[go: up one dir, main page]

JPS58117318A - Suction device for engine - Google Patents

Suction device for engine

Info

Publication number
JPS58117318A
JPS58117318A JP57000761A JP76182A JPS58117318A JP S58117318 A JPS58117318 A JP S58117318A JP 57000761 A JP57000761 A JP 57000761A JP 76182 A JP76182 A JP 76182A JP S58117318 A JPS58117318 A JP S58117318A
Authority
JP
Japan
Prior art keywords
intake
suction
valve
engine
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57000761A
Other languages
Japanese (ja)
Inventor
Haruo Okimoto
沖本 晴男
Ikuo Matsuda
松田 郁夫
Nobuhiro Hayama
羽山 信宏
Masashige Kaneshiro
金城 正茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Toyo Kogyo Co Ltd filed Critical Mazda Motor Corp
Priority to JP57000761A priority Critical patent/JPS58117318A/en
Publication of JPS58117318A publication Critical patent/JPS58117318A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/18DOHC [Double overhead camshaft]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

PURPOSE:To prevent a crosscurrent to atmospheric air by providing the downstream side of the control valve of a suction reflux path with an expansion chamber and temporarily collecting a suction flowed back from a cylinder into the expansion chamber. CONSTITUTION:When the engine is operated under high load, the cylinder C is supplied with suction air through a suction path 10 and a suction port 1 because an opening and closing valve 15 is closed. When the engine is operated under low load, the opening and clsoing valve 15 is opened, and a cam 6 opens and closes a suction reflux valve 9 while delaying only by predetermined phase from a suction valve 7. The suction reflux valve 9 is opened for a fixed time even in the compression process of the engine E. One part of suction air in the cylinder C is flowed back into the suction path 10 through a suction reflux port 3 and the suction reflux path 14 at the same time. Most of suction air flowed back are introduced into the expansion chamber 16, and expanded temporarily and collected, thus resulting in no crosscurrent to atmospheric air.

Description

【発明の詳細な説明】 本発明は、エンジンの吸気装置に関する。[Detailed description of the invention] The present invention relates to an engine intake device.

オツトーサイクル機関においては、気前内で発生する熱
エネルギの全てを軸出力として取出すことはできず、そ
の和尚部分が熱損失、機械損失等の各種損失として失わ
れ、燃費改善の障害となっている。この機械損失の7つ
として吸・排気行程でのポンプ損失があり、このポンプ
損失は、高負荷時よりも低負荷時に大きく、このため特
に中、低負荷での使用頻度の高い自動車用ポンプ/では
、燃費向上が妨げられている。一方、同一車輛に行程容
積の小さい工/ソ/を塔載すると燃費がよくなることが
知られているが、これは、エンジンが相対的に高負荷運
転を行なうことになるため、ポンプ損失が減少すること
が大きな理由の一つであると考えられている。従って、
エンジンに、低負荷時のみに小行程容積のエンジンと同
じ働きをさせれば、エンジンの高出力時の要求特性を損
わずに、低負荷時のポンプ損失を低減し、燃費を改善す
ることができると考えられる。
In an Otsuto cycle engine, it is not possible to extract all of the heat energy generated in the engine as shaft output, and a portion of it is lost as various losses such as heat loss and mechanical loss, which becomes an obstacle to improving fuel efficiency. ing. One of these mechanical losses is the pump loss during the suction and exhaust strokes, and this pump loss is larger at low loads than at high loads. This is hindering improvements in fuel efficiency. On the other hand, it is known that fuel efficiency improves when a pump with a small stroke volume is mounted on the same vehicle, but this means that the engine operates at a relatively high load, which reduces pump loss. This is thought to be one of the major reasons. Therefore,
If the engine performs the same function as a small stroke volume engine only at low loads, pump loss at low loads can be reduced and fuel efficiency can be improved without compromising the engine's required characteristics at high output. It is thought that it can be done.

