JPS5811832A - Method and device for measuring original point of tensile stress - Google Patents
Method and device for measuring original point of tensile stressInfo
- Publication number
- JPS5811832A JPS5811832A JP11058381A JP11058381A JPS5811832A JP S5811832 A JPS5811832 A JP S5811832A JP 11058381 A JP11058381 A JP 11058381A JP 11058381 A JP11058381 A JP 11058381A JP S5811832 A JPS5811832 A JP S5811832A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- formwork
- stress
- specimen
- plant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 9
- 239000012778 molding material Substances 0.000 claims abstract description 12
- 238000009415 formwork Methods 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 4
- 238000011065 in-situ storage Methods 0.000 claims 2
- 239000011505 plaster Substances 0.000 abstract description 4
- 230000002787 reinforcement Effects 0.000 abstract description 4
- 238000000465 moulding Methods 0.000 abstract 2
- 238000005259 measurement Methods 0.000 description 14
- 241000196324 Embryophyta Species 0.000 description 11
- 239000002689 soil Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 210000004209 hair Anatomy 0.000 description 3
- 241000975357 Salangichthys microdon Species 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 238000012625 in-situ measurement Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、特に限定されるものではないが、例えば切取
りあるいは盛土斜面(のり面)に植生されている種々の
植物の根の張り強度を測定するための方法、及びそれに
用いる試験装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides, but is not particularly limited to, a method for measuring the tensile strength of roots of various plants grown on cut or embankment slopes, and This article relates to the test equipment used for this purpose.
切取りあるいは盛土斜面等においては、斜面が侵食を受
けないように保護するため、該斜面に植物被覆する工法
、所謂「植生工」が行われることが多い。植生工を施工
するに際しては、植物が根によって斜面に定着するか否
かが極めて重要であるから、土壌硬度の測定、土壌の化
□ 学的性質の測定、周囲環境調査等が行われ、施工後
は生立密度、草たけ、単位面積当たり重量、植生被覆率
等の測定が行われている。In order to protect the slope from being eroded by cutting or embanking, a method of covering the slope with plants, so-called "vegetation work" is often performed. When constructing vegetation works, it is extremely important whether or not the plants will take root on the slope, so measurements of soil hardness, soil chemical properties, and surrounding environment surveys are carried out before construction. After that, measurements such as vegetation density, grass height, weight per unit area, and vegetation coverage are carried out.
ところで、植生工による斜面補強の程度は、植物の根が
地中深くまで伸長して(・るかどうか、根の生長状態が
良好であるかどうか、ということに大きく左右される。By the way, the degree of slope reinforcement using vegetation works is largely influenced by whether the plant roots extend deep into the ground and whether the roots are in good growth condition.
つまり、地表の状態よりもむしろ地中の状態に大きく依
存するのである。しかしながら、植生工の施工後におけ
る従来の前記のような測定は、いずれも表面的な植物の
生長状態を知ることができるのみで、植生によって斜面
がどの程度補強されているかを数量的に把握することは
困難である。In other words, it depends more on the conditions underground than on the surface. However, the above-mentioned conventional measurements after the construction of vegetation works only provide a superficial indication of the growth state of the plants, and cannot be used to quantify the extent to which the slope has been reinforced by the vegetation. That is difficult.
また、南九州に広範囲に分布するシラス、あるいは花崗
岩の風化士である真砂等は、一般に特殊上と呼ばれ、従
来の土質工学では解明されていない部分が多々あり、そ
れらの引張り強度を試験する方法や装置は、未だ十分に
研究開発されていないのが現状である。In addition, Shirasu, which is widely distributed in southern Kyushu, and Masago, which is a weathering agent for granite, are generally called special tops, and there are many parts that have not been elucidated by conventional soil engineering, so it is necessary to test their tensile strength. At present, methods and devices have not yet been sufficiently researched and developed.
