[go: up one dir, main page]

JPS58112373A - Manufacture of gaas ic - Google Patents

Manufacture of gaas ic

Info

Publication number
JPS58112373A
JPS58112373A JP21237881A JP21237881A JPS58112373A JP S58112373 A JPS58112373 A JP S58112373A JP 21237881 A JP21237881 A JP 21237881A JP 21237881 A JP21237881 A JP 21237881A JP S58112373 A JPS58112373 A JP S58112373A
Authority
JP
Japan
Prior art keywords
film
electrode
lift
etching
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21237881A
Other languages
Japanese (ja)
Inventor
Takamaro Mizoguchi
溝口 孝麿
Katsue Kanazawa
金澤 克江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP21237881A priority Critical patent/JPS58112373A/en
Publication of JPS58112373A publication Critical patent/JPS58112373A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain a planar structural GaAs IC which can improve the reliability of wiring, by etching an insulation film used as a spacer resulting in the flat formation of the substrate surface after electrode formation. CONSTITUTION:On the semi-insulating GaAs substrate 21, an SiO2 film 231 is deposited by a low temperature CVD method, or an Si3N4 film 232 is deposited by a plasma CVD method. Next, with a photo resist film 24 as a mask, the Si3N4, and SiO2 of the source and drain regions are succeedingly etched and opened window, thereafter AuGe films 251-253 are formed, the lift-off method to remove the resist film 24 is performed, and they are alloy-treated resulting in the formation of ohmic electrodes 251 and 253. Thereafter, only the Si3N4 film 232 is removed by a plasma etching, succeedingly the SiO2 film 231 is opened window for a gate electrode by a photoetching, and thus a Schottky electrode 26 constituted of a Pt film is formed by a lift-off process.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は砒化ガリウム(以下GaAsと呼ぶ)を用いた
集積回路の製造方法に係り、%に電極および配線の形成
工程の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing an integrated circuit using gallium arsenide (hereinafter referred to as GaAs), and particularly to an improvement in the process of forming electrodes and wiring.

〔発明の技術的背景〕[Technical background of the invention]

GaA1集積回路は従来のSt集積回路に比べ、高速・
低消費電力で動作するという特徴を持ち多くの研究開発
がなされている。
GaA1 integrated circuits are faster and faster than conventional St integrated circuits.
It has the characteristic of operating with low power consumption, and has been the subject of much research and development.

このGaA@集積回路は例えばptゲートを用いたショ
トキ障壁ゲート型電界効果トランジスタ(ME8 FE
T)1基本素子として製造される。その製造工程例を第
1図を用いて説明する。
This GaA@ integrated circuit is, for example, a Schottky barrier gate field effect transistor (ME8 FE) using a PT gate.
T) Manufactured as one basic element. An example of the manufacturing process will be explained using FIG. 1.

すなわち半絶縁性GaAs基板1ノのFET等の導電層
形成領域のみに選択的に81イオンを注入し、800℃
以上の温度でアニールして活性@12を形成後、S10
.膜13を堆積する(a)。
That is, 81 ions were selectively implanted only into the formation region of a conductive layer such as an FET on a semi-insulating GaAs substrate, and the temperature was increased to 800°C.
After annealing at the above temperature to form active @12, S10
.. Depositing film 13 (a).

次にフォトレジスト膜14を電極用マスクとし、ソース
およびドレイン等のオーム性電極形威領域上のStO,
膜を化学的にエツチングし伽)、ム11G・合、金等の
電極用金属膜15(1g1〜tss)を蒸着する(e)
。そしてレジス→膜14を除去してオーム性電極形成領
域以外の蒸着金属膜15.1−除去し、400℃以上の
温度で合金化してソース、ドレインのオーミック電極I
s、、Is、を形成する(d)。その後、上記と同様の
リフトオフ法により、例えばptを用いてゲート電極と
なるショットキー電極16を形成し、更にこの上に直接
(を九は層間絶縁膜を介して)配線”5e17*を形成
する(・)。
Next, using the photoresist film 14 as an electrode mask, StO
The film is chemically etched (e), and a metal film 15 (1g1 to tss) for electrodes made of aluminum 11G, alloy, gold, etc. is deposited (e).
. Then, the resist film 14 is removed, the vapor-deposited metal film 15.1 in areas other than the ohmic electrode formation area is removed, and the metal film 15.1 is alloyed at a temperature of 400°C or higher to form the source and drain ohmic electrodes I.
form s,,Is,(d). Thereafter, using the same lift-off method as above, a Schottky electrode 16 that will become a gate electrode is formed using, for example, PT, and furthermore, a wiring "5e17* is formed directly on this (via an interlayer insulating film). (・).