つまり、低負荷時のポンプ損失を減少するには、低負荷
時において、吸入行程での小絞弁開厩に基ずく吸入負圧
増大による絞り損失、および圧縮行程での圧縮損失を低
減すればよい。このだめの手段としては、例えば特開昭
、!;2−/39g/9号に記載されているように、通
常の吸気通路に加えて圧縮行程時に吸入空気の一部を漏
出させる補助吸気通路を設け、この補助吸気通路に補助
吸気弁を配し、この補助吸気弁の閉時期を通常の吸気弁
の閉時期より遅れるように設定し、かつこの補助吸気弁
をエンジンの低負荷時すなわち部分負荷時のみ開閉作動
させるようにした装置が知られている。すなわち、エン
ジンの吸気装置を、エンジンの吸気行程時に大気からの
吸入空気を気筒内に供給する吸気通路と、該吸気通路の
途中と上記気筒とを連通して、エンジンの圧縮行程時に
上記気筒内の吸入空気の一部を上記吸気通路に還流する
吸気還流通路と、この吸気還流通路を開閉する制御弁と
で構成し、該制御弁の開閉を制御して吸気還流量を調整
することによって吸入空気の充填量を制御するようにし
たものである。
In other words, in order to reduce the pump loss at low loads, it is necessary to reduce the throttling loss due to the increase in suction negative pressure due to the opening of the small throttle valve during the suction stroke and the compression loss during the compression stroke. good. As a means of this failure, for example, Tokukaisho! As described in No. 2-/39g/9, in addition to the normal intake passage, an auxiliary intake passage is provided to allow part of the intake air to leak during the compression stroke, and an auxiliary intake valve is arranged in this auxiliary intake passage. However, there is a known device in which the closing timing of this auxiliary intake valve is set to be later than the closing timing of the normal intake valve, and the auxiliary intake valve is opened and closed only when the engine is at low load, that is, at partial load. ing. That is, the intake device of the engine is connected to an intake passage that supplies intake air from the atmosphere into the cylinder during the intake stroke of the engine, and the middle of the intake passage communicates with the cylinder, so that the intake air inside the cylinder during the compression stroke of the engine is connected. The intake air recirculation passage is composed of an intake recirculation passage that recirculates a part of the intake air to the intake passage, and a control valve that opens and closes this intake air recirculation passage. The amount of air filling is controlled.

このエンジンの吸気装置は、低負荷時のポンプ損失が減
少され、この点からは燃費が大きく向上するものと考え
られるが、−男気筒内に一旦供給され、この中で熱膨張
した吸入空気の一部が、圧縮行程時に気筒内から排出さ
れる際K、大気に燃料とともに逆流してしまうという特
有の問題があり、この点で吸気騒音の増大および燃料放
出による火災の危険性が生ずるおそれがあった。
The intake system of this engine reduces pump loss at low loads, and from this point of view it is thought that fuel efficiency will be greatly improved. There is a particular problem in that some of the K flows back into the atmosphere together with the fuel when it is exhausted from the cylinder during the compression stroke, and this can increase intake noise and pose a risk of fire due to fuel release. there were.

そこで本発明は、上記したタイプのポンプ損失が低減さ
れたエンジンの吸気装置において、圧縮行程時の気筒内
からの還流吸気を大気に逆流させることのない工/ジ/
の吸気装置を提供することを目的とするものである。
SUMMARY OF THE INVENTION Therefore, the present invention provides an engine intake system with reduced pumping loss of the type described above, which has a structure that prevents recirculated intake air from inside the cylinder during the compression stroke from flowing back into the atmosphere.
The purpose of this invention is to provide an intake device for the following.

本発明は、エンジンの吸気行程時に大気からの吸入空気
を気筒内に供給する吸気通路と、該吸気通路の途中と上
記気筒とを連通して、エンジンの圧縮行程時に前記気筒
内の吸入空気の一部を上記吸気通路に還流する吸気還流
通路と、該吸気還流通路を開閉する制御弁とを有し、該
制御弁の開閉を制御して吸気還流量を調整することによ
って吸入空気の充填量を制御するようにしたエンジンの
吸気装置において、上記吸気還流通路の上記制御弁の還
流方向下流側に拡張室を介設したことを特徴とするもの
である。
The present invention provides an intake passage that supplies intake air from the atmosphere into the cylinder during the intake stroke of the engine, and a midway of the intake passage and the cylinder, so that the intake air in the cylinder is supplied during the compression stroke of the engine. It has an intake air recirculation passage that partially returns to the intake passage, and a control valve that opens and closes the intake air recirculation passage, and controls the opening and closing of the control valve to adjust the amount of intake air recirculation. The intake system for an engine is characterized in that an expansion chamber is provided in the intake air recirculation passage downstream of the control valve in the recirculation direction.

本発明のエンジンの吸気装置によれば、吸気還流通路の
E記制御弁の下流側に拡張室を介設したので、気筒内か
ら還流される吸気をこの拡張室内に一時的に溜めること
によって、大気への逆流を防止し、これによって吸気が
大気に放出されることによって生ずる吸気騒音の増大お
よび火災の危険性を実質的に無くすことができる。
According to the engine intake system of the present invention, since the expansion chamber is provided on the downstream side of the control valve E in the intake air recirculation passage, the intake air recirculated from inside the cylinder is temporarily stored in this expansion chamber, thereby Backflow to the atmosphere is prevented, thereby substantially eliminating the increase in intake noise and the risk of fire caused by venting intake air to the atmosphere.

