[go: up one dir, main page]

JPS58120510A - Method to precipitate pyrolytic carbon - Google Patents

Method to precipitate pyrolytic carbon

Info

Publication number
JPS58120510A
JPS58120510A JP57003759A JP375982A JPS58120510A JP S58120510 A JPS58120510 A JP S58120510A JP 57003759 A JP57003759 A JP 57003759A JP 375982 A JP375982 A JP 375982A JP S58120510 A JPS58120510 A JP S58120510A
Authority
JP
Japan
Prior art keywords
raw material
carbon
base material
gas
pyrolytic carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57003759A
Other languages
Japanese (ja)
Other versions
JPH0417887B2 (en
Inventor
Takane Miyazaki
宮崎 高嶺
Shigeru Tatsuno
辰野 茂
Kazushi Matsuura
松浦 一志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Toyo Carbon Co Ltd
Original Assignee
Toyo Carbon Co Ltd
Mitsubishi Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Carbon Co Ltd, Mitsubishi Chemical Industries Ltd filed Critical Toyo Carbon Co Ltd
Priority to JP57003759A priority Critical patent/JPS58120510A/en
Publication of JPS58120510A publication Critical patent/JPS58120510A/en
Publication of JPH0417887B2 publication Critical patent/JPH0417887B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は基材上に熱分解炭素を析出させる方法の改良
に係わるものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to an improved method for depositing pyrolytic carbon on a substrate.

近年、熱分解炭素は、従来の焼結型成形炭素材にな伊、
新しい特性をもつ素材として注目され、種々の製法や、
用途の開発研究が行なわれている。
In recent years, pyrolytic carbon has been used as a conventional sinter molded carbon material.
It has attracted attention as a material with new characteristics, and has been developed using various manufacturing methods.
Development research on its uses is being conducted.

中でも犬谷杉部氏による、熱分解炭素を析出させる原料
としてハロゲン化炭素水素を、使用は、!;00−10
00℃の温度において、実用的な速度で炭素を析出させ
ることができ、注目されている。
Among them, Mr. Inutani Sugibe uses halogenated carbon hydrogen as a raw material to precipitate pyrolytic carbon! ;00-10
It is attracting attention because carbon can be deposited at a practical rate at a temperature of 00°C.

一方用途については、炭素を析出させる基材としてセラ
ミックス、金属、炭材など、既製の適当な材料、形状の
ものを対象とし、これを炭素で表面被覆し、その材料の
機能を改変したり、析出層を単独でとり出して新しい材
料として利用するなど、単体又は複合体の形で各種用途
に供することが考えられ、一部実用化の段階に入ってい
る。例えば生体用材料、宇宙航空機用材料、機械用材料
、電極などに適用されている。
On the other hand, with regard to applications, we target ready-made materials and shapes such as ceramics, metals, and carbonaceous materials as base materials for carbon precipitation, and coat the surface of this material with carbon to modify the function of the material. It is thought that the precipitated layer can be taken out individually and used as a new material, and used for various purposes in the form of a single substance or a composite, and some of them are at the stage of practical application. For example, it is applied to biological materials, spacecraft materials, mechanical materials, electrodes, etc.

これらの用途において、炭素を析出させる基材の大きさ
は数咽程度の極めて小さいものから可成りの大きさのも
のにまでおよび、またその形状も単純なもの、複雑なも
のなど各種のものがある。
In these applications, the size of the base material on which carbon is deposited ranges from extremely small, on the order of a few digits, to quite large, and its shape also varies from simple to complex. be.

一方、熱分解炭素の析出に際しては、従来法によれば1
soo℃以上の高温を要し、前記の低温熱分解法であっ
てもSOO℃以上の高温が必要である。この反応の本質
として、炭素析出は気相で行なわれ、かつこれが高温下
処理と相゛まって、一度に多数の基材を同一反応器内で
処理したり、或いは複雑な形状llを処理することは、
特に製品の均一性を確保する上で、工業上極めて困難で
あった。
On the other hand, in the case of precipitation of pyrolytic carbon, according to the conventional method, 1
A high temperature of SOO° C. or higher is required, and even the above-mentioned low-temperature pyrolysis method requires a high temperature of SOO° C. or higher. The essence of this reaction is that carbon deposition takes place in the gas phase, and this combined with high-temperature treatment makes it possible to process many substrates at once in the same reactor, or to process complex shapes. The thing is,
In particular, it has been extremely difficult industrially to ensure product uniformity.