本発明は、上記のような従来技術の実情に鑑みなされた
もので、その目的とするところは、切取りあるいは盛土
斜面等に植生されている植物の根の生長状態を数量的に
測定し、それによって植生による斜面の補強程度を適確
に把握しうるような、或いはまたシラスや真砂等の不飽
和(地下水位より上位の部分)土の安定性を数量的に把
握しうるような引張応力の原位置測定方法及びその方法
を実施するために用いる装置を提供ずろことにある。The present invention has been made in view of the actual state of the prior art as described above, and its purpose is to quantitatively measure the growth state of roots of plants that have been cut or grown on embankment slopes, etc. It is possible to accurately grasp the degree of reinforcement of a slope by vegetation, or to quantitatively grasp the stability of unsaturated (above the groundwater level) soil such as whitebait and sand. It is an object of the present invention to provide an in-situ measurement method and an apparatus used to carry out the method.
以下、図面に基づき、供試体が板物の茎部もしくは根毛
部であるような、植生板引張応力試験の場合を例にとっ
て本発明について詳述する。Hereinafter, the present invention will be described in detail based on the drawings, taking as an example the case of a vegetation plate tensile stress test in which the specimen is a stem or root hair of a plate.
オ・1図は、本発明方法を実施する場合に用いる測定装
置の一例を示す概略図である。同図においては、各装置
は水平地盤上に設置されているが、実際には、供試体で
ある植物の生育地点は切取り、あるいは盛土斜面である
から、斜面に設置されることが多い。それ故、いかなる
斜面上でも設置できるような対策が施されている。FIG. 1 is a schematic diagram showing an example of a measuring device used when carrying out the method of the present invention. In the figure, each device is installed on horizontal ground, but in reality, the growing point of the plant being tested is a cut-out or embankment slope, so it is often installed on a slope. Therefore, measures have been taken to allow installation on any slope.
さて、本装置は、張力操作部1と応力・歪測定部2とか
らなる。張力操作部1は、複数本(この実施例では4本
)のアンカーロッド3によって反力がとられる基台4上
に、スクリュージヤツキ6を載置すると共に、該基台4
に小型のやぐら6を立設し、その頂点に滑車7aを設け
た構成である。アンカーロッド3は、地盤の比較的軟ら
かい地点では、先端にコーン8を取付け、打込みによっ
て固定され、また、比較的硬質の地盤においては、先端
にザウンディング用スクリューポイントを取付は回転に
より挿入固定される。基台4は、高さ調節機構9を操作
して極力水平となるように調節される。Now, this device consists of a tension operation section 1 and a stress/strain measurement section 2. The tension operation unit 1 includes a screw jack 6 placed on a base 4 on which a reaction force is taken by a plurality of (four in this embodiment) anchor rods 3, and a screw jack 6 placed on the base 4.
It has a structure in which a small tower 6 is erected at the top, and a pulley 7a is provided at the top of the tower. In relatively soft ground, the anchor rod 3 has a cone 8 attached to the tip and is fixed by driving, and in relatively hard ground, a screw point for sounding is attached to the tip and is inserted and fixed by rotation. Ru. The base 4 is adjusted to be as horizontal as possible by operating the height adjustment mechanism 9.
応力・歪測定部2は、3脚10と、その側部及び頂部に
数句けられた滑車7b、7cと、供試体となる植物の茎
部もしくは露出された根毛部をモールド材で固定する型
枠となる筒状モールド型枠11と、該モールド型枠、1
1に接続される応力検出器12と、複数本(この実施例
では2本)の鉄杭13によって水平に支持された固定バ
ー14上に取付けられた歪計15とを備えている。そし
て、応力検出器12と前記スクリュージヤツキ5との間
は、滑車7a、7b、7cを経由して張設されるワイヤ
ーロープ16で連結される。The stress/strain measurement unit 2 uses a molding material to fix a tripod 10, several pulleys 7b and 7c on the sides and top, and the stem or exposed root hairs of a plant to be tested. A cylindrical mold formwork 11 serving as a formwork, and the mold formwork 1
1, and a strain gauge 15 mounted on a fixed bar 14 horizontally supported by a plurality of (two in this embodiment) iron piles 13. The stress detector 12 and the screw jack 5 are connected by a wire rope 16 stretched via pulleys 7a, 7b, and 7c.