以下添付図面を参照しつつ本発明の好ましい実施例によ
るエンジンの吸気装置について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An engine intake system according to a preferred embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図は、本発明の実施例によるエンジンの吸気装置を
示す概略図であシ、この図において符号Eはエンジンを
示し、このエンジンEは、気筒としてのシリンダCおよ
びとのシリンダC内に嵌装されたピストンPを有してい
る。このシリンダCの上部には、通常の吸気ポート1お
よび排気ポート2の外、第3のポートである吸気還流ポ
ート3が設けられている。吸気ポート1、排気ポート2
および吸気還流ポート3には、それぞれ第1、第コおよ
び第3カム4.5および6によって開閉が制御すれる吸
気バルブ7、排気バルブ8および吸気還流バルブ9が配
されている。
FIG. 1 is a schematic diagram showing an intake system of an engine according to an embodiment of the present invention. In this figure, the symbol E designates an engine, and this engine E has a cylinder C as a cylinder and a cylinder C as a cylinder. It has a fitted piston P. In addition to the normal intake port 1 and exhaust port 2, an intake recirculation port 3, which is a third port, is provided at the top of the cylinder C. Intake port 1, exhaust port 2
In the intake recirculation port 3, an intake valve 7, an exhaust valve 8, and an intake recirculation valve 9 whose opening and closing are controlled by first, third cams 4.5 and 6, respectively, are arranged.

吸気?−ト1には、吸気通路10が接続されておシ、排
気ポート2には排気通路11が接続されている。吸気通
路10には、キャブレータ12が設けられておシ、この
キャブレータ12の下流側には、通常運転時に全開し、
始動及び減速時に吸気通路10を閉じる弁13が配され
ている。吸気通路10の弁13の下流側と上記吸気還流
ポート3とは、シリンダCからの吸入空気を圧縮行程で
吸気還流ポート3を介して吸気通路10に還流するだめ
の吸気還流通路14によって連通されている。この吸気
還流通路14には、アクセルペダル(図示せず)と連動
する開閉弁15が介装されている。この開閉弁15は、
全負荷時に全閉し、低負荷時にその負荷に応じた開度で
開くように構成されている。吸気還流通路14の開閉弁
15の吸気還流方向下流側には、この吸気還流通路14
を還流してくる吸気を溜めるための拡張室16が設けら
れている。なお、この拡張室16と吸気通路10とを結
ぶ吸気還流通路部分14aは、他に比べて多少細くし若
干絞り効果を持たせることが望ましい。
Inhalation? - An intake passage 10 is connected to the port 1, and an exhaust passage 11 is connected to the exhaust port 2. A carburetor 12 is provided in the intake passage 10. On the downstream side of the carburetor 12, there is a carburetor 12 that is fully open during normal operation.
A valve 13 is provided that closes the intake passage 10 during startup and deceleration. The downstream side of the valve 13 of the intake passage 10 and the intake recirculation port 3 are communicated by an intake recirculation passage 14 that recirculates the intake air from the cylinder C to the intake passage 10 via the intake recirculation port 3 during the compression stroke. ing. An on-off valve 15 interposed in the intake air recirculation passage 14 is interposed in conjunction with an accelerator pedal (not shown). This on-off valve 15 is
It is configured to be fully closed at full load, and open at low load with an opening degree commensurate with the load. The intake air recirculation passage 14 is located downstream of the on-off valve 15 of the intake air recirculation passage 14 in the intake air recirculation direction.
An expansion chamber 16 is provided for storing the intake air that is recirculated. Note that it is desirable that the intake recirculation passage portion 14a connecting the expansion chamber 16 and the intake passage 10 be made somewhat thinner than the other portions to have a slight throttling effect.

そうして上記開閉弁15と吸気還流バルブ9とにより吸
気還流量を調整する制御弁が構成される。
The on-off valve 15 and the intake air recirculation valve 9 constitute a control valve that adjusts the intake air recirculation amount.

次に以上説明した構造のエンジンの吸気装置の作動を、
第2図の弁作動タイミングチャートを参照しながら説明
する。
Next, the operation of the engine intake system with the structure explained above is as follows.
This will be explained with reference to the valve operation timing chart shown in FIG.

