[go: up one dir, main page]

JPS58125619A - Production of parent material for light transmission glass - Google Patents

Production of parent material for light transmission glass

Info

Publication number
JPS58125619A
JPS58125619A JP490182A JP490182A JPS58125619A JP S58125619 A JPS58125619 A JP S58125619A JP 490182 A JP490182 A JP 490182A JP 490182 A JP490182 A JP 490182A JP S58125619 A JPS58125619 A JP S58125619A
Authority
JP
Japan
Prior art keywords
glass
particle aggregate
refractive index
base material
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP490182A
Other languages
Japanese (ja)
Inventor
Kazunori Senda
千田 和憲
Tsunehisa Kyodo
倫久 京藤
Gotaro Tanaka
豪太郎 田中
Toru Kuwabara
透 桑原
Hiroshi Yokota
弘 横田
Minoru Watanabe
稔 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP490182A priority Critical patent/JPS58125619A/en
Publication of JPS58125619A publication Critical patent/JPS58125619A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:In the production of a parent material for optical fiber through the VAD process, the sintering is carried out in a specific gas atmosphere to form the parent material with less deviation in refractive index distribution. CONSTITUTION:In the reaction vessel 30, starting gas materials are burnt with the burner 31 and the resultant glass fine particles are deposited on the starting material 32 which is being pulled up under rotation to form the fine particle aggregate 36 (its bulk density is about 0.1-0.5g/cm<3> and the refractive index is lower in the outer part than in the core part). Then, the aggregate is sintered with the heater 33 in the course of pulling-up to give the objective parent material for glass fiber wherein the sintering is carried out in such a gas atmosphere as containing halogen or a halogen compound and effecting dehydration and dopant vaporization, e.g., a helium gas containing about 0.1-10mol% of molecular chlorine.

Description

【発明の詳細な説明】 本発明は最適な放物線分布を有する光伝送用ガラス母材
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a glass preform for optical transmission having an optimal parabolic distribution.

光伝送用ガラス母相を造る方法の1つに■0法がある。One of the methods for producing a glass matrix for optical transmission is the 0 method.

この方法は低損失で半径方向に任意の屈折率分布を有I
〜、円周及び長さ方向に均一な組成を有す安価な光伝送
用ファイバを作るための素材を得ようとする場合に好適
な製造方法であり、原料収率がよく、高純度の製品が得
られ、また製造時間が他の方法に比べて半分以下である
ことの他に微粒子集合体を焼結する際脱水が拌易である
ことや工程数が少ないことなどが指摘され、実用上人き
な利点を有する。ここで従来実施されている■0法の概
略を説明すると、第1図に示すように容器1の下部に設
けたバーナ2に乃ス微粒子の原料ガスや燃焼用ガスおよ
びドー・ヤントガスを供給し、バーナ2から出発物質3
に向けて火炎を吹き付け、ガラス微粒子の煤をこの出発
物′Jt3の下面に付着し、堆積させ、出発物質3を回
転して引き上げながらこのガラス微粒子媒体を成長させ
集合体4を造る。ガラス微粒子体の下面に煤が付着する
場合には中央部に多く堆積し周辺部に少なく堆積するこ
とから、これに応じてGem、などのドーノ臂ント濃度
が所定の分布と有し、第2図に示す屈折率分布のガラス
母材が得られる。ここでn。は石英ガラスの屈折率レベ
ル、△nはGeO2によシ増大した屈折率レベルであシ
、αは△n−△n(1−(L)a)で示される屈折率分
布曲線の指数であO る。
This method enables arbitrary refractive index distribution in the radial direction with low loss.
- This is a manufacturing method suitable for obtaining materials for making inexpensive optical transmission fibers that have a uniform composition in the circumferential and longitudinal directions, and produces high-purity products with good raw material yields. In addition, it has been pointed out that in addition to the production time being less than half that of other methods, dehydration is easy to stir and the number of steps is small when sintering fine particle aggregates. It has many advantages. Here, to explain the outline of the conventional method 0, as shown in Figure 1, a raw material gas for fine particles, a combustion gas, and a dough gas are supplied to a burner 2 installed at the bottom of a container 1. , starting material 3 from burner 2
The soot of the glass particles is deposited on the lower surface of the starting material 'Jt3 by blowing a flame toward the starting material 3. While the starting material 3 is rotated and pulled up, the glass particle medium is grown to form the aggregate 4. When soot adheres to the lower surface of the glass fine particle body, a large amount of soot is deposited in the center and a small amount is deposited in the periphery. A glass base material having the refractive index distribution shown in the figure is obtained. Here n. is the refractive index level of silica glass, △n is the refractive index level increased by GeO2, and α is the index of the refractive index distribution curve denoted by △n-△n(1-(L)a). Oru.

