[go: up one dir, main page]

JPS58126959A - Sintered material with cast iron structure and method for producing the same - Google Patents

Sintered material with cast iron structure and method for producing the same

Info

Publication number
JPS58126959A
JPS58126959A JP863682A JP863682A JPS58126959A JP S58126959 A JPS58126959 A JP S58126959A JP 863682 A JP863682 A JP 863682A JP 863682 A JP863682 A JP 863682A JP S58126959 A JPS58126959 A JP S58126959A
Authority
JP
Japan
Prior art keywords
powder
cast iron
sintered material
graphite
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP863682A
Other languages
Japanese (ja)
Other versions
JPS6110549B2 (en
Inventor
Yoshio Nishino
西野 良夫
Toru Kono
河野 通
Seiichi Kirigatani
桐ケ谷 清一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP863682A priority Critical patent/JPS58126959A/en
Publication of JPS58126959A publication Critical patent/JPS58126959A/en
Publication of JPS6110549B2 publication Critical patent/JPS6110549B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a sintered material having a cast iron structure by mixing ferrosilicon powder with graphite powder, copper powder and iron powder so that specified amounts of Si, C and Cu are contained and by sintering the mixture at a specified temp. in a reducing atmosphere after molding. CONSTITUTION:A composition consisting of, by weight, 0.8-3% Si, 1-5% C, 1-4% Cu and the balance Fe with inevitable impurities is prepared by mixing ferrosilicon powder contg. 15-75% Si and having 1-10mum average particle size with graphite powder, copper powder and iron powder each having <=20mum average particle size. The composition is molded by a conventional powder molding method and sintered at 1,050-1,160 deg.C in a reducing atmosphere to obtain a sintered material having a cast iron structure consisting of free graphite, a ferrite phase and a pearlite phase.

Description

【発明の詳細な説明】 この発明は、粉末冶金法によって得られる鋳鉄組織を有
する焼結材料、及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sintered material having a cast iron structure obtained by a powder metallurgy method, and a method for producing the same.

現在、耐摩耗性、被削性、振動吸収能等にすぐれた特性
を有する普通鋳鉄が、価格も安いということとも相俟っ
て、機械部品として多方面に幅広い用途を有しているが
、鋳鉄のどのすぐれた特性は、主として均一にかつ多量
に分散した遊離黒鉛によるものであることが知られてい
る。例えば、鋳鉄製の摺動材にあっては、遊離黒鉛が摺
動面に固体潤滑材として作用して減摩効果を発揮すると
ともに、遊離黒鉛の残留孔が油溜9として保油に役立つ
ものであシ、また、切削加工時には細かく分布した遊離
黒鉛がチップブレーカ−となって被剛性を向上させると
いう役割をも担っているのである。
At present, ordinary cast iron has excellent properties such as wear resistance, machinability, and vibration absorption ability, and is used in a wide variety of fields as a mechanical component due to its low price. It is known that the excellent properties of cast iron are primarily due to the uniformly and highly dispersed free graphite. For example, in cast iron sliding materials, free graphite acts as a solid lubricant on the sliding surface to reduce friction, and the remaining pores of free graphite serve as oil reservoirs 9 for oil retention. Furthermore, during cutting, the finely distributed free graphite acts as a chip breaker and plays the role of improving rigidity.

しかしながら1機械部品用材料としてこのようにすぐれ
た性質を持つ鋳鉄ではあるが、一方では、鋳物容量が小
さい場合は鋳込後の冷却速度が速いために白銑化し、小
物部品については鋳鉄本来の特性を持ったものが得られ
ないという問題があった。
However, although cast iron has such excellent properties as a material for machine parts, on the other hand, if the casting capacity is small, the cooling rate after casting is fast, resulting in white pig iron, and for small parts, cast iron's original properties There was a problem in that it was not possible to obtain products with specific characteristics.

