造法ということもある。)。
The manufacturing method of the low-directional hard aluminum alloy plate according to the present invention will be described in detail below (hereinafter also simply referred to as the manufacturing method according to the present invention).

先づ、本発明に係る製造法において使用するアルミニウ
ム合金の含有成分、成分割合についてdP。
First, dP regarding the components and component ratios of the aluminum alloy used in the manufacturing method according to the present invention.

明する。I will clarify.

Mgは強度を増加させ、固溶硬化だけでなく、焼付処理
による析出硬化を付与する元素であり、含有量が0.5
%未満ではこの効果はなく、2.0%を越えて含有され
るとシゴキ加工性が劣化する。
Mg is an element that increases strength and imparts not only solid solution hardening but also precipitation hardening through baking treatment, and when the content is 0.5
If the content is less than 2.0%, this effect will not be obtained, and if the content exceeds 2.0%, ironing processability will deteriorate.

よって、Mg含有量はa5〜2.0悌とする。Therefore, the Mg content is set to a5 to 2.0.

MnはMgと同様に強度を増加させ、また、方向性の制
御に有効な元素であるが、0.5%未満ではAt−Mn
−Fe系の析出物が少なくなり方向性制御が困難となり
、シゴキ加工時にt#、Nを起し易くなり、また、2.
0%を越えて含有されると巨人化合物を生成しシゴキ加
工性、伸び7ランジ性を劣化させる。よって、Mn含有
量は0.5〜2.0憾とする。
Like Mg, Mn increases strength and is an effective element for controlling directionality, but if it is less than 0.5%, At-Mn
-Fe-based precipitates are reduced, making it difficult to control directionality, making it easier to cause t# and N during ironing, and 2.
If the content exceeds 0%, giant compounds are formed and the ironing processability, elongation and lunge properties are deteriorated. Therefore, the Mn content is set to 0.5 to 2.0.

CuはMgと相互作用して焼付塗装時fi、1−Cu 
−Mg系の微細析出物を生じて焼付硬化を促進する元素
で、含有量が0.05嚢未満ではこの効果はなく、0.
5%を越えて含有されると耳率が高くなり、耐を 蝕性本低下する。よって、Cu含有量は(LO5〜α5
慢とする。
Cu interacts with Mg and becomes fi, 1-Cu during baking coating.
- An element that generates Mg-based fine precipitates and promotes bake hardening; if the content is less than 0.05 capsules, this effect will not occur;
If the content exceeds 5%, the selvage rate will increase and the corrosion resistance will decrease. Therefore, the Cu content is (LO5~α5
Be arrogant.

lj’eはMnと反応してAt−Mn−Fe系の析出物
を生じ肌荒れを防止し、かつ、シゴキ加工時の焼付防止
をする元素であるが、含有量が02−未満ではこの効果
は少なく、また、0.7畳を越えて含有されると鋳造時
に巨大化合物を生じる。よって、Fe含有量は0.2〜
0.7鴨とする。
lj'e is an element that reacts with Mn to form At-Mn-Fe-based precipitates to prevent rough skin and prevent seizure during ironing, but if the content is less than 02-, this effect is If the content is too small and exceeds 0.7 tatami, a giant compound will be formed during casting. Therefore, the Fe content is 0.2~
0.7 duck.

Tiは鋳造組織の微細化および熱延板の方向性改善に効
果があり、0.011未満では効果がなく、Q、5%以
上では鋳造時に巨大化合物を生成する。
Ti is effective in refining the casting structure and improving the directionality of hot rolled sheets; if it is less than 0.011, it is ineffective, and if it is Q, 5% or more, a giant compound is produced during casting.

よって、Ti含有量は0.01〜α3慢とする。Therefore, the Ti content is set to 0.01 to α3.