〔背景技術の問題点〕[Problems with background technology]

従来の素子作製工程においては、活性層12は正確に制
御されたイオン注入法で形成され、t7(GaAs表面
は何ら加工されずプレーナ構造となる簡便な製造工程と
なっている。上記工程での特徴は絶縁膜13をスペーサ
として用いたリフトオフ工程の多用にある。たとえばソ
ースドレイン電極相オーミック電極I5.。
In the conventional device manufacturing process, the active layer 12 is formed by a precisely controlled ion implantation method, and is a simple manufacturing process in which the GaAs surface is not processed at all and has a planar structure. The feature lies in the frequent use of a lift-off process using the insulating film 13 as a spacer.For example, the source-drain electrode phase ohmic electrode I5.

15、はGaAs結晶においてはAu系の合金の使用が
通例でGaAs結晶を痛めず金属のみをエツチングする
ことが困難なため、そのパターニングはこのリフトオフ
法が避けられない。
In No. 15, it is customary to use an Au-based alloy in GaAs crystals, and it is difficult to etch only the metal without damaging the GaAs crystals, so the lift-off method is unavoidable for patterning.

ところでこのリフトオフ工程を完全なものにするにはス
ペーサである絶縁膜が金属膜よりも充分厚くなくてはな
らないが、金属膜と絶縁膜間の段差は次の配線工程の際
、断線の原因となる。この段差による断線は集積回路の
製作において、歩留シに大きな影響を及ぼす。材料が高
価なGaAs結晶を用い九素子ではこの歩留り向上が高
性能化と並んで重要な課題である。
By the way, in order to complete this lift-off process, the insulating film that serves as a spacer must be sufficiently thicker than the metal film, but the difference in level between the metal film and the insulating film can cause disconnection during the next wiring process. Become. Wire breakage due to this step has a significant impact on yield in the manufacture of integrated circuits. In nine devices using GaAs crystal, which is an expensive material, improving yield is an important issue along with improving performance.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような従来技術の欠点を除去して、配線
の信頼性向上を可能とし九プレーナ構造のGaAs集積
回路の製造方法を提供するものである。
The present invention eliminates the above-mentioned drawbacks of the prior art and provides a method for manufacturing a GaAs integrated circuit having a nine-planar structure, making it possible to improve the reliability of wiring.

〔発明の概要〕[Summary of the invention]

本発明は、絶縁膜をスペーサとして少くとも2回のリフ
トオフ工程で2種以上の電極を形成するに際し、スペー
サとして用いた絶縁膜をエツチングして電極形成後の基
板表面を平坦化する工1mを設ける。具体的には例えば
、2種以上の電極膜厚が異なる場合、スペーサとなる絶
縁膜を予めエツチング特性の異なる絶縁膜の積層除去し
て次の電極膜リフトオフ工程のスペーサとして用いるよ
うにすればよい。また複数回のリフトオフ工程を全て終
了した後にスペーサとして用いた絶縁膜をエツチングし
て段差を解消するようKL”Cもよい。
In the present invention, when two or more types of electrodes are formed using an insulating film as a spacer in at least two lift-off processes, a 1 m process is required to planarize the substrate surface after electrode formation by etching the insulating film used as a spacer. establish. Specifically, for example, if two or more types of electrode films have different thicknesses, the insulating film that will serve as a spacer may be removed in advance by removing a stack of insulating films with different etching characteristics and used as a spacer in the next electrode film lift-off process. . Also, KL''C may be used to eliminate the step difference by etching the insulating film used as a spacer after completing all the multiple lift-off steps.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、MEBFETのようなプレーナ構造の
GaAs集積回路の電極形成にリフトオフ工程を利用し
たときに表面を平坦化して配線の段線を防止し、Gaム
ー集積回路の信頼性。
According to the present invention, when a lift-off process is used to form electrodes of a GaAs integrated circuit with a planar structure such as a MEBFET, the surface is flattened to prevent broken lines in wiring, thereby improving the reliability of the GaAs integrated circuit.