まず、アクセルペダルが踏み込まれた高負荷運転時につ
いて説明すると、開閉弁15が閉じられているので、シ
リンダCへは吸気通路10および吸気ポート1を介して
吸入空気が供給され、かつシリンダCから吸気還流ポー
ト3を介して吸入空気が還流されないため、エンジンE
は通常のエンジンと同様な状態で運転される。
First, when operating under high load when the accelerator pedal is depressed, the on-off valve 15 is closed, so intake air is supplied to the cylinder C via the intake passage 10 and the intake port 1, and from the cylinder C. Since the intake air is not recirculated through the intake recirculation port 3, the engine E
is operated under the same conditions as a normal engine.

次に、低負荷運転時について説明すると、アクセルペダ
ルの踏み込みが緩められるのに連動して開閉弁15が開
かれるようになる。カム6は、吸気還流バルブ9を第2
図に示すように吸気バルブ7に一定位相遅れて開閉動作
するようになされておシ、すなわち、吸気還流バルブ9
は、エンジンEの圧縮行程においても一定時開かれてお
シ、この間に吸気還流ポート3および吸気還流通路14
を介してシリンダC内の吸入空気の一部を上記吸気通路
10へ向けて還流する。この還流量は、実質的に開閉弁
15の開度および吸気還流バルブ9の閉時期との関連性
によって調整され、負荷が小さいほど多くなるように設
定される。このように還流された吸入空気の大部分は、
上記拡張室16内に導入され、ここで一時的拡張して溜
められるので、上記したように工/ソ/Eの圧縮行程に
おいてポート3および吸気還流通路14を介して還流さ
れる空気は、大気に逆流することがない。
Next, explaining the case of low-load operation, the on-off valve 15 is opened in conjunction with the release of the accelerator pedal. The cam 6 closes the intake recirculation valve 9 to the second position.
As shown in the figure, the intake valve 7 is configured to open and close with a certain phase delay, that is, the intake recirculation valve 9
is opened for a certain period of time during the compression stroke of the engine E, and during this period, the intake recirculation port 3 and the intake recirculation passage 14 are opened.
A part of the intake air in the cylinder C is recirculated toward the intake passage 10 through the cylinder C. This recirculation amount is substantially adjusted by the relationship between the opening degree of the on-off valve 15 and the closing timing of the intake recirculation valve 9, and is set to increase as the load decreases. Most of the recirculated intake air is
Since the air is introduced into the expansion chamber 16, temporarily expanded and stored there, the air recirculated through the port 3 and the intake air recirculation passage 14 in the compression stroke of the M/S/E as described above is at atmospheric pressure. There is no backflow.

上記した実施例においては、吸気還流バルブ9の開閉動
作を固定しておき、吸気還流量を開閉弁15の開度な調
整することによって制御するものについて説明したが、
吸気還流バルブ9の閉時期を可変にして、吸気還流量を
制御することにより上記制御弁を省略することもできる
。なお、この場合は、例えばカム6としてカムプロフィ
ルがカム軸方向に変化するものを用い、該カムを工/ノ
/負荷に応じてカム軸方向に動かすことにより、吸気還
流バルブ9の開時性を変化させる必要がある。
In the above embodiment, the opening/closing operation of the intake recirculation valve 9 is fixed, and the intake recirculation amount is controlled by adjusting the opening of the opening/closing valve 15.
The above-mentioned control valve can also be omitted by making the closing timing of the intake air recirculation valve 9 variable and controlling the intake air recirculation amount. In this case, for example, a cam whose cam profile changes in the cam shaft direction is used as the cam 6, and by moving the cam in the cam shaft direction according to the work/no/load, the opening performance of the intake recirculation valve 9 can be adjusted. need to change.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例によるエンジンの吸気装置を
示す概略図、 第Ω図は、第1図に示した吸気装置のバルブの開閉特性
を示す開閉タイミングチャートである。 E・・・エンジン、C・・・気筒としてのシリンダ、P
・・・ピストン、1・・・吸気ポート、2・・・排気ポ
ート、3・・・吸気還流ポート、7・・・吸気バルブ、
8・・・排気バルブ、9・・・吸気還流バルブ、10・
・・吸気通路、11・・・排気通路、14・・・吸気還
流通路、15・・・開閉弁、16・・・拡張室。 %許出願人  東洋工業株式会社 第1図 第2図 クランク回転町
FIG. 1 is a schematic diagram showing an engine intake system according to an embodiment of the present invention, and FIG. 1 is an opening/closing timing chart showing the opening/closing characteristics of the valves of the intake system shown in FIG. E...Engine, C...Cylinder as a cylinder, P
... Piston, 1... Intake port, 2... Exhaust port, 3... Intake recirculation port, 7... Intake valve,
8...Exhaust valve, 9...Intake recirculation valve, 10.
...Intake passage, 11...Exhaust passage, 14...Intake recirculation passage, 15...Opening/closing valve, 16...Expansion chamber. Percentage Applicant Toyo Kogyo Co., Ltd. Figure 1 Figure 2 Crank Rotation Town