Crt Be V+ Zrは肌荒れを防止し焼付塗装後
の強度低下を防止する元素であり、含有量が昧→hCr
0.01−未満、80.001未満、 7001畳未満
、Zr0.01S未満ではこの効果は少なく、また、C
rO,3%、BαOEI、Vo、3%、Zr0.216
 f越えて含有されると巨大化合物を生じ、シボ午加工
性を劣化させる。よって、含有量はCrCLOf〜0.
3鴫、BO,001〜0.05s、V[]、01〜G、
3%、  Zr0.01〜0.2%とする。
Crt Be V+ Zr is an element that prevents surface roughness and strength reduction after baking painting, and the content is unknown → hCr
This effect is small at less than 0.01-, less than 80.001, less than 7001 tatami, and less than Zr0.01S;
rO, 3%, BαOEI, Vo, 3%, Zr0.216
If the content exceeds f, a giant compound will be formed and the grain processability will be deteriorated. Therefore, the content is CrCLOf~0.
3. BO, 001~0.05s, V[], 01~G,
3%, and Zr0.01 to 0.2%.

Fe +Mn/S iの関係について説明すると、Si
は不純物として混入してぐるもの全く零とすることは不
可能で成る程度の含有は許容されるが、大体0.2%を
越えて含有されると均質化処理時にAt−Mn−84系
の微細析出物を生じ易くなるので不純物としての限界で
ある0、2%未満とする必要があり、そして、ht−M
n−8i系の微細析出物の悪影11を除去するにはSi
含有量を低ぐすると同時にFe+li4ン′Siの比を
14以上としなければならない。因に、本発明者はA 
t −M g −M n系のアルミニウム合金について
、強度、及び、シゴキ加工性におよぼす影響をバッチ式
煉鈍、及び、連続式焼鈍の両方法で比較検討した結果、
不純物として含有されてくる。Siが、主要含有元素の
Mnと反応して均質化処理時に微細析出物を生成し、熱
間圧延板の方向性を高くすることを見出したのである。
To explain the relationship between Fe + Mn/S i, Si
Although it is permissible to contain at least 0.2% of At-Mn-84 during homogenization, if it is contained as an impurity and it is impossible to eliminate it completely. Since fine precipitates are likely to occur, the content must be less than 0.2%, which is the limit as an impurity, and ht-M
To remove the bad image 11 of n-8i-based fine precipitates, Si
The content must be lowered and at the same time the ratio of Fe+Li4-Si must be 14 or more. Incidentally, the inventor A
As a result of a comparative study of the effects on strength and ironing workability of t-Mg-Mn-based aluminum alloys using both batch-type annealing and continuous-type annealing methods,
It is contained as an impurity. It was discovered that Si reacts with Mn, the main element contained, to form fine precipitates during homogenization treatment, thereby improving the directionality of the hot rolled sheet.

そして、このような微細析出物であるAt−Mn−8t
系析出物の悪影響を防止するため、均質化処理時に比較
的生成し易い、かつ、粗大なAt−Fe−Mrl系化合
物を多数分散させることが有効であることがわかった。
At-Mn-8t, which is such a fine precipitate,
In order to prevent the adverse effects of system precipitates, it has been found that it is effective to disperse a large number of coarse At-Fe-Mrl compounds that are relatively easily generated during homogenization treatment.

従って、pe−)−Mn/Siの比t14以上とするこ
とによって最終冷間圧延材の方向性を連続焼鈍法を採用
した場合に著しく低下させるという効果1確認し九ので
ある。また、Fe−l−Mn/Siの比を高くすること
くよって、焼付塗装後の強度低下を防止し、逆に焼付硬
化の促進に有効であることも確認し九。
Therefore, it has been confirmed that by setting the ratio of pe-)-Mn/Si to t14 or more, the directionality of the final cold-rolled material is significantly reduced when continuous annealing is employed. It was also confirmed that increasing the ratio of Fe-I-Mn/Si is effective in preventing a decrease in strength after baking and, conversely, promoting baking hardening.