本発明は上記のような制約を解消し、1回に多数の基拐
を同一反応器内で処理し、品質の均一な製品を得る方法
を提供することを目的とするものであって、その要旨と
するところは熱分解炭素を析出させる原料ガスの流通下
に、基材を加熱して基材上に熱分解炭素を析出させる方
法において、反応器内に複数の基材を多段に支持し、原
料ガスを、枝管を介して上記多段の各段に同時に供給す
ることを特徴とする基材上に熱分hイ炭素を析出させる
方法に存する。
The present invention aims to solve the above-mentioned limitations and provide a method for processing a large number of substrates at once in the same reactor to obtain products of uniform quality. The gist is that in a method of heating a base material and depositing pyrolytic carbon on the base material while flowing a raw material gas for depositing pyrolytic carbon, a plurality of base materials are supported in multiple stages in a reactor. , a method for thermally depositing carbon on a substrate, characterized in that a raw material gas is simultaneously supplied to each of the above-mentioned multiple stages via branch pipes.

次に本発明方法を実施する装置を示す添付図面の説明と
併せて本発明を詳説する。
The present invention will now be explained in detail in conjunction with the accompanying drawings, which show an apparatus for carrying out the method of the present invention.

第1図は本発明方法を実施する装置の一例の縦断正面略
図であり、第2図はこの装置の反応器内に設置される基
材の架台の一例の斜視略図である。
FIG. 1 is a schematic longitudinal sectional front view of an example of an apparatus for implementing the method of the present invention, and FIG. 2 is a schematic perspective view of an example of a frame for a base material installed in a reactor of this apparatus.

図中、lは反応器本体、コは加熱用の誘導コイル、3は
基材の架台、りは架台3の支持台、Sは基材、6は炭素
を析出させる原料ガスの導入管、6′は原料ガスの枝管
、7はガス排出管、gは熱電対、ワは架台の支柱、IO
は架台3に設けられた貫通孔、llは枝管を通すだめの
切込みである。
In the figure, l is the reactor main body, C is an induction coil for heating, 3 is a mount for the base material, ri is a support for the mount 3, S is the base material, 6 is an introduction pipe for raw material gas to precipitate carbon, 6 '' is the source gas branch pipe, 7 is the gas discharge pipe, g is the thermocouple, wa is the support of the frame, IO
is a through hole provided in the frame 3, and ll is a cut through which a branch pipe is passed.

反応器本体lは図示していないが、冷却用ジャケットを
設け、反応処理中、水を通して冷却するのがよい。また
原料ガスの導入管6および枝管6′は単管でもよいが、
二重管とし、水のような冷媒を通すのがよい。
Although the reactor main body l is not shown, it is preferable to provide a cooling jacket and cool it by passing water through it during the reaction process. In addition, the raw material gas introduction pipe 6 and branch pipe 6' may be a single pipe, but
It is best to use double pipes to pass a refrigerant such as water.

架台3は第1図では図が複雑化するのを避けるため、そ
の支持手段を省略しであるが、例えば第2図に示すよう
に各段の架台3を複数本の支柱デで支持し、これを支持
台ダの上に着脱自在に設置し得るようにしておくと修理
の際など、反応器本体からの取出しが便利である。架台
3には多数の貫通孔を設はガスの流通をよくする。
The support means for the pedestal 3 is omitted in FIG. 1 to avoid complicating the drawing, but for example, as shown in FIG. If this is removably installed on the support stand, it will be convenient to take it out from the reactor main body during repairs. A large number of through holes are provided in the pedestal 3 to improve gas circulation.