また、鋳鉄部品の製造は鋳造法に頼らざるを得なかった
ために、粉末冶金法に比して量産性に劣るという本質的
な問題点をも抱えていた。
Furthermore, since the production of cast iron parts had to rely on the casting method, it also had the essential problem of being inferior in mass productivity compared to the powder metallurgy method.

これまでも、鋳鉄の有するすぐれた諸性質を備えるとと
もに、粉末冶金の量産性をも兼ね備えた焼結材料及びそ
の製造法に関する研究は種々試みられてきていたが、次
に示すような理由から成功するに至らなかったのである
。すなわち、(a)  鉄系合金に黒鉛を多量に(鋳鉄
なみに3重量%程度)添加し、焼結すると、セメンタイ
トが析出して基地が硬くな9、機械的特性が低下し、焼
結温度を下げればセメンタイトの析出は防げるが強度が
得られない。
Until now, various attempts have been made to research sintered materials that have the excellent properties of cast iron and the mass productivity of powder metallurgy, and their manufacturing methods, but none have been successful for the following reasons. It was not possible to do so. In other words, (a) When a large amount of graphite (approximately 3% by weight, equivalent to cast iron) is added to an iron-based alloy and sintered, cementite precipitates and the base becomes hard9, mechanical properties decrease, and the sintering temperature decreases. If the value is lowered, cementite precipitation can be prevented, but strength cannot be obtained.

(b)  Siのような黒鉛化安定元素を添加してセメ
ンタイトの析出を防ぐ方法が考えられるが、SlをFe
中に拡散固溶させる条件は、約1200℃以上の加熱を
要するなど、通常の鉄系焼結材料の焼結温度に比しては
るかに高い温度が要求されることから製造コストが高く
なるうえ、焼結雰囲気を厳しくコントロールしないと8
1を酸化させてしまう恐れがある。
(b) It is possible to prevent the precipitation of cementite by adding graphitization-stable elements such as Si, but
The conditions for dispersion into solid solution require heating to approximately 1,200°C or higher, which is much higher than the sintering temperature of ordinary iron-based sintered materials, which increases manufacturing costs. 8, unless the sintering atmosphere is strictly controlled.
1 may be oxidized.

そこで本発明者等は、上述のような観点から、通常の鉄
系焼結材料の製造条件の下で、パーライト相、及びフェ
ライト相からなる基地に遊離黒鉛が分散した鋳鉄組織を
有する材料を粉末冶金法によって得べく研究を行なった
結果、鉄系焼結原料中の81源たるフェロシリコン粉末
の粒度を特定の i範囲に調整するとともに、C及びS
i原料の組成範囲を適当に選択することによってその目
的を達成できることを見出し、先に特願昭56−116
469号(以下先行発明という)として、15〜75%
(以下チは重量%とする)のSiを含有し、かつ平均粒
径が1〜10μmのフェロシリコン粉末をSi量で0.
8〜2.5%と、平均粒径20μm以下の黒鉛粉末の2
〜5%と、鉄粉とからなる配合組成を有する原料粉末を
均一に混合し、通常の粉末成形方法で成形した後、還元
性雰囲気中にて所定温度で焼結することからなる、焼結
材料の製造方法を提案した。
Therefore, from the above-mentioned viewpoint, the present inventors developed a powder material having a cast iron structure in which free graphite is dispersed in a matrix consisting of a pearlite phase and a ferrite phase under normal manufacturing conditions for iron-based sintered materials. As a result of research aimed at obtaining the desired results using metallurgical methods, the particle size of ferrosilicon powder, which is the 81 source in the iron-based sintering raw material, was adjusted to a specific i range, and C and S
I discovered that the objective could be achieved by appropriately selecting the composition range of the raw materials, and first filed a patent application in 1983-116.
469 (hereinafter referred to as prior invention), 15 to 75%
Ferrosilicon powder containing Si (hereinafter referred to as % by weight) and having an average particle size of 1 to 10 μm, with a Si content of 0.0 μm.
8 to 2.5% of graphite powder with an average particle size of 20 μm or less
Sintering, which consists of uniformly mixing raw material powder with a composition of ~5% and iron powder, molding it using a normal powder molding method, and then sintering it at a predetermined temperature in a reducing atmosphere. A method for manufacturing the material was proposed.