次に1本発明に係る製造法の熱処理について説明する。Next, heat treatment in a manufacturing method according to the present invention will be explained.

即ち、上記に説明した含有成分、成分割合のアルミニウ
ム合金鋳塊を、500°〜600℃の温度で少くとも2
時間以上の均質化処理を行なった後、熱間圧延し、必要
に応じて冷間圧延した後、100℃/―以上の加熱速度
で450″〜600℃まで加熱し、直ちに100℃/−
以上の冷却速度で、例えば100℃以下まで冷却する。
That is, an aluminum alloy ingot having the above-mentioned components and proportions is heated at a temperature of 500° to 600°C at least 2 times.
After homogenization for more than 1 hour, hot rolling, cold rolling if necessary, heating at a heating rate of 100°C/- or more to 450''~600°C, and immediately 100°C/-
Cooling is performed at the above cooling rate to, for example, 100° C. or less.

この場合、加熱速度、冷却速度が100℃/−未満では
方向性改善には効果がなく、また、加熱到達温度が45
0℃未満では焼付塗装時の硬化が起らず、また、600
℃を越える温度では軟化する恐れがでてくるようになる
。次いで、冷却後に2096以上の圧延率で冷間圧延を
行なって硬質アルミニウム合金板を製造する。この冷間
圧延率が20%未満ではアルミニクムキャンポディとし
ての耐圧性、耐座屈性が不足するのである。
In this case, if the heating rate and cooling rate are less than 100°C/-, there is no effect on improving the directionality, and the heating temperature reached is 45°C/-.
At temperatures below 0°C, hardening during baking will not occur, and
At temperatures exceeding ℃, there is a risk of softening. Then, after cooling, cold rolling is performed at a rolling rate of 2096 or more to produce a hard aluminum alloy plate. If this cold rolling rate is less than 20%, the pressure resistance and buckling resistance of the aluminum campody will be insufficient.

なお、均熱温度、熱間圧延温度、連続焼鈍到達温度はと
もに高温程低方向性材料が得られ、焼付硬化性も優れて
いるものが得られる。
It should be noted that the higher the soaking temperature, hot rolling temperature, and continuous annealing temperature, the lower the directionality of the material and the better the bake hardenability.

次に、本発明に係る低方向性硬質アルミニウム合金板の
製造法の実施例を説明する。
Next, an example of the method for manufacturing a low-directional hard aluminum alloy plate according to the present invention will be described.

実施例 1゜ 11表に示す含有成分、成分割合のアルミニウム合金鋳
塊を、550℃で12時間均質化処理後、500■から
4■厚まで熱間圧延し、次いで、冷間圧延を行なって1
.0■厚とする。本発明、比較材共に2つの試料を作プ
、その一つを370℃で2時間焼鈍し、他の一つを10
00℃/―の加熱速度で500℃まで加熱した後直ちV
c1000℃/―の冷却速度で100℃以下まで冷却し
た。その後さらにα4■厚まで冷間圧延し、方向性、シ
ボ中加工性、耐圧性について調査し、その結果を才2表
に示す。
Example 1 An aluminum alloy ingot having the ingredients and proportions shown in Table 11 was homogenized at 550°C for 12 hours, hot rolled from 500mm to 4mm thick, and then cold rolled. 1
.. The thickness should be 0. Two samples were made for both the present invention and the comparative material, one of which was annealed at 370°C for 2 hours, and the other one was annealed at 370°C for 2 hours.
Immediately after heating to 500℃ at a heating rate of 00℃/-
It was cooled to 100°C or less at a cooling rate of 1000°C/-. Thereafter, it was further cold rolled to a thickness of α4■, and the directionality, workability during graining, and pressure resistance were investigated, and the results are shown in Table 2.

