JPS58125025A - Two-dimensional optical deflector - Google Patents
Two-dimensional optical deflectorInfo
- Publication number
- JPS58125025A JPS58125025A JP803182A JP803182A JPS58125025A JP S58125025 A JPS58125025 A JP S58125025A JP 803182 A JP803182 A JP 803182A JP 803182 A JP803182 A JP 803182A JP S58125025 A JPS58125025 A JP S58125025A
- Authority
- JP
- Japan
- Prior art keywords
- optical waveguide
- thin film
- light beam
- waveguide
- film optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 68
- 239000010409 thin film Substances 0.000 claims abstract description 38
- 238000010897 surface acoustic wave method Methods 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims description 11
- 239000010408 film Substances 0.000 claims description 7
- 238000005485 electric heating Methods 0.000 claims description 4
- 230000020169 heat generation Effects 0.000 claims description 4
- 230000010355 oscillation Effects 0.000 abstract description 3
- 230000000737 periodic effect Effects 0.000 abstract description 2
- 230000010287 polarization Effects 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 19
- 230000000694 effects Effects 0.000 description 13
- 239000013078 crystal Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 241000257465 Echinoidea Species 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/295—Analog deflection from or in an optical waveguide structure]
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/33—Acousto-optical deflection devices
- G02F1/335—Acousto-optical deflection devices having an optical waveguide structure
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/0147—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on thermo-optic effects
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/30—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
- G02F2201/305—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating diffraction grating
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、薄膜先導波路中を伝搬りる光を音響光学効
果と熱光学効果によって2次元方向に偏向さけるように
した固体薄膜型の2次元光偏向器に関し、特に、熱光学
効果による光ビームの偏向角を大きく取れるようにした
ものに関づる。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid thin film type two-dimensional optical deflector that avoids deflecting light propagating in a thin film guided waveguide in two dimensional directions by an acousto-optic effect and a thermo-optic effect. , relates to a device that allows a large deflection angle of a light beam due to the thermo-optic effect.
現在、バーコードリータ、レーザープリンタ。Currently, barcode readers and laser printers.
ファクシミリ、光電式深傷装冒、光メモリ等の各種のフ
ォトエレクトロニクス応用装置において、レーザー光の
ような光ビームの進行方向を2次元的に制御する必要性
がまザまず増大している。この目的のための2次元光偏
向器は、従来、回転ミラ一式あるいは振動ミラ一式で代
表されるように光ビームが通過りる光学系の一部を機械
的に変位させることによって2次元光偏向を行なうJ、
うになっている。この種の機械式の光偏向器では可動部
分を有するため高速性1信頼性という面にcl′3いて
欠点があり、また光学系が複雑となるため小形化、低コ
スト化、光軸合せ等を含む製作の容易性等の面において
も問題があり、更に消費電力の点でも問題があった。2. Description of the Related Art In various photoelectronic application devices such as facsimile machines, photoelectric deep wound devices, and optical memories, the need to two-dimensionally control the traveling direction of light beams such as laser beams is increasing. A two-dimensional optical deflector for this purpose conventionally deflects two-dimensional light by mechanically displacing a part of an optical system through which a light beam passes, such as a set of rotating mirrors or a set of vibrating mirrors. J to do
It's becoming a sea urchin. This type of mechanical optical deflector has movable parts, so it has disadvantages in terms of high speed and reliability, and the optical system is complicated, so it is necessary to reduce the size, cost, and align the optical axis. There are also problems in terms of ease of manufacture, including problems in terms of ease of manufacture, and there are also problems in terms of power consumption.
この発明は上)ホした従来の問題点に鑑みなされたもの
で、その基本的な目的は、機械的可動部分のない固体薄
膜型の小型の装置でもって光ビームの進行方向を2次元
的に制御することができ、かつ高速性、信頼性、製作の
容易性といった点で優れた2次元光偏向器を提供するこ
とにある。This invention was developed in view of the conventional problems mentioned above, and its basic purpose is to two-dimensionally control the traveling direction of a light beam using a compact solid thin film type device with no mechanically moving parts. The object of the present invention is to provide a two-dimensional optical deflector that can be controlled and is excellent in terms of high speed, reliability, and ease of manufacture.