鉄杭13は、供試体の挙動による影響圏外の地点に打込
まれ、等送出形鋼からなる固定バー14は、高さ調節機
構17によって水平を保つよう調節される。ダイヤルゲ
ージのような歪計15はマグネットベース18に取付げ
られ、該マグネットベース18は固定バー14上にて磁
気的吸引力によって保持される。応力検出器12は、下
枝20がモールド型枠11に接続されるような才1の枠
21と、該矛1の枠21の上枝22を貫通して側柱23
が摺動自在となっている矛2の枠24と、171の枠2
1の上枝22と矛2の枠24の下枝26との間に取付け
られたプルービングリング26とからなり、第2の枠2
4の上枝27に前記ワイヤーローブ16の一端が取付く
ようになっている。つまり、この応力検出器12は、プ
ルービングリング26を用い、引張応力を圧縮応力に変
換して検出するよう構成されているのである。従って、
状況に応じてプルービングリングを交換することによっ
て、種々の強度および精度に対応することができる。The iron pile 13 is driven into a point outside the area of influence due to the behavior of the specimen, and the fixed bar 14 made of a constant-feed section steel is adjusted by a height adjustment mechanism 17 so as to remain horizontal. A strain gauge 15, such as a dial gauge, is attached to a magnet base 18, which is held on the fixed bar 14 by magnetic attraction. The stress detector 12 passes through the frame 21 of the first frame 21 such that the lower branch 20 is connected to the mold frame 11 and the upper branch 22 of the frame 21 of the spear 1 and connects to the side column 23.
The frame 24 of spear 2, which is slidable, and the frame 2 of 171
The second frame 2 consists of a proving ring 26 attached between the upper branch 22 of the spear 1 and the lower branch 26 of the frame 24 of the spear 2.
One end of the wire lobe 16 is attached to the upper branch 27 of 4. In other words, the stress detector 12 is configured to use the proving ring 26 to convert tensile stress into compressive stress for detection. Therefore,
By replacing the proving ring according to the situation, various strengths and precisions can be accommodated.
次に、筒状のモールド型枠11は、上端に7ランジ30
が螺着する」二部円筒31と、下端にカッティングエツ
ジ32を有する下部円筒33との2段構造であって、両
者は、その衝合端において遊嵌し、かつ、上部円筒31
の下端にはその直径方向にモールド拐保持棒34が挿通
されるようになっている。フランジ30にはボルト挿通
孔35が設けられ、仮想線で示されるように才1の枠2
1の下枝20とボルト・ナツトにより固着されることと
なる。ここで、モールド材保持棒34の機能は、モール
ド型枠11の上部円筒31からのモールド材の脱落を防
止することにある。すなわち、モールド型枠内にモール
ド材を流し込み、硬化後、このモールドを引抜く訳であ
るが、その際、根の引張応力に対処するものはモールド
型枠内面とモールド材との摩擦力である。しかし、この
摩擦力のみでは根の張力に抗しきれない場合もありうる
から、モールド型枠とモールド材とをより一体化し、抵
抗力を増大するため数句げられている。Next, the cylindrical mold formwork 11 has seven flange 30 at the upper end.
It has a two-stage structure consisting of a two-part cylinder 31 that is screwed into the cylinder 31 and a lower cylinder 33 that has a cutting edge 32 at the lower end, and both are loosely fitted at their abutting ends, and the upper cylinder 31
A mold retaining rod 34 is inserted through the lower end of the mold retaining rod 34 in the diametrical direction thereof. A bolt insertion hole 35 is provided in the flange 30, and as shown by the phantom line, the flange 30 is provided with a bolt insertion hole 35.