歩留シの向上を図ることができる。Yield can be improved.

〔発明の実施例〕[Embodiments of the invention]

第2図(1)〜葎)は本発明の一実施例におけるプレー
ナ構造MIC8FETの製造工程を示す。
FIGS. 2(1) to 2) show the manufacturing process of a planar structure MIC8FET in one embodiment of the present invention.

まず、選択的なイオン注入、アニールを行って活性層2
21に形成した半絶縁性GaA1基板2ノ上に低温CV
D法によ、90.1pmの810゜Mxatt堆積し、
次にプラズマCvD法ニヨ10.2μmの81.N、膜
22 S 、を堆積する(1)。
First, selective ion implantation and annealing are performed to form the active layer 2.
Low-temperature CV on the semi-insulating GaA1 substrate 2 formed in 21
90.1 pm of 810° Mxatt was deposited by D method,
Next, the plasma CvD method has a diameter of 10.2 μm. N, film 22 S is deposited (1).

次にフォトレジスト膜24をマスクとしてソース、ドレ
イン領域のSi、N、 、  810.を順次エツチン
グして窓あけしくb)、その後0.25μmのAuGe
膜25 (25,〜25. ) ′fr形成する(e)
。そしてレジスト膜24t−除去するりフトオフ法を行
い、アロイ処理してオーミック電極25、  、25.
 t−形成する(d)。この後、プラズマエツチングに
より81.N4膜23.のみ除去する(・)。ひきつづ
いて、フォトエツチングによシ、0.1pmの810.
膜23.にゲート電極用の窓あけを行い、同様のリフト
オフ法@によシゲート電極であるpt膜からなるショッ
トキー電極26を形成する(f)。
Next, using the photoresist film 24 as a mask, the source and drain regions are Si, N, 810. Sequentially etching to open the window b), then 0.25 μm AuGe
Film 25 (25, ~25.) 'fr is formed (e)
. Then, a lift-off method is performed to remove the resist film 24t, and alloy processing is performed to form the ohmic electrodes 25, , 25.
t-form (d). After this, 81. N4 membrane 23. Remove only (・). Subsequently, photoetching was performed with 0.1 pm of 810.
Membrane 23. A window is made for the gate electrode, and a Schottky electrode 26 made of a PT film, which is a gate electrode, is formed by the same lift-off method (f).

シンター後、層間絶縁膜17を堆積し、スルーホールを
形成して配線! ’1 t ” lを形成する葎)。
After sintering, deposit an interlayer insulating film 17, form through holes, and connect! '1 t '' l).

本実施例によれば、810.膜23.とオーミック電極
、?51 、、?!、およびシ目ットキー電極26との
段差が少ないため、層間絶縁膜27は勇わめてなめらか
に被覆される。この結果、第2層のL*za、、2g、
の断線は無くなシ信頼性が著しく高まった。即ち複数回
のリフトオフ@を行う際のスペーサに用いる絶縁膜とし
て、エツチング特性の異なる2種類の膜を積層して用い
ることによシ、膜厚の異なる2種類の電極をそれぞれ形
成し%信頼性の高い2層配線の作成管可能ならしめる。
According to this embodiment, 810. Membrane 23. and ohmic electrode,? 51...? ! , and the key electrode 26, the interlayer insulating film 27 is coated very smoothly. As a result, the second layer L*za, 2g,
There were no wire breaks, and reliability was significantly improved. In other words, by stacking and using two types of films with different etching characteristics as an insulating film used as a spacer when performing multiple lift-offs, two types of electrodes with different film thicknesses are formed, and the reliability is improved by %. This makes it possible to create two-layer wiring with high performance.

上記実施例では、810. 、 ss、a、の願に堆積
したが、この逆にo、xpmの811 N4 、0.2
gmの840.というJIK堆積してもよい。こ〇−合
、オーミック電極形成後の810.の除去に際しては、
HFによる通常のS*エツチングを行うことができるが
、もちろんドライエツチングも可能である。
In the above embodiment, 810. , ss, a, was deposited on the application, but on the other hand, o, xpm's 811 N4, 0.2
GM's 840. JIK deposition may also be performed. In this case, 810. after forming the ohmic electrode. When removing the
Normal S* etching with HF can be performed, but dry etching is of course also possible.