この基本的な目的に立脚し、本発明者らは先に、基板面
に形成された薄膜光導波路中に伝搬させた光ビームを、
このg膜先導波路上に設りた櫛形電極から生ずる弾性表
面波による音響光学効果(ブラッグ回折現象〉と、上記
光ビームが外部に出射づる薄膜光導波路の出射端面付近
に設(づた電気発熱体ににって制御される熱光学効果(
光導波路の屈折率変化)とにJ一つて2次元的に偏向さ
せるようにした2次元光偏向器を開発しており、これに
ついては既に特許出願をしている。Based on this basic objective, the present inventors first transmitted a light beam propagated into a thin film optical waveguide formed on the substrate surface.
The acousto-optic effect (Bragg diffraction phenomenon) due to surface acoustic waves generated from the comb-shaped electrode installed on this G-film guided waveguide, and the electric heat generation Thermo-optical effects controlled by the body (
We have developed a two-dimensional optical deflector that deflects the optical waveguide two-dimensionally due to the change in the refractive index of the optical waveguide, and have already filed a patent application for this.
この発明の具体的な目的は、ト述しlこ固体薄膜型の2
次元光偏向器において、特に、it!l膜光導波光導波
路−ム出射端面近傍部分の温度勾配を大きく取れるよう
にし、もって熱光学効果ににる光ビームの偏向角を大き
くできるようにした2次元光偏向器を実現J−ることに
ある。The specific objects of this invention are as follows:
In the dimensional light deflector, especially it! To realize a two-dimensional optical deflector in which the temperature gradient near the output end face of the l-film optical waveguide can be increased, thereby increasing the deflection angle of the light beam due to the thermo-optic effect. It is in.
以下、この発明の実施例を図面に基づいて詳細に説明す
る。Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
第1図はこの発明に係る2次元光偏向器の構成を示す斜
視図である。この光偏向器は、基板1而に形成されlこ
薄膜光導波路2ど、この薄膜光導波路2上に弾性表面波
SΔWを伝搬ざLる櫛形電極3と、外部からの光ビーム
POを受りて上記弾性表面波SAWの波面に対してブラ
ッグ角となるように薄膜光導波路2中に光ビームP1を
伝搬させるグレーティングカプラ4からなる光導入部と
、l記弾性表面波SAWぐブラッグ回折された光ビーム
P2が光ご一ムP3として外部に出射する上記薄膜先導
波路2の出射端面2aと、この出射端面2a近傍の薄膜
光導波路2の縁部北面に設()られだ直流型11′:に
より発熱する発熱電極6からなる電気発熱体と、この発
熱電極6との間に上記薄膜光導波路2を挾むように該光
導波路2の下面側にtQ()られたヒートシンク10と
を備え、上記櫛形電極3を駆動する高周波発振器7を制
御して櫛形電極3の振動周波数を変化させることで弾性
表面波SΔWにてブラッグ回折される光ビームP2を薄
膜光導波路2の平面内で偏向させるとともに、上記発熱
電極6に印加する直流電源8を制御してその発熱温度を
変化さぜることで上記出射端面2a近傍の薄膜光導波路
2の屈折率を変化させ、出射端面2aから出射する光ビ
ームP3を薄膜光導波路2而に対して垂直方向に偏向ざ
ゼるように構成されている。なお、出射端面2aから出
射する光ビームP3の2次元偏向の様子をスクリーン9
上のドツトで示している。FIG. 1 is a perspective view showing the configuration of a two-dimensional optical deflector according to the present invention. This optical deflector includes a thin film optical waveguide 2 formed on a substrate 1, a comb-shaped electrode 3 that propagates a surface acoustic wave SΔW onto the thin film optical waveguide 2, and a comb-shaped electrode 3 that receives an external optical beam PO. a light introduction section consisting of a grating coupler 4 that propagates the light beam P1 into the thin film optical waveguide 2 so as to form a Bragg angle with respect to the wavefront of the surface acoustic wave SAW; A direct current type 11' is provided on the output end face 2a of the thin film guided waveguide 2 from which the light beam P2 is outputted as a light beam P3 to the outside, and on the north edge of the thin film optical waveguide 2 near the output end face 2a. The comb-shaped By controlling the high-frequency oscillator 7 that drives the electrode 3 and changing the vibration frequency of the comb-shaped electrode 3, the light beam P2 that is Bragg-diffracted by the surface acoustic wave SΔW is deflected within the plane of the thin-film optical waveguide 2, and the above-mentioned By controlling the DC power supply 8 applied to the heat generating electrode 6 and changing its heat generation temperature, the refractive index of the thin film optical waveguide 2 near the output end face 2a is changed, and the light beam P3 emitted from the output end face 2a is changed. It is configured to be deflected in a direction perpendicular to the thin film optical waveguide 2. Note that the two-dimensional deflection of the light beam P3 emitted from the output end face 2a can be observed on a screen 9.