架台3は図示のものでは3段としたが、その段数は所望
により増減する。そして各架台3上に基材Sをのせ、誘
導コイルコによって所望の温度に基材Sを加熱し、同時
に原料ガスをその寺入肯乙から送給する。原料ガスは枝
管6′によってそれぞれの架台上の基材に接触し、基材
上に炭素を析出する。基材はそれぞれの段について分岐
している枝管6′からの原料ガスに接するので、常に未
使用状態の原料ガスによ多処理され、従って何れの段の
架台上にある基材も常に一定の均一な炭素析出を受ける
Although the pedestal 3 shown in the figure has three stages, the number of stages can be increased or decreased as desired. Then, the base material S is placed on each mount 3, and the base material S is heated to a desired temperature by an induction coil coil, and at the same time, raw material gas is supplied from the temple entrance. The raw material gas comes into contact with the base material on each mount through the branch pipe 6', and deposits carbon on the base material. Since the base material is in contact with the raw material gas from the branch pipe 6' branching out for each stage, it is always treated with unused raw material gas, and therefore the base material on the frame of any stage is always kept at a constant level. undergoes uniform carbon deposition.

架台3の段数を増大させるときは、加熱用の大 誘導コイル設備がそれに対応して◆きくなるのざ で、不発明者等の一部が癩きに提案した方法(特願昭3
り−777993号、特開昭56−1.9270号)に
従って、加熱帯域を漸次移動させる方法、例えば誘導コ
イルを小さなものとし、これを適宜の機械的手段によっ
て原料ガスの流れ下手から上手に反応器本体に沿って漸
次移動させて加熱を行なうようにすると設備の巨大化が
回避できる。
When increasing the number of stages of the pedestal 3, the large induction coil equipment for heating becomes ◆ correspondingly.
777993, JP-A No. 56-1.9270), there is a method of gradually moving the heating zone, for example, by using a small induction coil and using appropriate mechanical means to effectively react from the downstream side of the raw material gas flow. If the heating is carried out by gradually moving it along the body of the vessel, it is possible to avoid making the equipment too large.

なお、加熱は誘導加熱方式に限られず、その他の加熱方
式を採用してもよい。
Note that heating is not limited to the induction heating method, and other heating methods may be employed.

本発明方法が適用される基材は、材質としては炭素材、
ガラス、セラミックス、各種単結晶体など、炭素析出温
度において、融解、分解することなく、原形を保持し、
所定の条件工匠所望の熱分解炭素を析出し得る固体材料
であれば如何なるものであってもよい。また基材の形状
は、ブロック状、パイプ状、棒状、平板状、粉状、粒状
、繊維状、フェルト状、その他複雑な形状のものなど、
いずれも可能である。
The base material to which the method of the present invention is applied is a carbon material,
Glass, ceramics, various single crystals, etc. retain their original shape without melting or decomposing at the carbon precipitation temperature.
Any solid material may be used as long as it can precipitate the desired pyrolytic carbon under predetermined conditions. The shape of the base material may be block, pipe, rod, plate, powder, granule, fiber, felt, or other complex shapes.
Both are possible.

本発明方法で採用される炭素析出条件、即ち原料ガスの
種類、濃度、流量、加熱の方式、析出温度、時間等は従
来知られている、いかなる条件でもよく、そのなかから
目的に応じ適宜選択される。゛ 一般的には原料ガスとしては、炭化水素、ハロゲン化炭
化水素、ハロゲン含有炭化水素が使用され、加熱温度と
してはSOO〜3000℃の温度が採られる。しかし反
応器材質の選択の容易さ、操作性、析出の容易さなどか
ら、前述のハロゲン化炭化水素を原料ガスとする低温熱
分解法が好適である。
The carbon deposition conditions employed in the method of the present invention, that is, the type of raw material gas, concentration, flow rate, heating method, deposition temperature, time, etc., may be any conventionally known conditions, and are appropriately selected from among them depending on the purpose. be done. ``Generally, hydrocarbons, halogenated hydrocarbons, and halogen-containing hydrocarbons are used as the raw material gas, and the heating temperature is SOO to 3000°C. However, the low-temperature pyrolysis method using the above-mentioned halogenated hydrocarbon as the raw material gas is preferred from the viewpoint of ease of selection of reactor material, operability, and ease of precipitation.