It will be fixed to the lower branch 20 of No. 1 with bolts and nuts. Here, the function of the mold material holding rod 34 is to prevent the mold material from falling off from the upper cylinder 31 of the mold frame 11. In other words, the molding material is poured into the molding material, and after hardening, the mold is pulled out. At this time, the tensile stress of the roots is counteracted by the frictional force between the inner surface of the molding material and the molding material. . However, since this frictional force alone may not be enough to withstand the tension of the roots, several efforts have been made to integrate the mold formwork and molding material to increase the resistance force.
測定方法は、次の通りである。まず、供試体となる植物
を選定し、所定の形状に整える。例えば、第3図にも示
されているように、地表部40よりも上部数園の茎部4
1を残して他は全て刈り取る。そして、植物をモールド
型枠11のほぼ中央に位置するように、該モールド型枠
11をその上部円筒31と下部円筒33との境界付近ま
で打込む。その後、上部円筒31内にモールド材42を
流し込み、硬化させる。モールド材42としては石膏が
好適である。事前の試験において、上記モールド型枠中
に石膏を流し込み、1時間放置し硬化させた後での強度
は、引張破壊させたところ200 K9以上を示し、本
試験において充分な強度であることが確認されている。The measurement method is as follows. First, a plant to be tested is selected and arranged into a predetermined shape. For example, as shown in FIG.
Reap all but 1. Then, the mold frame 11 is driven to the vicinity of the boundary between the upper cylinder 31 and the lower cylinder 33 so that the plant is positioned approximately in the center of the mold frame 11. Thereafter, a molding material 42 is poured into the upper cylinder 31 and hardened. As the molding material 42, gypsum is suitable. In a preliminary test, the strength after pouring plaster into the mold and allowing it to harden for one hour was 200K9 or higher when it was tensile broken, confirming that it had sufficient strength in this test. has been done.
さて、このように供試体を整えた後、才1図に示すよう
な装置構成で測定が行われる。まず、スクリュージヤツ
キ5を上限近くまで伸しておき、徐々に降下させること
により張力をおこす。Now, after preparing the specimen in this way, measurements are performed using the apparatus configuration shown in Figure 1. First, the screw jack 5 is extended to near its upper limit and then gradually lowered to create tension.
そして、予め定めたスケジュールに従い、応力と歪(モ
ールド型枠の引上げ量)の値を読み取っておけばよい。Then, the values of stress and strain (the amount of lifting of the mold formwork) may be read in accordance with a predetermined schedule.
測定結果の一例を矛4図に示す。このグラフは、ある地
点でのヒロハノコノカグザについての測定結果であり、
同図において、曲線Aは前記のような地表部での測定結
果であり、曲線B、Cはそれぞれ池表から下部10Cr
n及び20CrrLまで掘削し、根毛部を露出させ、そ
の箇所で石膏で固めて測定した結果である。なお、本実
施例に示されているようにモールド型枠11を2段構造
とし、下部円筒3.3が地中に打込まれ、上部円筒31
に石膏を充填し、かつその上部円筒31を引抜くよう、
に構成すると、次のような利点が生じ、好ましい結果が
得られる。まず、根は深度方向のみならず水平方向にも
相当の広がりがあり、これをそのまま試験に供すれば応
力、(9)−
設備ともに非常に大きなものとなって扱いにくいが、上
記実施例のようにするとその点、改善されること、また
、下部円筒33によって供試体近傍の地盤と周囲地盤と
が絶縁され、剪断面の断面積が一定に保たれるため、再
現性のよいデータをとることができ、他の供試体との比
較が容易になること、更に、もし上部円筒31と下部円
筒33とが一体構造であると、打込み部分のモールド枠
に土の周辺摩擦が作用し、正確な根の張力を測定できな
くなってしまうが、前記のような2段分離構造としたか
ら、そのような問題は生じないこと、等である。An example of the measurement results is shown in Figure 4. This graph shows the measurement results for Hirohanokonokaguza at a certain point.