ところで上記VAD法は前述したいくつかの利点を有す
る一方法のような改善すべき点をも有している。例えば
従前のVAD法で製造したガラス母材についてその屈折
率分布を詳細に比較すると、各母材間においてα=2.
0を中心として±0.3程度のバラツキが生じておp、
媒体集合物を単に焼結する従前の■0法においてはα=
2.0±0.1以内の範囲に屈折率分布を制御すること
は困難である。又焼結時における脱水効果が充分ではな
いという問題もある。上記脱水効果の良否は光7アイパ
の伝送波長帯に影曽を及げす。近年吸収ロスが最も低い
波長帯である1、30μm近傍を光通信用の波長として
利用する要求が高まっている3、しかしこの波長帯は光
フアイバ中の残存するOH基による吸収損失の大きい領
域であシ、この波長帯を利用するには光フアイバ内のO
H基液吸収損失値1.38μmにおいて1 dB/Km
以下にすることが望ましい。このためにはコア部の残留
OH量を少々くするのみ々らず、クラッド層の残留OH
−MLをも少々<シなければならずコア部近傍における
クラッド層の2〜3μm厚、好ましくは7μm厚以上の
範囲内で残留OH量の殆んど存在しない無水クラッド層
とすることが必要である。従来このような無水クラッド
層を有する光ファイバを造るには、まず屈折率分布を持
った微粒子集合体を無水化して透明ガラスとし次に無水
の石英もしくは無水層を予めコーティングしたパイプに
、前記透明ガラス体を挿入することによシ無水りラッド
層のガラス母材を得ている。ところが従前の方法では前
記透明ガラス体を更に所定の径に引伸すため酸水素火炎
を用いる必要があ)この工程で水分が浸入、拡散する虞
れがあシ、製造工程が煩雑であると共に脱水効果にも限
界がある。
By the way, the above-mentioned VAD method also has points to be improved, such as a method having several advantages mentioned above. For example, when comparing in detail the refractive index distribution of glass base materials manufactured by the conventional VAD method, α=2.
There is a variation of about ±0.3 around 0, and
In the previous ■0 method, which simply sintered the media aggregate, α=
It is difficult to control the refractive index distribution within a range of 2.0±0.1. Another problem is that the dehydration effect during sintering is not sufficient. The quality of the above-mentioned dehydration effect greatly affects the transmission wavelength band of Hikari 7-IPA. In recent years, there has been an increasing demand for the use of wavelengths around 1 and 30 μm, which have the lowest absorption loss, as wavelengths for optical communications.3 However, this wavelength band is a region where absorption losses are large due to residual OH groups in optical fibers. Yes, in order to use this wavelength band, the O in the optical fiber is
1 dB/Km at H base liquid absorption loss value of 1.38 μm
It is desirable to do the following. For this purpose, it is necessary not only to reduce the amount of residual OH in the core part, but also to reduce the amount of residual OH in the cladding layer.
- The ML must be slightly less than that, and the clad layer near the core must have a thickness of 2 to 3 μm, preferably 7 μm or more, and must be an anhydrous clad layer with almost no residual OH. be. Conventionally, in order to manufacture an optical fiber having such an anhydrous cladding layer, first, a fine particle aggregate with a refractive index distribution is made anhydrous to form a transparent glass, and then the transparent glass is coated on a pipe pre-coated with anhydrous quartz or an anhydrous layer. By inserting a glass body, a glass base material of an anhydrous rad layer is obtained. However, in the conventional method, it is necessary to use an oxyhydrogen flame to further stretch the transparent glass body to a predetermined diameter.) There is a risk that moisture may enter and diffuse during this process, and the manufacturing process is complicated and dehydration is difficult. There are limits to its effectiveness.

本発明は上記従来方法の問題点を解消するものであって
、その構成は、ガラス倣粒子集合体うス徽粒子集合体を
ハロゲンないしハロゲン化物を含み脱水作用と共にドー
パント揮発作用を有するガス雰囲気中で焼結することに
よシ脱水と同時にガラス微粒子集合体からげ−/(’ン
トを揮発させて屈折率分布を修正することを%徴とする
The present invention solves the above-mentioned problems of the conventional method, and has a structure in which a glass imitation particle aggregate is placed in a gas atmosphere containing a halogen or a halide and having a dehydrating action and a dopant volatilization action. By sintering, the glass fine particle aggregate is simultaneously dehydrated and evaporated to modify the refractive index distribution.

以下に本発明を■田法を例にして詳細に説明する。The present invention will be explained in detail below using the Ida method as an example.