It is indicated by the dot above.
上記基板1は圧電性結晶であるニオブサンリチウム(L
、 i N l) O!、)単結晶からなり、この結晶
表面にチタン([i)を熱拡散し、基板1より0゜00
3・−〇、005程度屈折率の高い屈折率約2゜2の;
i1膜光導波路2を形成している。上記発熱電5−
極6は、上記薄膜先導波路2上にニッケル・クロム合金
を蒸着覆ることによって形成されている。The substrate 1 is made of niobium sanlithium (L), which is a piezoelectric crystal.
, i N l) O! ) is made of a single crystal, titanium ([i) is thermally diffused on the surface of this crystal, and the temperature is 0°00 from the substrate 1.
3.-〇, a high refractive index of about 005 with a refractive index of about 2°2;
An i1 film optical waveguide 2 is formed. The heating element 5-pole 6 is formed by depositing a nickel-chromium alloy on the thin film guiding waveguide 2.
上記櫛形電極3は、薄膜光導波路2を構成した基板1−
ににリフトオフ法を用いて作られている。The comb-shaped electrode 3 is connected to the substrate 1- which constitutes the thin-film optical waveguide 2.
It is made using the lift-off method.
また第3図の拡大図に示ずように、基板1の出OiJ端
面2a側の下面、ずなわち発熱電極6と対向する側の下
面は、例えばエツチングや研磨等の手段にJ:つで部分
的にカットされており、このカッ1〜された部分では略
薄膜光導波路2の下面が露?する状態どなっている。そ
して、この基板1のカット部分に熱伝導率の高い物質か
らなるピー1〜シンク10が接合されており、この部分
(こおいて薄膜光導波路2は発熱電極6とと−1−シン
ク10に挾まれている。つまり、薄膜光導波路2はその
上面側から発熱電極6によって加熱されるとともに、そ
の下面側はヒートシンク10によって放熱、冷却される
。なお、ヒートシンク10にはフィン等を形成して放熱
、冷却効果を向上させるのが望ましい。Further, as shown in the enlarged view of FIG. 3, the lower surface of the substrate 1 on the side of the output OiJ end surface 2a, that is, the lower surface of the side facing the heating electrode 6, is etched by means such as etching or polishing. It is partially cut, and the lower surface of the thin film optical waveguide 2 is exposed in the cut portion. What is the situation? Then, P1 to Sink 10 made of a material with high thermal conductivity are bonded to the cut part of this substrate 1, and this part (here, the thin film optical waveguide 2 is connected to heating electrode 6 and -1 to Sink 10). In other words, the thin film optical waveguide 2 is heated from its upper surface by the heat generating electrode 6, and its lower surface is radiated and cooled by the heat sink 10. Note that the heat sink 10 is formed with fins or the like. It is desirable to improve heat dissipation and cooling effects.
次に、上記構成の2次元光偏向器の動作につい6−
て詳述する。上記櫛形電極3をある周波数[で駆動づる
と、第2図に承りように、薄膜光導波路2.1−に波長
△の弾性表面波SAWが発生する。この弾性表向波SA
Wにより薄膜光導波路2中にピッチ△の周期的な屈折率
変化が生じ、この屈折率変化の波が回折格子として作用
し、これの波面に対して角度0で入射した波長への光ビ
ー1XP1は、次の式を満たすとき波面により反則され
、ブラッグ回折された光ビーム1)2どなる。Next, the operation of the two-dimensional optical deflector having the above configuration will be described in detail. When the comb-shaped electrode 3 is driven at a certain frequency, a surface acoustic wave SAW of wavelength Δ is generated in the thin film optical waveguide 2.1-, as shown in FIG. This surface acoustic wave SA
W causes a periodic refractive index change with a pitch Δ in the thin film optical waveguide 2, and the wave of this refractive index change acts as a diffraction grating, and the light beam 1XP1 at a wavelength incident at an angle of 0 to the wavefront of this When the following equation is satisfied, the light beam 1)2 that is deflected by the wavefront and subjected to Bragg diffraction becomes louder.