In the same figure, curve A is the measurement result at the ground surface as described above, and curves B and C are respectively 10Cr below the pond surface.
These are the results of measurements taken by excavating up to n and 20 CrrL, exposing the root hairs, and hardening them with plaster. Note that, as shown in this embodiment, the mold formwork 11 has a two-stage structure, with the lower cylinder 3.3 being driven into the ground, and the upper cylinder 3.3 being driven into the ground.
to fill with plaster and pull out the upper cylinder 31,
If configured as follows, the following advantages occur and favorable results can be obtained. First of all, roots have a considerable spread not only in the depth direction but also in the horizontal direction, and if they were to be subjected to a test as they were, both stress and (9) - equipment would be extremely large and difficult to handle. This will improve this point, and the lower cylinder 33 will insulate the ground near the specimen from the surrounding ground, keeping the cross-sectional area of the shear plane constant, so data with good reproducibility can be obtained. In addition, if the upper cylinder 31 and lower cylinder 33 are of an integral structure, the surrounding friction of the soil will act on the mold frame at the implanted part, making it easier to compare with other specimens. However, since the two-stage separated structure as described above is used, such a problem does not occur.
以上、植生板の引張応力測定の場合を例にとって説明し
たが、前述の如く、本発明は南九州に広範囲に分布する
シラス、あるいは花崗岩の風化十である真砂等の不飽和
(地下水位より上位の部分)土に対する引張応力測定に
も適用できる。真砂土は一般に引張り強さが小さいが、
極端に風化したものはわずかながら引張り強さをもつも
のがある。引張り強さのわずかの差に、00)、
よって土の安定性が左右されるので、引張り強さを調べ
ることは意義のあることである。前記実施例として示し
た方法及び装置は、そのまま、これらの特殊上の引張り
強度の測定に適用することができる。The above explanation has been given using the case of tensile stress measurement of vegetation plates as an example. ) Can also be applied to measuring tensile stress on soil. Masago soil generally has low tensile strength, but
Some materials that are extremely weathered have a small amount of tensile strength. It is significant to investigate the tensile strength because the stability of the soil is determined by slight differences in the tensile strength. The method and apparatus shown in the above embodiments can be applied as they are to the measurement of these special tensile strengths.
本発明は上記のように構成されているから、切取りある
いは盛土斜面等に植生されている植物の根の生長状態を
数量的に測定することができ、それ故、その測定結果か
ら植生による斜面の補強程度を適確に杷握することがで
き、斜面強度の評価や植生工設計施工のための基礎デー
タの入手等の点において、従来技術では得られない確度
の高い情報を得ることができるし、また、シラスや真砂
など一般に特殊上と呼ばれ従来の土質工学では解明され
にくかった部分についても再現性の高い数値データを得
ることができ、これら特殊上の引張り強度測定を数多〈
実施することにより土質工学の新たな分野の開拓にもつ
ながるなど、数多くのすぐれた効果を有するものである
。Since the present invention is configured as described above, it is possible to quantitatively measure the growth state of roots of plants grown on cut or embankment slopes. The degree of reinforcement can be accurately determined, and highly accurate information that cannot be obtained with conventional technology can be obtained in terms of evaluating slope strength and obtaining basic data for designing and constructing vegetation works. In addition, it is possible to obtain numerical data with high reproducibility for areas that are generally called special areas such as whitebait and masago that are difficult to understand with conventional soil engineering, and we have carried out numerous tensile strength measurements on these special areas.
If implemented, it will have many excellent effects, such as leading to the development of new fields of soil engineering.