第3図に本発明を実施する装置構成の一例を示す。該装
置例において反応容器30の下部にバーナ31が設けら
れる一方該パーナ311/(対向して出発物質32が容
器内部に回転自在に吊下され、更に反応容器30の外周
にヒータ33が設けられている。また反応容器30の上
部には容器内に所定のガスを送シ込むガス供給路34が
設けられると共に反応容器30の下部には容器内のガス
を排出する排気路35が設けられている。
FIG. 3 shows an example of an apparatus configuration for implementing the present invention. In this example of the apparatus, a burner 31 is provided at the lower part of the reaction container 30, while a starting material 32 is rotatably suspended inside the container, and a heater 33 is further provided around the outer periphery of the reaction container 30. Further, a gas supply path 34 is provided in the upper part of the reaction container 30 to supply a predetermined gas into the container, and an exhaust path 35 is provided in the lower part of the reaction container 30 to discharge the gas in the container. There is.

上記装fを用いて、バーナ31から原料ガスを燃焼させ
て、生じたガラス微粒子の煤を出発物質32の下面に堆
積させ、ガラス微粒子集合体36を形成する。この場合
ガス供給路34tl−通じて反応容器内にハロダンない
しハロダン化合物を含み脱水作用と共にドーパント揮発
作用を有するガスを供給して反応容器30の内部を上記
ガス育囲気にし、この芥囲気中で上記ガラス微粒子集合
体36を形成すると共に、該ガラス微粒子36を上方に
引き上け、ヒータ33により焼結する。
Using the above device f, the raw material gas is combusted from the burner 31, and the soot of the generated glass particles is deposited on the lower surface of the starting material 32, thereby forming the glass particle aggregate 36. In this case, a gas containing halodan or a halodan compound and having a dehydrating action and a dopant volatilization action is supplied into the reaction container through the gas supply path 34tl to create the above-mentioned gas atmosphere inside the reaction container 30. At the same time as forming a glass particle aggregate 36, the glass particles 36 are pulled upward and sintered by the heater 33.

上記ガス雰囲気の一例として塩素ガスC1zを用いる場
合について説明すると、第4図に示すGoms濃度分布
を有するガラス微粒子集合体を焼結する際、CQ、ガス
をl voAチ含むH2ガスを5M/分の割合で反応容
器中に供給しながら焼結すると、第5図(a)に示す屈
折率分布のガラス母材が得られる。該ガラス母材の屈折
率分布はα=2.0±0.05であシ極めて精度よく分
布を制御できることが解る。一方、同じGeO□濃度分
布を有するガラス微粒子集合体を上記Ct、ガスを供給
せずに焼結した場合には第5図ら)に示す屈折率分布の
乃ス母材が得られ、この場合の@折率分布はα−2,0
±0.15であ)本発明のものよシかなシパラツキが太
きい。尚上記ガス雰囲気としてCt、ガスを含むHeノ
!スの他にAr 、N、 I o、等が好適である。次
に該ガス雰囲気のハロダンの割合についてその最適範囲
を説明すると、それぞれ第4図に示すGem2濃度分布
を有するf以微粒子集合体G)@θを焼結する際、第1
表に示す割合でCt2ガスを供給したところ第6図■@
Oに示す屈折率分布のガラス母材が得られ、これらのO
H基残留量は第1表の通りである。更に各ガラス母材に
ついての伝送特性は各伝送帯域fに    ゛ついて第
1表に示す通シである。この例からも明らかなように0
4量を0.1 vot%以下にした場合には脱水量が不
充分であり、反面10 qoLチ以上にした場合にはC
4ガスの泡が”多発し、光ファイバの伝送特性上悪影響
を及ばず。従ってCtl量は0.1〜10 yotチで
あ石ことが好ましい。
To explain the case where chlorine gas C1z is used as an example of the above gas atmosphere, when sintering a glass particle aggregate having the Goms concentration distribution shown in FIG. When sintering is carried out while being supplied into a reaction vessel at a ratio of , a glass base material having a refractive index distribution shown in FIG. 5(a) is obtained. It can be seen that the refractive index distribution of the glass base material is α=2.0±0.05, and the distribution can be controlled with high accuracy. On the other hand, when a glass particle aggregate having the same GeO @Refractive index distribution is α-2,0
±0.15) The sillage is thicker than that of the present invention. The above gas atmosphere includes Ct and He gas! In addition to S, Ar, N, Io, etc. are suitable. Next, to explain the optimum range of the proportion of halodane in the gas atmosphere, when sintering the f or more fine particle aggregate G)@θ having the Gem2 concentration distribution shown in FIG.
When Ct2 gas was supplied at the ratio shown in the table, Figure 6 ■@
A glass base material with a refractive index distribution shown in O is obtained, and these O
The amount of H groups remaining is shown in Table 1. Furthermore, the transmission characteristics for each glass base material are shown in Table 1 for each transmission band f. As is clear from this example, 0
If the amount of C4 is less than 0.1 vot%, the amount of dehydration is insufficient; on the other hand, if it is more than 10 qoL, the amount of C
Bubbles of the four gases occur frequently and do not adversely affect the transmission characteristics of the optical fiber. Therefore, it is preferable that the Ctl amount is 0.1 to 10 yots.