θ−arcsin (λ/2Δ)
ここで、弾性表面波SAWの伝搬ベタ1〜ルが第2図の
X方向成分だ(づでなくZ方向成分を持つこと等ににす
、櫛形電極3の駆動周波数1をある範囲内で変化させて
f±Δrとしたとき、ブラッグ回折される光ビームP2
の進行方向は、第2図に示すように、薄膜光導波路2の
平面内において△θの範囲内で変化する。リ−なわち、
高周波発振器7の発振周波数をある範囲内で連続的に変
化させることにより、光ビームP2の進行方向を連続的
に変化させることができる。θ-arcsin (λ/2Δ) Here, the propagation pattern 1 to 1 of the surface acoustic wave SAW is the X-direction component in FIG. When the frequency 1 is changed within a certain range to be f±Δr, the Bragg diffracted light beam P2
As shown in FIG. 2, the direction of travel changes within the range of Δθ within the plane of the thin film optical waveguide 2. Lee, that is,
By continuously changing the oscillation frequency of the high-frequency oscillator 7 within a certain range, the traveling direction of the light beam P2 can be continuously changed.
また、ニオブ酸リチウム単結晶からなる基板1は温度に
よってその屈折率が変化する結晶である。Further, the substrate 1 made of a lithium niobate single crystal is a crystal whose refractive index changes depending on the temperature.
従って、発熱電極6に直流電源8から適宜な電圧を加え
てこれを発熱させると、その熱がA9膜先導波路2に伝
わり、その熱によって簿n9先導波路2の屈折率が増加
する。その際、温度」昇が大ぎい程屈折率変化が大きい
ので、発熱電極6に近い部分程屈折率が増加する。第4
図は発熱電極6の直F部分の薄膜光導波路2の屈折率変
化へ〇と発熱電極6からの距離乏どの関係を示しており
、発熱電極6に印加する電圧によって制御される発熱温
度をA、B、Cのパラメータとして示している。Therefore, when an appropriate voltage is applied to the heating electrode 6 from the DC power supply 8 to generate heat, the heat is transmitted to the A9 film leading waveguide 2, and the refractive index of the N9 leading waveguide 2 is increased by the heat. At this time, the larger the temperature rise, the larger the change in the refractive index, so the refractive index increases closer to the heating electrode 6. Fourth
The figure shows the relationship between the change in the refractive index of the thin film optical waveguide 2 at the direct F portion of the heating electrode 6 and the distance from the heating electrode 6. , B, and C as parameters.
同図のように、薄膜光導波路2の屈折率変化△11は、
発熱電極6に近い程大ぎく、また光熱電極6の発熱温度
が高い程大きくなる。つまり、発熱電極6の直下部分の
縦断面を承り第3図のように、発熱電極6の直下部分の
光導波路2に点線で示す如くグレーデッドな屈折率増加
が生じ、イの屈折率変化のf8i様は光導波路2内に等
価的に/リズムが置かれたのど同じJζうに作用する。As shown in the figure, the refractive index change Δ11 of the thin film optical waveguide 2 is
The closer the heating electrode 6 is, the larger the heating temperature becomes, and the higher the heating temperature of the photothermal electrode 6 is, the larger the heating temperature becomes. In other words, as shown in FIG. 3 when looking at the longitudinal cross section of the portion directly below the heating electrode 6, a graded increase in the refractive index occurs in the optical waveguide 2 immediately below the heating electrode 6 as shown by the dotted line, and the change in refractive index shown in A. f8i acts in the same way as Jζ where /rhythm is placed equivalently in the optical waveguide 2.