また絶縁膜は810..81.N4の組合せにかぎらな
い。なお、実施例では、GaAaMESFET  の製
造方法に関して述べであるが。
Also, the insulating film is 810. .. 81. The combination is not limited to N4. Incidentally, in the embodiment, a method for manufacturing a GaAa MESFET is described.

この手法は膜厚の異なる2種類以上の電極又は配線を形
′成する他のGaAm  プレーナデバイスにも適用可
能である。
This method can also be applied to other GaAm planar devices in which two or more types of electrodes or interconnections with different film thicknesses are formed.

また絶縁膜の積層数を増せば、膜厚の異なる3種類以上
の電極または配線にも適用可能である。
Furthermore, by increasing the number of laminated insulating films, it is possible to apply the present invention to electrodes or wiring having three or more types of film thicknesses different from each other.

第3図(a)〜(g)は本発明の別の実施例を説明する
ための図である−0まず半絶縁性GaAm基板31に選
択的なイオン注入とアニールによシ活性層32を形成し
た後、sto、  膜33をCVD法で3000A堆積
する(a)。次にフォトレジスト膜34を用いた写真蝕
刻技術によシ、ソース・ドレイン領域の窓あけを行う(
b)。そしてムuG・膜35(35,〜35烏)を約1
00OA 蒸着しくe)、フォトレジスト34上のムu
Gmg35Bをフォトレジスト膜34と共にリフトオフ
により除去し、H2雰囲気中で合金化してソース。
FIGS. 3(a) to 3(g) are diagrams for explaining another embodiment of the present invention. First, an active layer 32 is formed on a semi-insulating GaAm substrate 31 by selective ion implantation and annealing. After the formation, a film 33 of 3000A is deposited by the CVD method (a). Next, windows are opened in the source and drain regions by photolithography using the photoresist film 34 (
b). And about 1
00OA evaporated e), mu on photoresist 34
Gmg35B is removed together with the photoresist film 34 by lift-off, and alloyed in an H2 atmosphere to form a source.

ドレインのオーミックの電極35. .35□を形成す
る(d)。
Drain ohmic electrode 35. .. Form 35□ (d).

ひきつづいて同様のリフトオフ法を用いて、ゲート電極
を形成する。即ち、まず写真蝕刻技術によりゲート領域
の窓あけを行い、ゲート領域のS + 02g33 @
反応性イオンエツチングでとり除き、At膜からなるシ
ョトキ−電極36を形成する(e)。この状態で5i0
2膜33と、オーミック電極351.35□およびショ
ットキー電極36との膜厚差は2000A あるが、R
IEを用いて5i02 膜33のエツチングを行い、膜
厚差がほとんどなくなったところでエツチングを停止F
する(f)。次にTL  Pt  Auを用い、配線3
7..3?、を形成する(g)。
Subsequently, a gate electrode is formed using a similar lift-off method. That is, first, a window is opened in the gate area using photo-etching technology, and S+02g33@ of the gate area is formed.
It is removed by reactive ion etching to form a Schottky electrode 36 made of an At film (e). In this state 5i0
The difference in film thickness between the two films 33, the ohmic electrode 351.35□ and the Schottky electrode 36 is 2000A, but R
Etch the 5i02 film 33 using IE, and stop etching when the difference in film thickness has almost disappeared.
(f). Next, using TL Pt Au, wire 3
7. .. 3? (g).

上記の工程で作成したゲート幅25μm、ゲート長1 
p m MES FET、、を100個並べたトランジ
スタアレイを20個用意し、動作させたところ、RIE
によって表面の段差をなくす平坦化工程を行なわない時
に比べ歩留りが大幅に上昇することが認められた。
Gate width 25μm and gate length 1 created in the above process
When we prepared 20 transistor arrays in which 100 p m MES FETs were arranged and operated them, RIE
It was found that the yield was significantly higher than when no planarization process was performed to eliminate surface differences.