第1表 仔)0.05 15 600太 @   1      1     .800θ  1
3       1        400    泡
多発大次に屈折率分布はガラス微粒子集合体の嵩密度に
も関係するのでこの関係について説明する。
Table 1) 0.05 15 600 fat @ 1 1. 800θ 1
3 1 400 Since the refractive index distribution in order of bubble density is also related to the bulk density of the glass fine particle aggregate, this relationship will be explained.

第7図(I) (b) (c)に示すような嵩密度分布
pと屈折率分布△n とを有するガラス微粒子集合体A
Glass fine particle aggregate A having a bulk density distribution p and a refractive index distribution Δn as shown in FIG. 7(I)(b)(c)
.

B、CをHa 51量分、CL、 0.0517分の割
合で供給したガスW囲気中において1550℃の加熱温
度を有する加熱炉に2闘/分の速さで挿入し、透明ガラ
ス化した。この結果を第2表および第8図に示す。
B and C were inserted into a heating furnace with a heating temperature of 1550°C at a rate of 2 strokes/min in a gas W atmosphere supplied with Ha 51 and CL at a rate of 0.0517 to form transparent vitrification. . The results are shown in Table 2 and FIG.

第2表 嵩密度(r/cJ)  残留OH吸収損失  伝送帯域
(■1z)A         1.38μm  3 
dB/Km     150B  0.1〜0.5  
 2  fiyn−1dB/Km     800CO
,3〜0.8   1.38μm −20dB/Km 
    250尚、第7図、第8図の(a) (b) 
(c)は上記試別A。
Table 2 Bulk density (r/cJ) Residual OH absorption loss Transmission band (■1z) A 1.38μm 3
dB/Km 150B 0.1~0.5
2 fiyn-1dB/Km 800CO
,3~0.8 1.38μm -20dB/Km
250 Also, (a) (b) in Figures 7 and 8
(c) is trial A above.

B、Cの場合を示す。この結果から明らかなように試料
Bの残留OHiが最も少ない。試料Bは嵩密度が0.1
〜(1,5r/mであや、かつ内側部の方が外側部より
等しいか太きい。以上の結果から、一般にこのような場
合には得られる透明ガラス体の屈折率分布は試別Bと同
様の傾向になり分布が々めらかで、かつ周辺部の立上り
(屈折率△n′)のないクラッド合成層が形成される傾
向にありこのような屈ti率分布を再現性よく得られる
ことが判る。試料Bのような屈折率分布は低損失かつ高
帯域のファイバを得るためには不可欠である。−実試料
A、Cのような屈折率分布は帯域特性に対して不利であ
り、この点本発明は実用上顕著な利点を有する。
Cases B and C are shown. As is clear from this result, Sample B has the least amount of residual OHi. Sample B has a bulk density of 0.1
~(Available at 1.5 r/m, and the inner part is equal to or thicker than the outer part. From the above results, the refractive index distribution of the transparent glass body obtained in this case is generally the same as that of trial B. The same tendency occurs, and a cladding composite layer with a smooth distribution and no rise (refractive index △n') at the periphery tends to be formed, and such a refractive index distribution can be obtained with good reproducibility. It can be seen that a refractive index distribution like that of sample B is essential to obtain a low-loss and high-bandwidth fiber. - A refractive index distribution like that of actual samples A and C is disadvantageous for the band characteristics. In this respect, the present invention has a significant practical advantage.

次に最外周部のドーパント量と屈折率分布との関係につ
いて説明する。第9図Gi) (e) (f)に示す屈
折率分布を有するガラス微粒子集合体り、E。
Next, the relationship between the amount of dopant at the outermost periphery and the refractive index distribution will be explained. FIG. 9 Gi) (e) A glass particle aggregate having the refractive index distribution shown in (f), E.

FをHe 5 L 7分C40,0517分の割合で供
給したガス界囲気中において1550℃の加熱温度にあ
る加熱炉に2m/分の速さで挿入し透明ガラス化した。
It was inserted into a heating furnace at a heating temperature of 1550° C. at a speed of 2 m/min in a gas atmosphere in which F was supplied at a rate of 7 minutes of He 5 L and 40.0517 minutes of C to produce transparent vitrification.