しかしながら、昨今のこの種材料に対する要求にはさら
に厳しいものがあシ、本発明者等も、前記先行発明によ
って得られる鋳鉄組織を有する焼結材料よシもよシ強度
及び耐摩耗性にすぐれ、さらに加工性の面から考えて被
剛性も良好な鋳鉄組織の焼結材料、並びにその確実で高
能率的な製造法を見出すべく、さらに研究を重ねたとこ
ろ、先行発明に使用するのとほぼ同じ組成の原料中に、
特定量のCuを添加して焼結を行なうと、添加されたC
u成分によってもたらされる作用、すなわち基地を強化
し、パーライトを安定化させるという作用によって焼結
材料自体の強度及び耐摩耗性が一段と向上するにもかか
わらず、その被剛性が何ら損なわれることがないという
知見を得るに至ったのである。
However, the recent demands for this type of material are even more stringent, and the present inventors have also found that the sintered material with a cast iron structure obtained by the prior invention has superior strength and wear resistance. Furthermore, in order to find a sintered material with a cast iron structure that has good rigidity in terms of workability, and a reliable and highly efficient manufacturing method, we conducted further research and found that it is almost the same as that used in the prior invention. In the raw materials of the composition,
When a specific amount of Cu is added and sintered, the added C
Even though the strength and wear resistance of the sintered material itself are further improved by the action brought about by the u component, that is, the action of strengthening the matrix and stabilizing pearlite, the rigidity is not impaired in any way. We have come to this conclusion.

したがって、この発明は上記知見にもとづいてなされた
もので、焼結材料を、Si:0.8〜30%。
Therefore, this invention was made based on the above knowledge, and the sintered material contains Si: 0.8 to 30%.

C:1〜5%、 Cu: 1〜4 %、 Fe及び不可
避不純物:残りからなる組成で構成するとともに、その
組織を、遊離黒鉛、フェライト相、及びパーライト相か
らなる鋳鉄組織とすることによって、強度及び耐摩耗性
に特にすぐれるとともに、被剛性や振動吸収能等にもす
ぐれた特性を付与せしめたことに特徴を有するものであ
夛、さらには、15〜75%の81を含有し、かつ平均
粒径が1〜10μmのフェロシリコン粉末:siiで0
8〜3゜0%と、平均粒径20μm以下の黒鉛粉末:1
〜5%と、銅粉:l〜4チと、残シが鉄粉とからなる配
合組成を有する原料粉末を均一に混合し、通常の粉末成
形方法で成形した後、還元性雰囲気中で、1050〜1
160℃の温度範囲にて焼結することによって、遊離黒
鉛、フェライト相、及びパーライトからなる鋳鉄組織を
有する焼結材料を製造し得るようにしたことに特徴を有
するものである。
C: 1 to 5%, Cu: 1 to 4%, Fe and unavoidable impurities: the remainder, and by making the structure a cast iron structure consisting of free graphite, a ferrite phase, and a pearlite phase, It is characterized by particularly excellent strength and abrasion resistance, as well as excellent properties such as rigidity and vibration absorption ability, and furthermore, it contains 15 to 75% of 81, and ferrosilicon powder with an average particle size of 1 to 10 μm: 0 in sii
Graphite powder with 8-3°0% and average particle size of 20 μm or less: 1
After uniformly mixing raw material powders having a composition of ~5%, copper powder: 1~4%, and the balance consisting of iron powder, and molding using a normal powder molding method, in a reducing atmosphere, 1050-1
The present invention is characterized in that a sintered material having a cast iron structure consisting of free graphite, a ferrite phase, and pearlite can be produced by sintering in a temperature range of 160°C.