第211 この第2表から明らかなように、Fe十Mn/siの比
が高く、連続焼鈍を行なったものは、低方向性で、かつ
、シボ中加工性も優れていることがわかる。また、バッ
チ式焼鈍法と連続焼鈍法とでは、方向性の挙動が逆とな
っていることは注目すべきことであって、焼鈍法が異な
れば材料特性も急激に変化するものである。即ち、Fe
+Mn/Siの比を高くすることによシ従来材では得ら
れなかった低方向性硬質のアルミニウム合金板が得られ
るものである。
No. 211 As is clear from Table 2, those with a high Fe/Mn/si ratio and subjected to continuous annealing have low directionality and excellent workability during graining. Furthermore, it is noteworthy that the directional behavior is opposite between the batch annealing method and the continuous annealing method, and the material properties change rapidly if the annealing method is different. That is, Fe
By increasing the +Mn/Si ratio, it is possible to obtain a hard aluminum alloy plate with low directionality, which was not possible with conventional materials.

呻 第1表に示す含有成分、成分割合のアルミニウム合金鋳
塊を590℃で10時間均質化処理をし、熱間圧延によ
F) 4.0 gcm厚とし、さらに冷間圧延によって
1.0■厚さとした後、加熱速度1000℃/■で到達
温度が500℃の連続焼鈍炉で中間焼鈍を行ない、直ち
に、1000℃/−の冷却速度で冷却して、0.4m厚
まで冷間圧延を行なった。この場合の、強度、方向性と
200℃の温度での燐付処理後の強度について第2表に
その結果を示す。
An aluminum alloy ingot having the ingredients and proportions shown in Table 1 was homogenized at 590°C for 10 hours, hot rolled to a thickness of 4.0 gcm, and then cold rolled to a thickness of 1.0 gcm. ■ After making the thickness, intermediate annealing is performed in a continuous annealing furnace with a heating rate of 1000℃/■ and a reaching temperature of 500℃, immediately cooled at a cooling rate of 1000℃/-, and cold rolled to a thickness of 0.4m. I did this. Table 2 shows the results of the strength, directionality, and strength after phosphorization treatment at a temperature of 200° C. in this case.

この第2表から明らかなように、Fe+Mn/Siの比
を高くすることにより、従来材2より耳率の低い低方向
性アルミニウム合金板が得られ、また、Cuが含有され
ていることによって焼伸硬化を起していることがわかる
As is clear from Table 2, by increasing the ratio of Fe+Mn/Si, a low-oriented aluminum alloy plate with a lower selvage ratio than conventional material 2 can be obtained, and by containing Cu, It can be seen that stretching hardening has occurred.

この場合の耳率は絞シ比(ブランク径/ポンチ径)1.
65で絞られたカップから測定した結果であり、耳は全
べて45′方向にみられ九。
The selvage ratio in this case is the drawing ratio (blank diameter/punch diameter) 1.
This is the result of measurement from a cup squeezed at 65, and all ears are seen in the 45' direction.9.

以上説明したように、本発明に係る低方向性硬質アルミ
ニウム合金板の製造法は上記の構成を有しているもので
あるから、強度が高く、特に焼付塗装後の強度が高く、
耳率が低(、さらに、シゴキ加工性にも優れた低方向性
、硬質のアルミニウム合金板を作ることができるのであ
る。
As explained above, since the method for manufacturing a low-directional hard aluminum alloy plate according to the present invention has the above-mentioned configuration, it has high strength, especially after baking coating,
It is possible to make a hard aluminum alloy plate with a low selvage rate (and also low orientation and excellent ironing workability).