この結果を第10図および第3表に示す。第9図、第1
0図にトいて(d) (e) (f)は試料り、E、F
の場合を示す。
The results are shown in FIG. 10 and Table 3. Figure 9, 1st
In Figure 0, (d) (e) (f) are the samples, E, F
The case is shown below.

第3表 D     IF 伝送帯域(MI(z)       800    2
00   200尚試料D 、 E 、 Fの残留OH
基は1.38/jmのとき1 dB/Kmである。、J
:配結果から明らかなように試料りの周波数特性は高帯
域である反面試料E 、 l!”は劣悲である。これは
△n′と周辺部の屈折率差の広がシ(すその引@t)に
由来する。
Table 3 D IF transmission band (MI(z) 800 2
00 200Residual OH of samples D, E, F
When the base is 1.38/jm, it is 1 dB/Km. , J.
:As is clear from the distribution results, the frequency characteristics of the sample are in a high band, while the sample E, l! ” is unfortunate. This is due to the widening of the refractive index difference between Δn′ and the peripheral portion (base reduction @t).

微粒子集合体の周辺部のドーパント濃度が中心部のドー
パント濃度の50%以上である場合(試料E)に△n′
が顕著になる。一方、2%以下の場合(試料F)にはす
その引きtが顕著となり光ファイバの周波数特性を劣化
させることが解る。
When the dopant concentration at the periphery of the fine particle aggregate is 50% or more of the dopant concentration at the center (sample E), △n'
becomes noticeable. On the other hand, when it is less than 2% (sample F), it can be seen that the skirt pull t becomes noticeable and deteriorates the frequency characteristics of the optical fiber.

次に加熱方法と屈折率分布の関係についてみる。第9図
(d)に示すような屈折率分布を持つ微粒子集合体をそ
れぞれ2種類の加熱方法によルHe5t/分ct、 0
.05 t7分なるガス流量の雰囲気下において155
0 ℃の加熱温度で透明化した場合について説明する。
Next, let's look at the relationship between the heating method and the refractive index distribution. A fine particle aggregate having a refractive index distribution as shown in FIG. 9(d) was heated by two different heating methods at He5t/min ct, 0
.. 155 in an atmosphere with a gas flow rate of 0.05 t7 minutes.
A case where the film becomes transparent at a heating temperature of 0°C will be explained.

まず試料Gは温度分布が均一々加熱炉に入れ、800℃
から300℃/分の割合で1550°Cまで昇温した。
First, sample G was placed in a heating furnace with a uniform temperature distribution and heated to 800°C.
The temperature was increased from 300°C to 1550°C at a rate of 300°C/min.

得られた透明ガラス体の屈折率分布は第10図(e)と
同じでおシ、しかも長手方向に分布のバラツキがあシ、
又クラッド厚も2〜5μm程度変動し、光フアイバ母材
としては不適当であった。一方前記試料りはガラス微粒
子集合体を加熱炉内の低温部から高温部に向って回転さ
せながら2■/分の速度で挿入し、透明化したものであ
り、この場合には第10図(d)、第3表に示すように
良好な屈折率分布と伝送特性を有する。また試料りの長
手方向におけるクラッド厚および伝送特性も安定してい
る。以上のことからガラス微粒子集合体を焼結するには
予め集合体を炉内に設置するよりも焼結温度領域に一端
から徐々に挿入して焼結すればよいことが判る。尚試料
Gについて屈折率分布やクラッド厚さに変動を生ずるの
は次の理由によると考えられる。即ち、GeQ + 2
 C4→GeC4+Oxの反応によ!0 C4が消費さ
れ、ガス供給口よυ離れた側の微粒子集合体側端部にお
いてCt、濃度が減少するためであろう。事実、実験に
よれば第11図のようにC4濃度の変化によってクラッ
ド厚mと屈折率nとが変化することが判シ、上記推察を
裏付けている。またガラス微粒子集合体を加熱炉に挿入
する方法においては挿入速度が1tい場合半透明な母材
が得られるが再度純粋なHe  雰囲気下で透明化すれ
ば帯域損失の何ら変動のないガラス母材が得られる。従
って微粒子集合体の合成条件によっては非常に高速で透
明ガラス母材を得る利点もある9、 次に加熱炉の炉心径と屈折率分布の関係について示す。
The refractive index distribution of the obtained transparent glass body was the same as that shown in FIG. 10(e), and there was some variation in the distribution in the longitudinal direction.
Moreover, the cladding thickness also varied by about 2 to 5 μm, making it unsuitable as an optical fiber base material. On the other hand, the sample tube is made transparent by inserting a glass particle aggregate into the heating furnace at a speed of 2 cm/min while rotating it from a low-temperature part to a high-temperature part. d) It has good refractive index distribution and transmission characteristics as shown in Table 3. In addition, the cladding thickness and transmission characteristics in the longitudinal direction of the specimen are also stable. From the above, it can be seen that in order to sinter a glass particle aggregate, it is better to sinter it by gradually inserting it into the sintering temperature range from one end, rather than placing the aggregate in a furnace in advance. The reason why the refractive index distribution and cladding thickness of Sample G vary is considered to be as follows. That is, GeQ + 2
Due to the reaction of C4→GeC4+Ox! This is probably because 0 C4 is consumed and the Ct concentration decreases at the end of the particulate aggregate on the side υ away from the gas supply port. In fact, experiments have shown that the cladding thickness m and the refractive index n change as the C4 concentration changes, as shown in FIG. 11, supporting the above speculation. In addition, in the method of inserting a glass particle aggregate into a heating furnace, if the insertion speed is 1 t, a semitransparent base material can be obtained, but if it is made transparent again in a pure He atmosphere, there will be no change in band loss. is obtained. Therefore, depending on the synthesis conditions of the fine particle aggregate, there is the advantage of obtaining a transparent glass base material at a very high speed9.Next, the relationship between the core diameter of the heating furnace and the refractive index distribution will be explained.