すなわち、上記のような焼結によって鋳鉄組織を有する
材料が得られるのは、鉄系焼結原料中のSl源たるフェ
ロシリコン粉末の粒度を特定の範囲に調整すると、焼結
原料鉄粉粒子表層に81成分が均一に分布し、該S1が
焼結時に酸化することなくFe中に固溶してFeのα相
を安定化させると共に、Fe粒子間の拡散を早め、した
がって、焼結が促進されるという事実や、C及びS1原
料の組成範囲を適当に選択することによシ、約1050
℃の加熱温度でr相となったFe粒子がCの固溶限を増
し、そして、C粉末の粒度を特定値以下に規制すること
により、Cが20粒中に容易に拡散するようになシ、つ
いでFe中に固溶したこれら周辺の微細なCが、冷却過
程で81の黒鉛化促進作用によつそ空孔や未固溶の黒鉛
を核として析出し、最終的には、遊離黒鉛のまわ9に8
1−フェライト相があり、さらにその外側にパーライト
相のある、いわゆる鋳鉄組織が得られるという技術的理
由によるものである。
In other words, the reason why a material having a cast iron structure can be obtained by sintering as described above is that when the particle size of the ferrosilicon powder, which is the Sl source in the iron-based sintering raw material, is adjusted to a specific range, the surface layer of the sintering raw material iron powder particles 81 components are uniformly distributed in the sintering process, and the S1 is solid-dissolved in Fe without being oxidized during sintering, stabilizing the α phase of Fe, and accelerating the diffusion between Fe particles, thus promoting sintering. 1050 by appropriately selecting the composition range of the C and S1 raw materials.
The Fe particles that have become r-phase at the heating temperature of ℃ increase the solid solubility limit of C, and by regulating the particle size of the C powder to below a specific value, C can be easily diffused into the 20 particles. Then, during the cooling process, the fine C around these dissolved in Fe is precipitated by the graphitization promoting effect of 81, with the vacancies and undissolved graphite as nuclei, and finally, free carbon is formed. Graphite mawashi 9 to 8
This is due to the technical reason that a so-called cast iron structure with a 1-ferrite phase and a pearlite phase on the outside can be obtained.

なお、上記焼結材料の製造に使用する鉄粉としては、粉
末冶金用原料として通常使われているものが好適であシ
、粉末の成形には通常の条件、例えば4〜6tb だ焼結の際の還元性雰囲気としては、例えばアンモニア
分解ガスが好適である。さらに、原料中に添加する銅粉
も、粉末冶金用として通常使われているものが好適であ
るが、均一な混合が可能であればどのような粒度のもの
でも採用できる。
It should be noted that the iron powder used for producing the above-mentioned sintered material is preferably one that is normally used as a raw material for powder metallurgy, and the powder is formed under normal conditions, such as 4 to 6 tb. For example, ammonia decomposition gas is suitable as the reducing atmosphere. Furthermore, the copper powder added to the raw material is preferably one normally used for powder metallurgy, but any particle size can be used as long as uniform mixing is possible.

ついで、この発明の焼結材料、並びにその製造方法にお
いて、焼結材料の成分組成範囲、フェロシリコン粉末中
のSi含有量、フェロシリコン粉末の配合量、黒鉛粉末
の配合量、銅粉の配合量、フェロシリコン粉末及び黒鉛
粉末の平均粒径、及び焼結温度を上記の通りに限定した
理由を説明する。
Next, in the sintered material of the present invention and the manufacturing method thereof, the composition range of the sintered material, the Si content in the ferrosilicon powder, the amount of ferrosilicon powder, the amount of graphite powder, and the amount of copper powder. , the reason why the average particle diameters of the ferrosilicon powder and graphite powder, and the sintering temperature were limited as described above will be explained.