特許出願人 株式会社 神戸製鋼所 代理人 弁理士  丸 木 良 久1 締Patent applicant: Kobe Steel, Ltd. Agent Patent Attorney Ryo Hisashi Maruki 1 Tighten

Claims (1)

【特許請求の範囲】 (xl  MnO,5〜2.OL  Mgl]、5〜2
.0L  Cu0.05〜0.5L  )’ e O,
2〜0.7 L  T r O−01〜0.3%を含有
し、かつ、F’e+VI口/Siが14以上で、残部ア
ルミニウム及び不純物よりなるアルミニウム合金圧延材
を、100℃/顧以上の加熱速度で4soL6oo℃の
1MIfK加熱し、直ちに100℃/騙以上の冷却速度
で冷却し、その後、圧延率20%以上の最終冷間圧延を
行なうことを特徴とする低方向性硬質アルミニウム合金
板の製造法。 (2)  、vln O,5〜2.0 %、  Mg 
0.5〜2.0 L  Cu 0.05〜0.5L  
ト’e O,2〜0.7%、  T i O,01〜0
.3%を含有し、crL3.01〜0.3%、  Bo
、001〜0.05s酔vc、+、01〜0.3s。 Zr0.01〜0.2%のうちから選んだ1種または2
種」フ、l−を含有(7、かつ、Fe +r1ys i
が14以上で、残部アルミニウム及び不純物よりなるア
ルミニラ)、合金圧帆材を、100℃以上の加熱速度で
45叶〜600℃の温度に加熱し、直ちに100℃/曙
以りの冷却速度で冷却し、その後、圧延率20%以上の
最終冷間圧延を行なうことを特徴とする低方向性硬質ア
ルミニウム合金板の製造法。
[Claims] (xl MnO, 5-2.OL Mgl), 5-2
.. 0L Cu0.05~0.5L)' e O,
An aluminum alloy rolled material containing 2 to 0.7 L T r O-01 to 0.3% and having F'e+VI/Si of 14 or more and the balance consisting of aluminum and impurities is heated at 100°C/Vi or more. A low-oriented hard aluminum alloy plate, characterized in that it is heated to 1 MIfK at 4soL6oo°C at a heating rate of 4soL6oo°C, immediately cooled at a cooling rate of 100°C/100°C or more, and then subjected to final cold rolling at a rolling reduction of 20% or more. manufacturing method. (2), vln O, 5-2.0%, Mg
0.5~2.0L Cu 0.05~0.5L
T'e O, 2-0.7%, T i O, 01-0
.. Contains 3%, crL3.01-0.3%, Bo
, 001-0.05s vc, +, 01-0.3s. One or two selected from Zr0.01-0.2%
Contains the species 'F, l- (7, and Fe +r1ys i
14 or more, and the balance consists of aluminum and impurities), alloy pressure sail material is heated to a temperature of 45°C to 600°C at a heating rate of 100°C or more, and then immediately cooled at a cooling rate of 100°C/dawn. A method for producing a hard aluminum alloy sheet with low orientation, characterized in that the final cold rolling is then carried out at a rolling reduction of 20% or more.
JP933982A 1982-01-23 1982-01-23 Manufacture of hard aluminum alloy plate having low directional property Pending JPS58126967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP933982A JPS58126967A (en) 1982-01-23 1982-01-23 Manufacture of hard aluminum alloy plate having low directional property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP933982A JPS58126967A (en) 1982-01-23 1982-01-23 Manufacture of hard aluminum alloy plate having low directional property

Publications (1)

Publication Number Publication Date
JPS58126967A true JPS58126967A (en) 1983-07-28

Family

ID=11717707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP933982A Pending JPS58126967A (en) 1982-01-23 1982-01-23 Manufacture of hard aluminum alloy plate having low directional property

Country Status (1)

Country Link
JP (1) JPS58126967A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258454A (en) * 1984-06-05 1985-12-20 Furukawa Alum Co Ltd Manufacture of aluminum alloy rigid plate for molding
JPS62182257A (en) * 1986-02-07 1987-08-10 Sky Alum Co Ltd Manufacture of hard aluminum alloy rolled sheet for forming
JPS6487740A (en) * 1987-09-28 1989-03-31 Sky Aluminium Aluminum alloy rolled plate for container, ingot for rolled plate and manufacture of rolled plate
US5192378A (en) * 1990-11-13 1993-03-09 Aluminum Company Of America Aluminum alloy sheet for food and beverage containers
US5362341A (en) * 1993-01-13 1994-11-08 Aluminum Company Of America Method of producing aluminum can sheet having high strength and low earing characteristics
US5362340A (en) * 1993-03-26 1994-11-08 Aluminum Company Of America Method of producing aluminum can sheet having low earing characteristics
WO1998001592A1 (en) * 1996-07-08 1998-01-15 Alcan International Limited Cast aluminium alloy for can stock