2・1図は本発明に係る装置の一実施例を示す概略図、
オ・2図はそのモールド型枠部分の分解斜視図、才3図
は本発明方法の説明図、3・4図は測定結果の一例を示
すグラフである。
1・・・張力操作部、2・・応力検出部、3・・アンカ
ーロッド、4・・・基台、5・・・スクリュージヤツキ
、11・・・モールド型枠、12・・・応力検出部、1
5・・・歪計。
特許出願人 株式会社応用地質調査事務所代 理
人 尾 股 行 雄同
茂 見 穣同
荒 木 友 之 助瀉3図
第4図
デー
肴
!
(kg) オイつイ1=す〕≧1872.1 is a schematic diagram showing an embodiment of the device according to the present invention,
Figures 3 and 4 are graphs showing examples of measurement results. DESCRIPTION OF SYMBOLS 1... Tension operation part, 2... Stress detection part, 3... Anchor rod, 4... Base, 5... Screw jack, 11... Mold formwork, 12... Stress detection Part 1
5... Strain meter. Patent Applicant: Yudo Omata, Representative, Applied Geological Survey Office, Co., Ltd.
Jodo Shigemi
Araki Tomoyuki Suke 3 Figure 4 Day appetizer! (kg) Weight 1=Su〕≧187
Claims (1)
モールド型枠を配置し、該モールド型枠にモールド材を
流し込み硬化させて前記供試体に固定した後、モールド
部をジヤツキにより引上げ、そのときの荷重と引上げ量
を測定して供試体の引張強度を求めるようにしたことを
特徴とする引張応力原位置測定方法。 、2. 複数本のアンカーロッドによって反力がとら
れる基台上に載置されるジヤツキと、供試体をモールド
材で固定する型枠となる筒状モールド型枠と、該モール
ド型枠に接続される応力検出器と、該応力検出器と前記
ジヤツキとを繋ぐワイヤーローブと、複数本の杭によっ
て位置決めされた固定バー上に取付けられて前記モール
ド型枠の引上げ量を測定する歪計とを備えている引張応
力原位置測定装置。 3、 筒状のモールド型枠は、上端にフランジを有する
上部円筒と下端にカッティングエツジを有する下部円筒
との2段構造であって、上部円筒と下部円筒とはその衝
合端で遊嵌し、かつ上部円筒の下端にはその直径方向に
モールド材保持棒が挿通されるようになっている特許請
求の範囲オ・2項記載の装置。[Claims] 1. After arranging a cylindrical mold frame so that the center of the specimen is located approximately at the center, pouring a molding material into the mold frame and hardening it and fixing it to the specimen, A tensile stress in-situ measuring method characterized in that the tensile strength of the specimen is determined by pulling up the mold part with a jack and measuring the load and amount of lifting at that time. , 2. A jack placed on a base whose reaction force is taken by multiple anchor rods, a cylindrical mold formwork that serves as a formwork for fixing the specimen with mold material, and a stress connected to the mold formwork. It includes a detector, a wire lobe that connects the stress detector and the jack, and a strain meter that is mounted on a fixed bar positioned by a plurality of stakes and measures the amount of lift of the mold formwork. Tensile stress in-situ measuring device. 3. The cylindrical mold formwork has a two-stage structure of an upper cylinder having a flange at the upper end and a lower cylinder having a cutting edge at the lower end, and the upper cylinder and the lower cylinder are loosely fitted at their abutting ends. , and a molding material holding rod is inserted through the lower end of the upper cylinder in the diametrical direction thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11058381A JPS5838741B2 (en) | 1981-07-15 | 1981-07-15 | In-situ measurement method and device for tensile stress |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11058381A JPS5838741B2 (en) | 1981-07-15 | 1981-07-15 | In-situ measurement method and device for tensile stress |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5811832A true JPS5811832A (en) | 1983-01-22 |
JPS5838741B2 JPS5838741B2 (en) | 1983-08-25 |
Family
ID=14539519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11058381A Expired JPS5838741B2 (en) | 1981-07-15 | 1981-07-15 | In-situ measurement method and device for tensile stress |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5838741B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007102719A (en) * | 2005-10-07 | 2007-04-19 | Toyota Motor Corp | Contact point detection device and robot using the same |