イして、一般的にプリズムにより光の進行方向が変化す
るにうに、発熱電極6に電圧を印加することにより光導
波路2の出射端面2a近傍部分に生ずる上記屈11i率
増加による等価的プリズムの作用により、光ビーム1〕
2はこの部分を通過する際に上方に偏向さけられ、出射
端面2aより光ビームP3として出射覆る。その際に、
光ビームP3の薄膜光導波路2の平面と平行な直進光に
対する偏向角Δαは、等価的プリズムどして作用する光
導波路2の屈折率変化の度合、すなわち加熱電極6によ
る加熱温度の大ぎさに応じて変化リ−る。つまり、加熱
電極6に印加する直流電源8の電圧を変化させることで
、出oA端面2aから出射する光ビームP3を薄膜光導
波路2の平面と垂直方向に偏向させることができる。In general, just as the propagation direction of light is generally changed by a prism, by applying a voltage to the heating electrode 6, the equivalent prism is Due to the action, light beam 1]
2 is deflected upward when passing through this portion, and is emitted from the output end face 2a as a light beam P3. At that time,
The deflection angle Δα of the light beam P3 relative to straight light traveling parallel to the plane of the thin-film optical waveguide 2 depends on the degree of change in the refractive index of the optical waveguide 2 that acts as an equivalent prism, that is, the magnitude of the heating temperature by the heating electrode 6. Changes will occur accordingly. That is, by changing the voltage of the DC power supply 8 applied to the heating electrode 6, the light beam P3 emitted from the output OA end face 2a can be deflected in a direction perpendicular to the plane of the thin film optical waveguide 2.
」一連のにうに、高周波発振器7による偏向制御と、直
流電源8による偏向制御とを組合せることにより、出側
端面2aから出射する光ビームP3の進行方向をスクリ
ーン9上の各ドツトで示すように2次元的に任意に制御
することができる。By combining the deflection control by the high-frequency oscillator 7 and the deflection control by the DC power supply 8, the direction of travel of the light beam P3 emitted from the exit end face 2a is indicated by each dot on the screen 9. can be arbitrarily controlled two-dimensionally.
9−
ここで本発明においては、1fIJ膜光導波路2の出射
端面2aの近傍部分は、上面側から発熱電極6で加熱さ
れると同時に、下面側ではヒートシンク10で放熱、冷
却されるので、この部分の温度勾配を非常に大きくする
事ができる。電極6直下の温度勾配を容易に大きくする
ことができるというのは、上記等価的プリズムの効果に
よる光ビーl\P3の垂直方向への偏向角を大きくづる
ことができ、また電極6への印加電圧の微少変化により
光ビームP3の偏向角を大きく変化させることができて
高感度となることを意味している。9- Here, in the present invention, the portion near the output end surface 2a of the 1fIJ film optical waveguide 2 is heated from the upper surface side by the heat generating electrode 6, and at the same time, the heat is radiated and cooled by the heat sink 10 from the lower surface side. It is possible to make the temperature gradient of the part very large. The fact that the temperature gradient directly under the electrode 6 can be easily increased means that the vertical deflection angle of the optical beam I\P3 can be increased due to the effect of the equivalent prism, and the temperature gradient directly under the electrode 6 can be increased. This means that the deflection angle of the light beam P3 can be greatly changed by a small change in voltage, resulting in high sensitivity.
以上詳細に説明したように、この発明に係る2次元光偏
向器は、基板上に形成した薄膜光導波路にお(プる音響
光学効果と熱光学効果を利用して光ビームの進行方向を
2次元的に制御I−!J−るものであって、従来のよう
な機械的可動部分は全くなく、高速性および信頼性の面
で優れたものとなり、また集積回路の技術を使って均一
な特性を持つものを大量に生産することができ、小形で
安価な固体薄膜型の2次元光偏向器を実現できる。特に
この−10−
発明においては、上記ヒートシンクによって、電気発熱
体白下部分の湿度勾配を大きくすることができ、これに
より熱光学効果による等価的プリズムの作用による光ビ
ームの偏向角度が大きく取れ、口れにより偏向範囲の大
きな2次元光偏向器を実現することができる。As explained in detail above, the two-dimensional optical deflector according to the present invention utilizes the acousto-optic effect and the thermo-optic effect to direct the traveling direction of the light beam into the thin film optical waveguide formed on the substrate. It is dimensionally controlled, has no mechanically moving parts, and is superior in terms of high speed and reliability, and uses integrated circuit technology to achieve uniform control. It is possible to mass-produce products with the same characteristics, and it is possible to realize a small and inexpensive solid thin film type two-dimensional optical deflector.In particular, in this -10- invention, the heat sink is used to heat the lower part of the electric heating element. It is possible to increase the humidity gradient, thereby allowing a large deflection angle of the light beam due to the action of an equivalent prism due to the thermo-optic effect, and a two-dimensional optical deflector with a large deflection range due to the aperture.