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258454A (en) * 1984-06-05 1985-12-20 Furukawa Alum Co Ltd Manufacture of aluminum alloy rigid plate for molding
JPS62182257A (en) * 1986-02-07 1987-08-10 Sky Alum Co Ltd Manufacture of hard aluminum alloy rolled sheet for forming
JPS6487740A (en) * 1987-09-28 1989-03-31 Sky Aluminium Aluminum alloy rolled plate for container, ingot for rolled plate and manufacture of rolled plate
JPH0570697B2 (en) * 1987-09-28 1993-10-05 Sky Aluminium
US5192378A (en) * 1990-11-13 1993-03-09 Aluminum Company Of America Aluminum alloy sheet for food and beverage containers
US5362341A (en) * 1993-01-13 1994-11-08 Aluminum Company Of America Method of producing aluminum can sheet having high strength and low earing characteristics
US5362340A (en) * 1993-03-26 1994-11-08 Aluminum Company Of America Method of producing aluminum can sheet having low earing characteristics
WO1998001592A1 (en) * 1996-07-08 1998-01-15 Alcan International Limited Cast aluminium alloy for can stock
US6120621A (en) * 1996-07-08 2000-09-19 Alcan International Limited Cast aluminum alloy for can stock and process for producing the alloy
GB2333530B (en) * 1996-07-08 2000-10-11 Alcan Int Ltd Cast aluminium alloy for can stock

Similar Documents

Publication Publication Date Title
JPS62177143A (en) Aluminum alloy sheet excellent in formability and baking hardening and its production
JPH01301831A (en) Al alloy plate for stay-on tab and its manufacture
JPS6242985B2 (en)
JPS58126967A (en) Manufacture of hard aluminum alloy plate having low directional property
JPS61110744A (en) Al alloy plate for packing and its manufacture
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JPH07233456A (en) Production of aluminum alloy sheet excellent in formability
JPS61288056A (en) Manufacture of aluminum alloy sheet for deep drawing
JP3201783B2 (en) Method of manufacturing aluminum alloy hard plate excellent in strength and formability
JPH09256129A (en) Production of high strength heat treated type aluminum alloy sheet for drawing
JPS6254183B2 (en)
JP2658660B2 (en) Method for producing high silicon steel sheet with excellent workability by Si diffusion infiltration treatment method
JPH062090A (en) Manufacture of high strength aluminum alloy sheet for forming small in anisotropy
JPS5943538B2 (en) Aluminum alloy with excellent formability and its thin plate manufacturing method
JPS6328850A (en) Manufacture of al-alloy sheet metal for manufacture of all aluminum can
JPH0625787A (en) Ai alloy sheet for drawn cup excellent in suppression of strain pattern and its manufacture
JPH0756068B2 (en) Manufacturing method of aluminum hard plate with small ear ratio and excellent strength and ductility
JPS58224145A (en) Aluminum alloy plate forming small edge by deep drawing and its manufacture
JP3387937B2 (en) Method for producing grain-oriented silicon steel sheet excellent in both magnetic properties and insulating film quality
JP2628635B2 (en) Manufacturing method of aluminum alloy plate
JP4060460B2 (en) Method for producing aluminum alloy plate for can body
JPH0422981B2 (en)
JPH01205052A (en) Aluminum alloy material for blind
JPS6369953A (en) Manufacture of aluminum alloy excellent in directionality
JPH10265885A (en) Aluminum alloy sheet minimal in dispersion of flange width, and its production