US8710823B2 (en) | 2010-10-19 | 2014-04-29 | Panasonic Corporation | Contact sensor, driver device, and care bed |
JP2014095645A (en) * | 2012-11-12 | 2014-05-22 | Univ Of Tokushima | Pull-out testing device |
CN112229714A (en) * | 2020-09-24 | 2021-01-15 | 利辛县鸿瑞祥织造有限公司 | Cotton thread detection device |
-
1981
- 1981-07-15 JP JP11058381A patent/JPS5838741B2/en not_active Expired
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007102719A (en) * | 2005-10-07 | 2007-04-19 | Toyota Motor Corp | Contact point detection device and robot using the same |
US8710823B2 (en) | 2010-10-19 | 2014-04-29 | Panasonic Corporation | Contact sensor, driver device, and care bed |
JP2014095645A (en) * | 2012-11-12 | 2014-05-22 | Univ Of Tokushima | Pull-out testing device |
CN112229714A (en) * | 2020-09-24 | 2021-01-15 | 利辛县鸿瑞祥织造有限公司 | Cotton thread detection device |
CN112229714B (en) * | 2020-09-24 | 2022-08-09 | 利辛县鸿瑞祥织造有限公司 | Cotton thread detection device |
Also Published As
Publication number | Publication date |
---|---|
JPS5838741B2 (en) | 1983-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3946601A (en) | Method of load testing foundations | |
CN108643247B (en) | Testing device and testing method for soil body reinforcement model at bottom of rectangular foundation pit in soft soil area | |
CN103983490B (en) | A kind of disturbed belt preparation method of sample reflecting initial stress state | |
JP3871087B2 (en) | In-situ rock mass shear strength test apparatus and method | |
CN103645061A (en) | Lattice anchoring technology large-scale physical model test method | |
CN111537217A (en) | Model test system and method for gravity type anchorage stability research under seismic load | |
CN111021440A (en) | CPT integrated geotechnical packaging granular pile indoor model test device and method | |
Su | Laboratory pull-out testing study on soil nails in compacted completely decomposed granite fill | |
CN110374094A (en) | Construction method of mechanical pore-forming cast-in-place pile | |
CN212865883U (en) | Deformation monitoring device of accurate foundation ditch | |
JPS5811832A (en) | Method and device for measuring original point of tensile stress | |
CN203295981U (en) | Support preloading device | |
CN114577635A (en) | A kind of on-site shear test device and test method of surface rock mass | |
CN117552483B (en) | Test method for foundation reinforcement influence range of dynamic compaction treatment | |
CN114575393A (en) | Test device and method for simulating hammering pile sinking-water immersion static load | |
CN106245689B (en) | A kind of monitoring method of mixing material support stake axle power | |
McRostie et al. | The performance of tied-back sheet piling in clay | |
ISSMFE Subcommittee on Field and Laboratory Testing | Axial pile loading test—Part 1: Static loading | |
CN210636477U (en) | Pressure type anchor rod bearing characteristic model test device under action of horizontal load | |
JP2837510B2 (en) | Simple rock shear test equipment | |
Plant | ANCHOR INCLINATION-ITS EFFECT ON THE PERFORMANCE OF A LABORATORY SCALE TIED-BACK RETAINING WALL. | |
Zhou et al. | Compressive and uplift static load tests of shaft and base grouted concrete bored piles | |
CN220394674U (en) | Anchor rope pulling force monitoring devices | |
Mahmood et al. | A Comprehensive Study of Franki pile with the other pile models Embedded within cohesionless soils | |
CN221778523U (en) | Pile foundation vertical static load test device |