第8図(d)のような屈折率分布をもつ微粒子集合体H
,1,Jをそれぞれ φ=微粒子集合体の径/炉心管の径 φ= 0.97 、0.70 、0.40の加熱炉内に
挿入しHe5t/分C/、 0.05 t/分カるガス
流量の雰囲気下において1550°Cの加熱温度で微粒
子集合体の先端よJ)2m+/分の速度で加熱炉に挿入
し透明ガラス化した。この結果を第12図、および第4
表に示す。
Fine particle aggregate H with a refractive index distribution as shown in Figure 8(d)
. The tips of the fine particle aggregates were inserted into a heating furnace at a heating temperature of 1550°C in an atmosphere with a gas flow rate of 1,500°C at a speed of 2 m+/min to form transparent vitrification. This result is shown in Figure 12 and Figure 4.
Shown in the table.

第4表 H2,0300 I       2.0      800J    
   3.0      100尚、第12図において
(h) (1) (j)はそれぞれ試料H、I 、 J
の結果を示す。上記結果から明らかなように屈折率分布
について試料HにはΔnが存在し、又試料Jはすそ引き
を生じており、いずれも伝送特性上好ましくない。一方
試料工は好適な屈折率分布を有し、伝送特性も良好であ
る。このことから上記径比φは0.95〜0.5の範囲
内であることが望ましいことが判る。尚径比φが0.5
以上の場合には焼結時に母材が湾曲する傾向がありこの
点からも好ましくない。
Table 4 H2,0300 I 2.0 800J
3.0 100 In Fig. 12, (h), (1), and (j) are samples H, I, and J, respectively.
The results are shown below. As is clear from the above results, sample H has a Δn in the refractive index distribution, and sample J has a trailing edge, both of which are unfavorable in terms of transmission characteristics. On the other hand, the sample material has a suitable refractive index distribution and good transmission characteristics. From this, it can be seen that the diameter ratio φ is preferably within the range of 0.95 to 0.5. The diameter ratio φ is 0.5
In the above case, the base material tends to curve during sintering, which is also undesirable.

以上説明したように本発明は所定の屈折率分布を持った
微粒子集合体を7・ログンもしくはノ10グン化物も含
み脱水作用を有すると同時にドー・臂ント揮散作用を有
するガス芥囲気内で脱水と同時に添加ドーパントを揮散
させて屈折率分布を修正し、かつ無水のフジラド層を形
成せしめ、精密な屈折率分布を有する棒状ガラス物体を
得るようにしたものであシ、好適な屈折率分布を有する
ガラス母材を安定に製造することができ実用上人きな利
点を有する。
As explained above, the present invention dehydrates fine particle aggregates with a predetermined refractive index distribution in a gas atmosphere that also contains 7. At the same time, the added dopant is volatilized to modify the refractive index distribution, and an anhydrous Fujirad layer is formed to obtain a rod-shaped glass object with a precise refractive index distribution. It has the practical advantage of being able to stably produce a glass base material with