■ 焼結材料の81含有量 Si成分には、焼結材料の強度を向上させ、破削性を改
良する作用があるが、その含有量が0.8%未満では前
記作用に所望の効果が得られず、一方その含有量が30
%を越えると逆に強度低下をきたすことから、その含有
量を0.8〜3.0%と限定した。
■ 81 content of sintered material The Si component has the effect of increasing the strength of the sintered material and improving its machinability, but if its content is less than 0.8%, the desired effect will not be achieved. On the other hand, its content is 30
If it exceeds 0.9%, the strength will decrease, so the content was limited to 0.8 to 3.0%.

■ 焼結材料のC含有量 C成分の含有量が1%未満では通常鋳鉄のもつ摺動特性
を確保することができず、一方5%を越えて含有させる
と均一な配合が困難となシ、また強度低下も著しくなる
ことから、その含有量を1〜5%と限定した。
■ C content of sintered material If the content of C component is less than 1%, it is not possible to maintain the sliding properties normally found in cast iron, while if the content exceeds 5%, it becomes difficult to achieve a uniform blend. Also, since the strength decreases significantly, its content was limited to 1 to 5%.

■ 焼結材料のCu含有量 Cu成分には、焼結材料の基地を強化し、パーライトを
安定化させる効果によって強度及び耐摩耗性を向上する
作用があるが、その含有量が1%未満ではその効果が明
瞭に現われず、一方4%を越えて含有させてもそれ以上
の効果の向上は認められず、不経済でもあるので、その
含有量を1〜4チと限定した。
■ Cu content of sintered material The Cu component has the effect of strengthening the base of the sintered material and stabilizing pearlite, thereby improving strength and wear resistance, but if the content is less than 1%, The effect is not clearly manifested, and on the other hand, even if the content exceeds 4%, no further improvement in the effect is observed and it is also uneconomical, so the content was limited to 1 to 4%.

■ 原料のフェロシリコン粉末中の81含有量焼結金属
中へのSi源としてのフェロシリコン粉末中の81含有
量が15量6未満では、フェロシリコン粉末が軟かくな
って粉砕するの′が難しく、一方75%を越えるとフェ
ロシリコン粉末としての量、すなわち添加81量に規制
されてフェロシリコン粉末の配合総量が少なくなり、鉄
粉表面への十分なまぶし被覆ができなくなることから、
その含有量を15〜75%と限定した。
■ 81 content in ferrosilicon powder as a raw material If the 81 content in ferrosilicon powder as a source of Si in the sintered metal is less than 15%, the ferrosilicon powder becomes soft and difficult to grind. On the other hand, if it exceeds 75%, the amount as ferrosilicon powder, that is, the amount added is restricted to 81%, and the total amount of ferrosilicon powder blended decreases, making it impossible to sufficiently coat the surface of the iron powder.
Its content was limited to 15-75%.

■ 原料粉末のフェロシリコン粉末、黒鉛粉末。■ Ferro silicon powder and graphite powder as raw material powders.

及び銅粉の配合量 焼結の際に、配合原料自体には相対的な目減シがほとん
どないので、前記の成分組成範囲の焼結材料が得られる
ように、その配合量を、フェロシリコン粉末=Sl量で
0.8〜3.0%、黒鉛粉末:1〜5%、銅粉:1〜4
チと限定した。
Since there is almost no relative loss in the blended raw materials themselves during sintering, the blended quantities of copper powder and copper powder should be adjusted so that a sintered material having the above-mentioned composition range can be obtained. Powder = 0.8 to 3.0% in Sl amount, graphite powder: 1 to 5%, copper powder: 1 to 4
It was limited to chi.

■ フェロシリコン粉末の粒径 配合スるフェロシリコン粉末の平均粒径が1μm未満で
は、この原料粉末の酸化が早まって取扱いが困難となり
、一方、その平均粒径が10μmを越えると鉄粉粒子へ
の拡散が遅くなってα相の形成が遅れ、機械的特性が低
下するようになることから、その平均粒径を1〜10μ
mと限定した。
■ Particle size of ferrosilicon powder When the average particle size of the ferrosilicon powder used in the blend is less than 1 μm, the raw material powder oxidizes quickly and becomes difficult to handle.On the other hand, when the average particle size exceeds 10 μm, it becomes iron powder particles. The average particle size should be reduced from 1 to 10 μm because the diffusion of α phase is delayed and the mechanical properties are deteriorated.
It was limited to m.