第1図はこの発明の一実施例による2次元光偏向器の全
体の構成を示す斜視図、第2図は弾性表面波SΔWによ
る光ビームのブラッグ回折現象を説明するための図、第
3図は薄膜光導波路の熱光学効果による光ビームの偏向
を説明するための図、第4図は上記熱光学効果を得るた
めの発熱電極の発熱による屈折率変化へ〇と発熱電極か
らの距離での関係を示すグラフである。
1・・・・・・・・・基板
2・・・・・・・・・薄膜光導波路
2a・・・・・・出射端面
3・・・・・・・・・櫛形電極
4・・・・・・・・・グレーティングカブラ6・・・・
・・・・・発熱電極
7・・・・・・・・・高周波発振器
8・・・・・・・・・直流電源
9・・・・・・・・・スクリーン
10・・・・・・ヒートシンク
SAW・・・・・・・・・弾性表面波
PO,P1.P2.P3・・・・・・・・・光ビーム特
W(出願人
立石電機株式会ン1
−17−−一FIG. 1 is a perspective view showing the overall configuration of a two-dimensional optical deflector according to an embodiment of the present invention, FIG. 2 is a diagram for explaining the Bragg diffraction phenomenon of a light beam due to surface acoustic waves SΔW, and FIG. 3 is a diagram for explaining the deflection of a light beam due to the thermo-optic effect of a thin film optical waveguide, and Figure 4 shows the change in refractive index due to heat generation of the heating electrode in order to obtain the above-mentioned thermo-optic effect. It is a graph showing a relationship. 1... Substrate 2... Thin film optical waveguide 2a... Output end face 3... Comb-shaped electrode 4... ...Grating Kabra 6...
...Heating electrode 7...High frequency oscillator 8...DC power supply 9...Screen 10...Heat sink SAW・・・・・・Surface acoustic wave PO, P1. P2. P3・・・・・・・Light Beam Special W (Applicant Tateishi Electric Co., Ltd. 1-17--1
Claims (1)
導波路上に弾性表面波を伝搬させる櫛形電極と、上記弾
性表面波の波面に対してブラッグ角となるように光ビー
ムを上記薄膜光導波路に伝搬させる先導入部と、上記弾
性表面波でブラッグ回折された光ビームが外部に出射す
る1記薄膜光導波路の出射端面と、この出射端面近傍の
上記薄膜光導波路の縁部1面に設(プられた電気発熱体
と、この電気発熱体との間に上記薄膜光導波路を挾むよ
うに該光導波路のド面側に設けられたヒートシンクとを
備え、上記櫛形電極の振動周波数を変化させることでブ
ラック回折される光ビームを上記薄膜先導波路の平面内
で偏向さけるとともに、上記電気発熱体の発熱温度を変
化させることで上記出射端面近傍の」二記薄膜先導波路
の屈折率を変化させ、上記出射端面から出射する光ビー
ムを上記R?膜先光導波路面対して垂直方向に偏向ざゼ
ることを特徴とJる2次元光偏向器。(1) A thin-film optical waveguide formed on the substrate surface, a comb-shaped electrode that propagates a surface acoustic wave on the U-film optical waveguide, and a light beam directed above the surface at a Bragg angle with respect to the wavefront of the surface acoustic wave. A pre-introduction part for propagation into the thin film optical waveguide, an output end face of the thin film optical waveguide from which the light beam Bragg-diffracted by the surface acoustic wave is outputted to the outside, and an edge 1 of the thin film optical waveguide near the output end face. A heat sink is provided on the side of the optical waveguide so as to sandwich the thin film optical waveguide between the electric heating element and the electric heating element. By changing the black-diffracted light beam, the light beam is deflected within the plane of the thin-film guiding waveguide, and by changing the heat generation temperature of the electric heating element, the refractive index of the thin-film guiding waveguide near the output end face can be changed. A two-dimensional optical deflector, characterized in that the light beam emitted from the output end face is deflected in a direction perpendicular to the optical waveguide surface at the end of the R? film.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP803182A JPS58125025A (en) | 1982-01-21 | 1982-01-21 | Two-dimensional optical deflector |
US06/818,915 US4762383A (en) | 1981-12-04 | 1986-01-15 | Two dimensional light beam deflectors utilizing thermooptical effect and method of using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP803182A JPS58125025A (en) | 1982-01-21 | 1982-01-21 | Two-dimensional optical deflector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58125025A true JPS58125025A (en) | 1983-07-25 |