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はVAD法の装置構成概略図、第2図は従来のガ
ラス母材の屈折率分布図、第3図は本発明の実施に用い
る装置構成概略図、M4図はGeO2濃度分布図、第5
図および第6図は屈折率分布図、第7図り、 t)r)
 、 (c)はガラス微粒子集合体の屈折率分布と嵩密
度分布との関係を示す分布図、第8図(a) Q)) 
(c)はガラス母相の屈折率分布図、第9図(d) (
e) (f)はガラス微粒子集合体の屈折率分布図、第
10図(d) (e) (f)はガラス母材の屈折率分
布図、であり、各図において←)(b) (C) (d
) (e) (f)は試料A、B、C,D、E、Fのも
のを示す。 第11図はC/、 9度と屈折率、クラッド厚との関係
を示すグラフ、第12図(h) (1) (j)はガラ
ス母材の屈折率分布図であり(h) Q) (j)は試
料H,I 。 Jのものを示す、。 図面中 1.30は反応容器、 2.31はバーナ、 3.32は出発物質、 4.36はガラス微粒子集合体、 34はガス供給路、 35は排気路である。 特許出願人  日本電信電話公社 住友電気工業株式会社
Figure 1 is a schematic diagram of the equipment configuration for the VAD method, Figure 2 is a refractive index distribution diagram of a conventional glass base material, Figure 3 is a schematic diagram of the equipment configuration used to implement the present invention, and Figure M4 is a GeO2 concentration distribution diagram. Fifth
Fig. 6 and Fig. 6 are refractive index distribution maps, Fig. 7, t) r)
, (c) is a distribution diagram showing the relationship between the refractive index distribution and bulk density distribution of a glass particle aggregate, Figure 8 (a) Q))
(c) is a refractive index distribution diagram of the glass matrix phase, and Figure 9 (d) (
e) (f) is a refractive index distribution diagram of a glass particle aggregate, and Figure 10 (d) (e) (f) is a refractive index distribution diagram of a glass base material. In each figure, ←) (b) ( C) (d
) (e) (f) shows samples A, B, C, D, E, and F. Figure 11 is a graph showing the relationship between C/9 degrees, refractive index, and cladding thickness, Figure 12 (h) (1) (j) is a refractive index distribution diagram of the glass base material (h) Q) (j) is sample H, I. Showing those of J. In the drawing, 1.30 is a reaction vessel, 2.31 is a burner, 3.32 is a starting material, 4.36 is a glass particle aggregate, 34 is a gas supply path, and 35 is an exhaust path. Patent applicant: Nippon Telegraph and Telephone Public Corporation Sumitomo Electric Industries, Ltd.

Claims (1)

【特許請求の範囲】 (1)  ガラス微粒子集合体を焼結して透明ガラス体
を造るガラス母材の製造方法において、外周部の屈折率
が内部の屈折率より小さいガラス1粒子集合体をハロケ
゛ンないしハロゲン化物を含み脱水作用と共にドー・ヤ
ント揮発作用を有するガス雰囲気中で焼結することによ
り脱水と同時にガラス微粒子集合体からドー・ヤントを
揮発させて屈折率分布を修正することを特徴とする光伝
送用ガラス母材の製造方法1゜(2、特許請求の範囲第
1項において、ガラス微粒子集合体の嵩密度が0.1〜
0.5f/cdであり、かつ内部の嵩密度が外周部の嵩
密度と等しいか又は大きいことを特徴とする光伝送用ガ
ラス母材の製造方法。 (3)%許請求の範囲第1項において、ガラス微粒子集
合体の最外周のドー・fント蓋が中心部のドーパント量
に対し2〜50wttI6であることを特徴とする光伝
送用ガラス角材の製造方法。 (4)%許請求の範囲第1項において、ガラス微粒子集
合体を回転しながら加熱炉の低温部から高温部に回って
進行させて焼結することを特徴とする光示送用ガラス母
材の製造方法。 (5)特許請求の範囲第4項において、ガラス微粒子集
合体を1m/分〜10冒/分の速度で加熱炉内を進行さ
せることを特徴とする光伝送用ガラス母材の製造方法。 (6)特許請求の範囲第4項に於て微粒子集合体径/加
熱炉心管径が0.95〜(1,50の範囲であることを
特徴とする光伝送用ガラス母材の製造方法。 (力 特許請求の範囲第1項に於て、ガス雰囲気がC4
とHeを混合したガスであり、C4量が0.1〜10m
ot%の範囲であることを特徴とする光伝送用ガラス母
材の製造方法。
[Scope of Claims] (1) In a method for manufacturing a glass base material in which a transparent glass body is produced by sintering a glass particle aggregate, a single glass particle aggregate whose outer peripheral part has a smaller refractive index than the inner part is made into a halo. It is characterized by modifying the refractive index distribution by sintering in a gas atmosphere containing a halide or a halide and having a dehydration action and a Do-Yant volatilization effect, thereby simultaneously dehydrating and volatilizing Do-Yand from the glass fine particle aggregate. Method for manufacturing a glass base material for optical transmission 1° (2. In claim 1, the bulk density of the glass fine particle aggregate is 0.1 to 0.1.
0.5 f/cd, and the bulk density of the inside is equal to or larger than the bulk density of the outer peripheral portion. (3) % Permissible scope In claim 1, the glass beam for light transmission is characterized in that the dopant cover at the outermost periphery of the glass fine particle aggregate has a dopant content of 2 to 50wttI6 relative to the dopant amount at the center. Production method. (4) % Scope of claim 1, wherein the glass base material for optical transmission is characterized in that the glass particle aggregate is rotated and progressed from a low-temperature section to a high-temperature section of a heating furnace for sintering. manufacturing method. (5) A method for manufacturing a glass base material for optical transmission according to claim 4, characterized in that the glass particle aggregate is advanced in a heating furnace at a speed of 1 m/min to 10 m/min. (6) A method for manufacturing a glass base material for optical transmission according to claim 4, characterized in that the particle aggregate diameter/heating furnace tube diameter is in the range of 0.95 to (1,50). (Power) In claim 1, the gas atmosphere is C4
It is a gas that is a mixture of
A method for manufacturing a glass base material for optical transmission, characterized in that the glass base material is in a range of ot%.
JP490182A 1982-01-18 1982-01-18 Production of parent material for light transmission glass Pending JPS58125619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP490182A JPS58125619A (en) 1982-01-18 1982-01-18 Production of parent material for light transmission glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP490182A JPS58125619A (en) 1982-01-18 1982-01-18 Production of parent material for light transmission glass