■ 黒鉛粉末の粒径 配合する黒鉛粉末の平均粒径が20μmを越えると比表
面積が小さくなって鉄粉粒子内への拡散が遅くなること
から、その平均粒径な20μm以下と限定した。好まし
くは、この平均粒径が15μm以下が最適である。
(2) Particle size of graphite powder If the average particle size of the graphite powder to be blended exceeds 20 μm, the specific surface area becomes small and diffusion into the iron powder particles becomes slow, so the average particle size was limited to 20 μm or less. Preferably, this average particle diameter is optimally 15 μm or less.

■ 焼結温度 焼結温度が1050℃未満では、Siの多くが未拡散で
残るので得られた焼結材料に十分な強度が期待できず、
一方1160℃を越えると組成によっては液相が出始め
て焼結材料の変形が起きることから、その温度を105
0〜1160℃と限定した。
■ Sintering temperature If the sintering temperature is less than 1050°C, much of the Si remains undiffused, so the resulting sintered material cannot be expected to have sufficient strength.
On the other hand, if the temperature exceeds 1160°C, depending on the composition, a liquid phase may begin to appear and deformation of the sintered material may occur.
The temperature was limited to 0 to 1160°C.

つぎに、この発明を実施例により比較例と対比しながら
説明する。
Next, the present invention will be explained using examples and comparing with comparative examples.

実施例 それぞれ第1表に示される原料粉末を用意し、これら原
料粉末を同じく第1表に示される配合組成に配合し、混
合してから4 ton/cnLの圧力で圧粉体に成形し
、ついでこれらの圧粉体をアンモニア分解ガス雰囲気中
、同じく第1表に示される温度で焼結することによって
、実質的に配合組成と同での成分組成をもち、かついず
れもlcl++aX101++11X5011!IEの
寸法を有する本発明焼結材料1〜15、及び比較焼結材
料1〜5を製造し、さらに、溶製したFe12の従来の
鋳鉄も用意した。
For each example, raw material powders shown in Table 1 were prepared, these raw material powders were blended into the composition shown in Table 1, mixed, and then molded into a green compact at a pressure of 4 ton/cnL. These green compacts are then sintered in an ammonia decomposition gas atmosphere at the temperatures shown in Table 1 to obtain a powder that has substantially the same composition as the blended composition and is lcl++aX101++11X5011! Inventive sintered materials 1-15 and comparative sintered materials 1-5 having dimensions of IE were manufactured, and conventional cast iron of molten Fe12 was also prepared.

そして、これら材料のそれぞれについて、引張強さ、摩
擦摩耗特性、及び被剛性を測定し、その結果も併せて第
1表に示した。
The tensile strength, friction and wear characteristics, and rigidity of each of these materials were measured, and the results are also shown in Table 1.

なお、摩擦摩耗特性は、ピンオンディスク型試験機にて
、上記各種の焼結材料及び溶製の従来鋳鉄より形成した
ピンを体用し、かつ545CのCrメッキ材で作ったデ
ィスクを用い、速度: 14n/sec。
The friction and wear characteristics were measured using a pin-on-disk type tester using pins made of the various sintered materials and melted conventional cast iron, and a disk made of 545C Cr-plated material. Speed: 14n/sec.

荷重:6IKgf/(7の条件で試験し、試験後の比摩
耗量を測定することによって評価し、被剛性能 !は、
5.5111厚の試料を直径3.2朋φのキリで貫通す
るに要する時間で示したものであシ、キリの材質:高速
度鋼2回転数:400rpm、押付カニ5kgfという
条件下で測定したものである。
Load: 6 IKgf/(Tested under 7 conditions and evaluated by measuring the specific wear amount after the test, and the stiffness performance!
5. The time required to penetrate a 5111-thick sample with a 3.2 mm diameter aperture. Material of the aperture: High-speed steel. Measured under the conditions of 2 revolutions: 400 rpm, and a pressing force of 5 kgf. This is what I did.