以上のようにして本発明方法によれば、工業的に極めて
有利に熱分解炭素を析出させることができる。即ち従来
法では、基材は外界から遮断された反応器内に設置され
、これに原料ガス企供給しつつ基材の全体を加熱するこ
とにより硫材−Fに熱分解炭素を析出させるのである。
As described above, according to the method of the present invention, pyrolytic carbon can be precipitated industrially very advantageously. In other words, in the conventional method, the base material is placed in a reactor isolated from the outside world, and pyrolytic carbon is precipitated on the sulfur material-F by heating the entire base material while supplying raw material gas to this reactor. .

この従来法によれば複数の基材に炭素を析出させる場合
、基材の数が多くなるにつれて反応器、ひいては加熱装
置が巨大化することを避けることができない。また処理
される基材の数が増大し、ひいては反応器が巨大化する
と、反応器内の局所々々における原料ガスの濃度、組成
および流速等が変化し、そのため析出する熱分解炭素の
質的相違および析出速度が異ってくることは避けられず
、同一条件で同時に多数の基材への析出を高温で実施す
ることは技術上、極めて困難である。
According to this conventional method, when carbon is deposited on a plurality of base materials, as the number of base materials increases, it is unavoidable that the reactor and eventually the heating device become large. In addition, as the number of substrates to be treated increases and the reactor becomes larger, the concentration, composition, flow rate, etc. of the raw material gas change locally within the reactor, resulting in changes in the quality of the pyrolytic carbon that precipitates. Differences and differences in deposition rate are inevitable, and it is technically extremely difficult to perform deposition on a large number of substrates at high temperatures at the same time under the same conditions.

これに対し、本発明方法では、基材は反応ガス流に沿っ
て多段に設置されるので、反応器の空間を有効に利用す
ることにより加熱装置を格別大きくする必要がない。
On the other hand, in the method of the present invention, the substrates are installed in multiple stages along the flow of the reactant gas, so the space in the reactor is effectively utilized, so there is no need to make the heating device particularly large.

また、単に基材を多段に設置し、その一端から原料ガス
を導入すると、ガスの下流域では熱分解すべき有効ガス
成分が減少し、上流、下流で均一な熱分解炭素を析出さ
せることができなくなる。本発明方法によれば、基材を
多段に設置しても、原料ガスは枝管を介して基材近くに
供給されるので、下流域においても未分解の原料ガスに
接し、均一な熱分解炭素を析出させることができる。
Furthermore, if the base material is simply installed in multiple stages and the raw material gas is introduced from one end, the effective gas component to be thermally decomposed decreases in the downstream region of the gas, making it possible to deposit uniform pyrolytic carbon in the upstream and downstream regions. become unable. According to the method of the present invention, even if the base material is installed in multiple stages, the raw material gas is supplied close to the base material through the branch pipes, so that even the downstream region comes into contact with undecomposed raw material gas, resulting in uniform thermal decomposition. Carbon can be precipitated.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

実施例1 添付図面に示す装置(架台の数3段)を用い、内径30
ran、深さl夕闇の黒鉛質るつぼを各段に3個づつ載
せシスー/、2−ジクロルエチレンを原料ガスとして使
用し、ガス流量7.117分、′ガス濃厚i 3 gi
 % (アルゴンガス中)、加熱ml#70θ゛Cで熱
分解による炭素析出を行なわせ、上記るつぼの架台に接
する外底面を除く全表面に厚さlθ0μの熱分解炭素を
析出させた。
Example 1 Using the device shown in the attached drawing (3 stages of mounts), the inner diameter was 30 mm.
3 graphite crucibles were placed on each stage at a depth of 1, 2-dichloroethylene was used as the raw material gas, the gas flow rate was 7.117 minutes, and the gas concentration was 3 gi.
% (in argon gas) and heating ml #70θ°C to deposit pyrolytic carbon to a thickness of 1θ0μ on the entire surface of the crucible except for the outer bottom surface in contact with the pedestal.