Publications (1)

Publication Number Publication Date
JPS58125619A true JPS58125619A (en) 1983-07-26

Family

ID=11596561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP490182A Pending JPS58125619A (en) 1982-01-18 1982-01-18 Production of parent material for light transmission glass

Country Status (1)

Country Link
JP (1) JPS58125619A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174146A (en) * 1985-01-25 1986-08-05 Sumitomo Electric Ind Ltd Optical fiber and its manufacturing method
US5236482A (en) * 1991-02-08 1993-08-17 Sumitomo Electric Industries, Ltd. Method for producing glass preform for optical fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628852A (en) * 1979-08-17 1981-03-23 Toppan Printing Co Ltd Coloring multilayer molding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628852A (en) * 1979-08-17 1981-03-23 Toppan Printing Co Ltd Coloring multilayer molding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174146A (en) * 1985-01-25 1986-08-05 Sumitomo Electric Ind Ltd Optical fiber and its manufacturing method
JPH0140782B2 (en) * 1985-01-25 1989-08-31 Sumitomo Electric Industries
US5236482A (en) * 1991-02-08 1993-08-17 Sumitomo Electric Industries, Ltd. Method for producing glass preform for optical fiber

Similar Documents

Publication Publication Date Title
US4165223A (en) Method of making dry optical waveguides
US4224046A (en) Method for manufacturing an optical fiber preform
JPH0196039A (en) Production of optical fiber preform
IZAWA et al. Continuous fabrication process for high-silica fiber preforms
KR100449766B1 (en) Manufacturing method of precursor of glass base material for optical fiber
GB2314077A (en) Making optical fibres by drawing rod-in-tube preforms
US4874416A (en) Base material of optical fibers and a method for the preparation thereof
JP3053320B2 (en) Method for producing porous glass preform for optical fiber
JPS58125619A (en) Production of parent material for light transmission glass
JP3562545B2 (en) Method for producing glass preform for optical fiber
US4875918A (en) Method of manufacturing fiber preform for single-mode fibers
JPH0559052B2 (en)
JPS624332B2 (en)
JPH01286932A (en) Production of optical fiber preform
JPH01126236A (en) Production of optical fiber preform
JPS58135147A (en) Preparation of base material for optical fiber
JPH0460930B2 (en)
JPH07330366A (en) Manufacturing method of optical fiber preform
JPH01111747A (en) Manufacturing method of optical fiber base material
US20240140853A1 (en) Manufacturing method of glass base material for optical fiber
JP3100291B2 (en) Dispersion shifted optical fiber and method of manufacturing the same
JPH0240003B2 (en) TANITSUMOODO * HIKARIFUAIBAYOBOZAINOSEIZOHOHO
JPS58217441A (en) Manufacture of base material for optical fiber
JPS60145922A (en) Production of base material for optical fiber
JPS6136130A (en) Manufacture of preform for polarization-keeping optical fiber