Family
ID=11681962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP803182A Pending JPS58125025A (en) | 1981-12-04 | 1982-01-21 | Two-dimensional optical deflector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58125025A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4755036A (en) * | 1985-02-07 | 1988-07-05 | Brother Kogyo Kabushiki Kaisha | Apparatus for deflecting light beam |
US4765703A (en) * | 1985-08-05 | 1988-08-23 | Brother Kogyo Kabushiki Kaisha | Optical deflector |
US4792201A (en) * | 1986-04-09 | 1988-12-20 | Brother Kogyo Kabushiki Kaisha | Optical deflector device |
US4816912A (en) * | 1985-06-08 | 1989-03-28 | Brother Kogyo Kabushiki Kaisha | Laser-beam printer with improved optical deflector |
US4841311A (en) * | 1986-09-20 | 1989-06-20 | Brother Kogyo Kabushiki Kaisha | Laser beam printer with compactly arranged photosensitive element, laser beam emitting element and reflective element |
US4855986A (en) * | 1985-02-16 | 1989-08-08 | Brother Kogyo Kabushiki Kaisha | Data storage and readout optical head using a single substrate having an electrooptic converging portion for adjustment of the light beam focal point |
-
1982
- 1982-01-21 JP JP803182A patent/JPS58125025A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4755036A (en) * | 1985-02-07 | 1988-07-05 | Brother Kogyo Kabushiki Kaisha | Apparatus for deflecting light beam |
US4855986A (en) * | 1985-02-16 | 1989-08-08 | Brother Kogyo Kabushiki Kaisha | Data storage and readout optical head using a single substrate having an electrooptic converging portion for adjustment of the light beam focal point |
US4816912A (en) * | 1985-06-08 | 1989-03-28 | Brother Kogyo Kabushiki Kaisha | Laser-beam printer with improved optical deflector |
US4765703A (en) * | 1985-08-05 | 1988-08-23 | Brother Kogyo Kabushiki Kaisha | Optical deflector |
US4792201A (en) * | 1986-04-09 | 1988-12-20 | Brother Kogyo Kabushiki Kaisha | Optical deflector device |
US4841311A (en) * | 1986-09-20 | 1989-06-20 | Brother Kogyo Kabushiki Kaisha | Laser beam printer with compactly arranged photosensitive element, laser beam emitting element and reflective element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4257016A (en) | Piezo-optic, total internal reflection modulator | |
JP2689178B2 (en) | Optical waveguide device | |
JP3640390B2 (en) | Light modulator | |
US4491384A (en) | Optical switch device | |
US5130843A (en) | Acousto-optical device using a superlattice as the interaction meduim | |
KR20200019243A (en) | Acousto-optic beam steering system | |
US4762383A (en) | Two dimensional light beam deflectors utilizing thermooptical effect and method of using same | |
JPS6290618A (en) | Light modulator | |
JPS58125025A (en) | Two-dimensional optical deflector | |
JPH0996842A (en) | Waveguide input/output device | |
US5138482A (en) | Light modular and recording device employing same | |
JPS58130327A (en) | Two-dimensional optical deflector | |
JP2603086B2 (en) | Optical waveguide device | |
JPS58125024A (en) | Two-dimensional optical deflector | |
JPS58125023A (en) | Two-dimensional optical deflector | |
JPS58137824A (en) | Two dimensional light deflector | |
JPH01107213A (en) | Optical waveguide element | |
JPS6362916B2 (en) | ||
JPS622293B2 (en) | ||
JPH05181173A (en) | Light deflector | |
JPH0363050B2 (en) | ||
JPH0949994A (en) | Wavelength filter | |
JP2625926B2 (en) | Acousto-optic element | |
JPS58115424A (en) | Optical deflection element | |
JPS6232458B2 (en) |