Claims (1)

【特許請求の範囲】[Claims] エンジンの吸気行程時に大気からの吸入空気を気筒内に
供給する吸気通路と、該吸気通路の途中と前配気筒とを
連通して、エンジンの圧縮行程時に前記気筒内の吸入空
気の一部を前記吸気通路に還流する吸気還流通路と、該
吸気還流通路を開閉する制御弁とを有し、該制御弁の開
閉を制御して吸気還流緻を調整することによって吸入空
気の充填量を制御するようにしたエンジンの吸気装置に
おいて、前記吸気還流通路の前記側倒j弁の吸気還流方
向下流側に拡張室を介設したことを特徴とするエンジン
の吸気装置。
An intake passage that supplies intake air from the atmosphere into the cylinder during the intake stroke of the engine, and a part of the intake passage communicates with the front cylinder, so that a part of the intake air in the cylinder is supplied during the compression stroke of the engine. The intake air recirculation passage includes an intake air recirculation passage that recirculates the air to the intake passage, and a control valve that opens and closes the intake air recirculation passage, and controls the filling amount of intake air by controlling the opening and closing of the control valve to adjust the intake air recirculation density. An intake system for an engine as described above, characterized in that an expansion chamber is provided in the intake air recirculation passage on the downstream side of the side-inverted J valve in the intake air recirculation direction.
JP57000761A 1982-01-05 1982-01-05 Suction device for engine Pending JPS58117318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57000761A JPS58117318A (en) 1982-01-05 1982-01-05 Suction device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57000761A JPS58117318A (en) 1982-01-05 1982-01-05 Suction device for engine

Publications (1)

Publication Number Publication Date
JPS58117318A true JPS58117318A (en) 1983-07-12

Family

ID=11482671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57000761A Pending JPS58117318A (en) 1982-01-05 1982-01-05 Suction device for engine

Country Status (1)

Country Link
JP (1) JPS58117318A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3938623A1 (en) * 1988-12-07 1990-06-13 Mitsubishi Electric Corp SPIRAL COMPRESSOR
US5211146A (en) * 1991-04-06 1993-05-18 Fev Motorentechnik Gmbh & Co. Kg Inlet control mechanism for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3938623A1 (en) * 1988-12-07 1990-06-13 Mitsubishi Electric Corp SPIRAL COMPRESSOR
US5211146A (en) * 1991-04-06 1993-05-18 Fev Motorentechnik Gmbh & Co. Kg Inlet control mechanism for internal combustion engine

Similar Documents

Publication Publication Date Title
JP2005180458A (en) Multi-cylinder diesel engine with variably actuated valve
JPS5885353A (en) Exhaust gas recirculation controller of internal combustion engine
JPS58117318A (en) Suction device for engine
GB2163813A (en) Supercharge pressure control apparatus of a turbo-charged engine
JPS59168217A (en) Control apparatus for internal-combustion engine with supercharger
US5129367A (en) Intermittent bypass system for a check valve
US8087243B2 (en) Internal combustion engine turbocharged by a turbocharger
JPS58117319A (en) Suction device for engine
JPS58119921A (en) Engine suction device
JPH0610683A (en) Intake air controller of engine with mechanical type supercharger
JPS58180722A (en) Intake device of engine
JPS58119920A (en) Engine suction device
JPS6287615A (en) Multistage type turbosupercharged engine
JPS6345491B2 (en)
JPH0380969B2 (en)
JP2531202B2 (en) Control device for internal combustion engine
JPS6225851B2 (en)
JPS60261925A (en) Intake-air device in diesel engine
JPS58135318A (en) Air intake device for engine
JPS5818519A (en) Supercharger for internal-combustion engine
JPS6337492Y2 (en)
JPS6139064Y2 (en)
JPS5924824Y2 (en) Surging prevention device for engine with exhaust turbo charger
KR820000757B1 (en) Method for improving the efficiency of internal combustion engines
JP2900327B2 (en) Sequential turbo exhaust control valve