第1表に示される結果から、本発明焼結材料1〜15は
、Cuを含有しない比較焼結材料1〜5に比して、被剛
性がほとんど同等の状態で、強度及び耐摩耗性が一段と
改善されていることが明らかで6.?、また本発明焼結
材料1〜15のもつ特性は、溶製の従来鋳鉄に比して、
被削性はほぼ同等であるが、強度及び耐摩耗性について
は著しくすぐれているものである。
From the results shown in Table 1, it can be seen that the sintered materials 1 to 15 of the present invention have almost the same rigidity and have higher strength and wear resistance than the comparative sintered materials 1 to 5 that do not contain Cu. It is clear that there has been further improvement.6. ? In addition, the characteristics of the sintered materials 1 to 15 of the present invention are as follows, compared to conventional cast iron made of ingots:
The machinability is almost the same, but the strength and wear resistance are significantly superior.

上述のように、この発明によれば、比較的簡単な操作で
、鋳鉄組織を有する焼結材料をコスト安く製造すること
ができるので、鋳鉄と同等の緒特性を有する機械部品は
勿論のこと、小物で複雑な形状の機械部品をも能率良く
量産できるなど工業上有用な効果がもたらされるのであ
る。
As described above, according to the present invention, a sintered material having a cast iron structure can be manufactured at a low cost with relatively simple operations, so it is possible to manufacture not only mechanical parts having mechanical properties equivalent to those of cast iron, but also machine parts having the same properties as cast iron. This brings about industrially useful effects, such as the ability to efficiently mass-produce small mechanical parts with complex shapes.

出願人  三菱金属株式会社 代理人  富  1) 和 夫Applicant: Mitsubishi Metals Corporation Agent Tomi 1) Kazuo

Claims (2)

【特許請求の範囲】[Claims] (1)  Si:0.8〜3.0%。 C:1〜5%、 Cu:1〜4%、 Fe及び不可避不純物:残p、 (以上重量%)からなる組成を有するとともに、遊離黒
鉛、フェライト相、及びパーライト相からなる鋳鉄組織
を有することを特徴とする焼結材料。
(1) Si: 0.8-3.0%. It has a composition consisting of C: 1 to 5%, Cu: 1 to 4%, Fe and unavoidable impurities: balance P (more than % by weight), and has a cast iron structure consisting of free graphite, a ferrite phase, and a pearlite phase. A sintered material characterized by:
(2)15〜75%の81を含有し、かつ平均粒径が1
〜10μmのフェロシリコン粉末: Sii fo、8
〜3.0%、 平均粒径2oμm以下の黒鉛粉末:1〜5%、銅粉=1
〜4%、 鉄粉:残シ、 (以上重量%)からなる配合組成を有する原料粉末を均
一に混合し、通常の粉末成形方法で成形した後、還元性
雰囲気中で1050〜1160℃の温度範囲にて焼結す
ることを特徴とする、遊離黒鉛、フェライト相、及びパ
ーライト相からなる鋳鉄組織を有する焼結材料の製造法
(2) Contains 15-75% of 81 and has an average particle size of 1
~10 μm ferrosilicon powder: Sii fo, 8
~3.0%, graphite powder with average particle size of 2oμm or less: 1-5%, copper powder = 1
Raw material powders having a composition of ~4%, iron powder: balance (more than % by weight) are mixed uniformly, molded using a normal powder molding method, and then heated at a temperature of 1050 to 1160°C in a reducing atmosphere. 1. A method for producing a sintered material having a cast iron structure consisting of free graphite, a ferrite phase, and a pearlite phase, the method comprising sintering within a range of 100 to 100 mm.
JP863682A 1982-01-22 1982-01-22 Sintered material with cast iron structure and method for producing the same Granted JPS58126959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP863682A JPS58126959A (en) 1982-01-22 1982-01-22 Sintered material with cast iron structure and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP863682A JPS58126959A (en) 1982-01-22 1982-01-22 Sintered material with cast iron structure and method for producing the same