得られたるつぼの炭素析出状態は各段とも均′−ただし
、架台は7段で、各段への原料供給ノズルをそれぞれ流
量調節可能なものとし、また、加熱用の6導コイルは前
記特願昭3弘−/l’lタグ3け(特開昭!;A−A9
コio号)明細書に記載されているように、下方から上
方へ漸次移動させる方式のものを使用した。各架台には
それぞれ3個の黒鉛質るつぼ(内径30rran1深さ
/jm、)をのせ、実施例/と同様の条件で炭素を析出
させた。ただし、誘導コイルは1cm7時の速度でガス
上流側に移動させ、また、各段への原料供給は、その誘
導コイルの移動に従い、各段の原料供給ノズルを調節し
、誘導コイルにより加熱されている段へ順次流量’1.
/l/分で行なった。
The state of carbon deposition in the obtained crucible was uniform in each stage. However, the pedestal had seven stages, and the flow rate of the raw material supply nozzle to each stage could be adjusted, and the six-conductor heating coil had the above-mentioned characteristics. Gansho 3 Hiro-/l'l tag 3 (Tokukaisho!; A-A9
As described in the specification, a type of gradual movement from the bottom to the top was used. Three graphite crucibles (inner diameter 30 rran 1 depth/jm) were placed on each stand, and carbon was precipitated under the same conditions as in Example. However, the induction coil is moved to the gas upstream side at a speed of 1cm7, and the raw material supply to each stage is adjusted according to the movement of the induction coil, and the raw material is heated by the induction coil. Flow rate '1.
/l/min.

得られた製品の炭素析出状態を調べたが各段何れのもの
も均一であった。
The state of carbon precipitation in the obtained product was examined, and it was found to be uniform in each stage.

以上説明し、図面に示し、実施例に挙げたところは本発
明の理解を助けるだめの代表的例示に係わるものであり
、本発明はこれら例示に制限されるものでなく、発明の
要旨内でその他の変更、変形例をとることができるもの
である。
What has been explained above, shown in the drawings, and given in the examples are typical examples to help understand the present invention, and the present invention is not limited to these examples, but within the gist of the invention. Other changes and modifications may be made.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する装置の一例の縦断正面略
図、第2図は第12図の装置に設置される基材の架台の
一例の斜視略図である。 図中、lは反応器本体、コは誘導コイル、3は基材の架
台、左は基材、6は原料ガスの導入管、6′は原料ガス
の枝管、7はガス排出管である。 出願人 三菱化成工業株式会社 薫 1 図 第 2 図
FIG. 1 is a schematic longitudinal sectional front view of an example of an apparatus for carrying out the method of the present invention, and FIG. 2 is a schematic perspective view of an example of a frame for a base material installed in the apparatus of FIG. 12. In the figure, l is the reactor main body, C is the induction coil, 3 is the base material frame, left is the base material, 6 is the raw material gas introduction pipe, 6' is the raw material gas branch pipe, and 7 is the gas discharge pipe. . Applicant Kaoru Mitsubishi Chemical Industries, Ltd. 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 熱分解炭素を析出させる原料ガスの流通下に、基材を加
熱して基材上に熱分解炭素を析出させる方法において、
反応器内に複数の基材を多段に支持し、原料ガスを、枝
管を介して上記多段の各段に同時に供給することを特徴
とする基材上に熱分解炭素を析出させる方法
In a method of heating a base material to deposit pyrolytic carbon on the base material while flowing a raw material gas that deposits pyrolytic carbon,
A method for depositing pyrolytic carbon on a substrate, characterized by supporting a plurality of substrates in multiple stages in a reactor, and simultaneously supplying raw material gas to each of the multiple stages via branch pipes.
JP57003759A 1982-01-13 1982-01-13 Method to precipitate pyrolytic carbon Granted JPS58120510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57003759A JPS58120510A (en) 1982-01-13 1982-01-13 Method to precipitate pyrolytic carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57003759A JPS58120510A (en) 1982-01-13 1982-01-13 Method to precipitate pyrolytic carbon

Publications (2)

Publication Number Publication Date
JPS58120510A true JPS58120510A (en) 1983-07-18
JPH0417887B2 JPH0417887B2 (en) 1992-03-26

Family

ID=11566098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57003759A Granted JPS58120510A (en) 1982-01-13 1982-01-13 Method to precipitate pyrolytic carbon