Publications (2)

Publication Number Publication Date
JPS58126959A true JPS58126959A (en) 1983-07-28
JPS6110549B2 JPS6110549B2 (en) 1986-03-29

Family

ID=11698428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP863682A Granted JPS58126959A (en) 1982-01-22 1982-01-22 Sintered material with cast iron structure and method for producing the same

Country Status (1)

Country Link
JP (1) JPS58126959A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6358298B1 (en) 1999-07-30 2002-03-19 Quebec Metal Powders Limited Iron-graphite composite powders and sintered articles produced therefrom
US7015781B1 (en) * 2001-04-23 2006-03-21 Aisin Seiki Kabushiki Kaisha Production method of magnetic circuit member, magnetic circuit member, and electromagnetic apparatus
JP2011214108A (en) * 2010-03-31 2011-10-27 Hitachi Powdered Metals Co Ltd Method for manufacturing ferrous sintered material
CN102471853A (en) * 2009-08-19 2012-05-23 奥依列斯工业株式会社 Iron-based sintered sliding member and method for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6358298B1 (en) 1999-07-30 2002-03-19 Quebec Metal Powders Limited Iron-graphite composite powders and sintered articles produced therefrom
US7015781B1 (en) * 2001-04-23 2006-03-21 Aisin Seiki Kabushiki Kaisha Production method of magnetic circuit member, magnetic circuit member, and electromagnetic apparatus
CN102471853A (en) * 2009-08-19 2012-05-23 奥依列斯工业株式会社 Iron-based sintered sliding member and method for producing same
JP2011214108A (en) * 2010-03-31 2011-10-27 Hitachi Powdered Metals Co Ltd Method for manufacturing ferrous sintered material

Also Published As

Publication number Publication date
JPS6110549B2 (en) 1986-03-29

Similar Documents

Publication Publication Date Title
WO1995024508A1 (en) Cast iron inoculant and method for production of cast iron inoculant
US2301805A (en) High-carbon ferrous-base composition for producing articles by powder metallurgy
US6177045B1 (en) Composition and method for inoculating low sulphur grey iron
US3782930A (en) Graphite-containing ferrous-titanium carbide composition
CN112159922B (en) Gray cast iron inoculant and preparation method thereof
JPS58126959A (en) Sintered material with cast iron structure and method for producing the same
JPH07166278A (en) Copper-based sliding material and manufacturing method thereof
US4755222A (en) Sinter alloys based on high-speed steel
JPS6140028B2 (en)
US5551995A (en) Spheroidal graphite cast iron for crank shafts and a crank shaft manufactured from such cast iron
JPH06322470A (en) Cast iron powder for powder metallurgy and wear resistant ferrous sintered alloy
US4130422A (en) Copper-base alloy for liquid phase sintering of ferrous powders
JPS58126958A (en) Sintered material having cast iron structure and its manufacture
RU2069702C1 (en) Modifier for pig-iron treatment
RU2135617C1 (en) Alloy with free and fixed carbon and method of its production
JPS58144450A (en) Manufacturing method of high-strength, high-toughness sintered material with cast iron structure
US2582079A (en) Composition for addition to cast iron or steel
JPS58126955A (en) Sintered material having cast iron structure and its manufacture
RU2831573C2 (en) Alloy of ferrosilicon with vanadium and/or niobium, production of alloy of ferrosilicon with vanadium and/or niobium and its application
JPH02145702A (en) High strength alloy steel powder for powder metallurgy
JP3336949B2 (en) Synchronizer ring made of iron-based sintered alloy
US1683749A (en) Alloy
JPS6140027B2 (en)
JPH05263200A (en) Sintered high speed steel excellent in seizing resistance and its manufacture
JPS63286552A (en) High-phosphorus cast-iron brake shoe for vehicle