Country Status (1)

Country Link
JP (1) JPS58120510A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090191717A1 (en) * 2008-01-24 2009-07-30 Ki-Hyun Kim Atomic layer deposition apparatus
US7585483B2 (en) 2003-11-21 2009-09-08 Statoil Asa Method for the production of particulate carbon products
WO2011100722A3 (en) * 2010-02-13 2011-12-29 Roy Eward Mcalister Induction for thermochemical processes, and associated systems and methods
US8318269B2 (en) 2009-02-17 2012-11-27 Mcalister Technologies, Llc Induction for thermochemical processes, and associated systems and methods
US9617983B2 (en) 2011-08-12 2017-04-11 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113754A (en) * 1974-07-09 1976-02-03 Toyama Chemical Co Ltd Shinkinaganma *44*3** okisoshikurohekishiru * fueniru ** ganma ketopuchirusan oyobi sonoenruinoseiho
JPS5143038A (en) * 1974-10-09 1976-04-13 Canon Kk Karaaterebijonkamera

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113754A (en) * 1974-07-09 1976-02-03 Toyama Chemical Co Ltd Shinkinaganma *44*3** okisoshikurohekishiru * fueniru ** ganma ketopuchirusan oyobi sonoenruinoseiho
JPS5143038A (en) * 1974-10-09 1976-04-13 Canon Kk Karaaterebijonkamera

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7585483B2 (en) 2003-11-21 2009-09-08 Statoil Asa Method for the production of particulate carbon products
US20090191717A1 (en) * 2008-01-24 2009-07-30 Ki-Hyun Kim Atomic layer deposition apparatus
US8394201B2 (en) * 2008-01-24 2013-03-12 Samsung Electronics Co., Ltd. Atomic layer deposition apparatus
US8546270B2 (en) * 2008-01-24 2013-10-01 Samsung Electronics Co., Ltd. Atomic layer deposition apparatus
US8318269B2 (en) 2009-02-17 2012-11-27 Mcalister Technologies, Llc Induction for thermochemical processes, and associated systems and methods
WO2011100722A3 (en) * 2010-02-13 2011-12-29 Roy Eward Mcalister Induction for thermochemical processes, and associated systems and methods
US9617983B2 (en) 2011-08-12 2017-04-11 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy

Also Published As

Publication number Publication date
JPH0417887B2 (en) 1992-03-26

Similar Documents

Publication Publication Date Title
US3805736A (en) Apparatus for diffusion limited mass transport
US3672948A (en) Method for diffusion limited mass transport
US3172774A (en) Method of forming composite graphite coated article
TW462993B (en) Reactor for growing epitaxial layers on a substrate
KR100625224B1 (en) Method for synthesizing highly aligned carbon nanotubes by organic liquid and apparatus for synthesizing them
US3603284A (en) Vapor deposition apparatus
US5145716A (en) Infrared window
US3160517A (en) Method of depositing metals and metallic compounds throughout the pores of a porous body
US9346681B2 (en) Method for synthesising diamond
US3771976A (en) Metal carbonitride-coated article and method of producing same
JPH0346437B2 (en)
US3654895A (en) Apparatus for forming a refractory coating on the inner periphery of a tubular object
US3138435A (en) Deposition apparatus and method for forming a pyrolytic graphite article
JPS58120510A (en) Method to precipitate pyrolytic carbon
US4891335A (en) Semiconductor substrate heater and reactor process and apparatus
US3206331A (en) Method for coating articles with pyrolitic graphite
US5441013A (en) Method for growing continuous diamond films
US3494743A (en) Vapor phase reactor for producing multicomponent compounds
US5383969A (en) Process and apparatus for supplying zinc vapor continuously to a chemical vapor deposition process from a continuous supply of solid zinc
JPS6256234B2 (en)
US4404177A (en) Method for producing graphite crystals
US5479874A (en) CVD diamond production using preheating
Ando et al. Enlargement of the diamond deposition area in combustion flame method by traversing substrate
US3450558A (en) Vapor plating beryllium
US3804664A (en) Process for chemical vapor deposition of zirconium carbide