本実施例ではSIO,の膜厚と、各電極の膜厚を測定′
シ、その差分をRIBを制御し【エツチングしているが
、エツチング量の制御法として、絶縁膜としてエツチン
グ手段の異なる211類の膜を堆積させて行う方法を採
用してもよい。
In this example, the film thickness of the SIO and the film thickness of each electrode were measured.
The difference is etched by controlling the RIB, but as a method for controlling the amount of etching, a method may be adopted in which a type 211 film using a different etching method is deposited as an insulating film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 〜(s)!ri従来の01人m −M 
H8F E Tの製造工程を説明する丸めの図、第2図
(a)〜−)は本発明の一実施例におけるGaAs−M
]C8FETの製造工程を説明するための図、第3図体
)〜(g)は他の実施例におけるGaAs−ME8FE
Tの製造工程を説明するための図である。 21.31・・・半絶縁性QaAs基板、22゜32・
・・活性層、123.・・・810.膜、23.・・・
St、N、l[,33・・・810.膜、!4.34・
・・フォトレジスト膜、25.〜is、、ss、〜As
@””kuG@膜、25.、!!、、35.。 35、・・・オーミック電極、26.36・・・シ目ッ
トキー電極、27・・・層間絶縁膜。 711.2B、、37..371・・・・・配線。 出願人代理人  弁理士 鈴 江 武 彦1!2図 慎2図 第3 事3図
Figure 1 (a) - (s)! ri Conventional 01 person m -M
Round diagrams illustrating the manufacturing process of H8FET, FIGS. 2(a) to 2) are GaAs-M
] Diagrams for explaining the manufacturing process of C8FET, 3rd figure) to (g) are GaAs-ME8FE in other examples
It is a figure for explaining the manufacturing process of T. 21.31...Semi-insulating QaAs substrate, 22°32.
...Active layer, 123. ...810. membrane, 23. ...
St, N, l [, 33...810. film,! 4.34・
...Photoresist film, 25. ~is,,ss,~As
@””kuG@membrane, 25. ,! ! ,,35. . 35... Ohmic electrode, 26.36... Seat key electrode, 27... Interlayer insulating film. 711.2B, 37. .. 371...Wiring. Applicant's agent Patent attorney Takehiko Suzue 1! 2 Figure Shin 2 Figure 3 Matter 3 Figure

Claims (1)

【特許請求の範囲】 (1)GaA−基板上に絶縁膜をスペーサとした少くと
42回のりフトオフ工程により2種以上の電極を形成す
・る工程と、前記スペーサとして用いた絶縁膜をエツチ
ングして電極形成後の基板表mt平担化する工程と、各
素子間′を接続する配線を形成する工程とを有すること
を特徴とするGaAs集積回路の製造方法。 伐)基板表面を平担化す、る工程は、スペーサとなる絶
縁膜としてエツチング特性の異なる豪膜を順次上からエ
ツチング除去して次のスペーサとして用いるようにし九
特許請求の範囲第1項記載のGaAs集積回路の製造方
法。 (3)  基板表面を平担化する工1は、スペーサとし
て用い喪絶縁*t*数回の電極のリフトオシエat−終
了した後にエツチングして段差を解消するものである特
許請求の範囲第1項記載のGaAs集積囲路の製造方法
[Claims] (1) A step of forming two or more types of electrodes on a GaA substrate by at least 42 lift-off steps using an insulating film as a spacer, and etching the insulating film used as the spacer. A method for manufacturing a GaAs integrated circuit, comprising the steps of flattening the substrate surface mt after electrode formation, and forming wiring connecting between each element. In the step of flattening the surface of the substrate, films having different etching properties are sequentially removed from above as insulating films to be spacers to be used as the next spacer. A method of manufacturing a GaAs integrated circuit. (3) Step 1 of flattening the substrate surface is to use it as a spacer and remove the step by etching after several times of electrode lift oxidation. A method of manufacturing the GaAs integrated enclosure described.
JP21237881A 1981-12-25 1981-12-25 Manufacture of gaas ic Pending JPS58112373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21237881A JPS58112373A (en) 1981-12-25 1981-12-25 Manufacture of gaas ic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21237881A JPS58112373A (en) 1981-12-25 1981-12-25 Manufacture of gaas ic

Publications (1)

Publication Number Publication Date
JPS58112373A true JPS58112373A (en) 1983-07-04

Family

ID=16621572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21237881A Pending JPS58112373A (en) 1981-12-25 1981-12-25 Manufacture of gaas ic

Country Status (1)

Country Link
JP (1) JPS58112373A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106202A (en) * 1983-11-14 1985-06-11 Nippon Telegr & Teleph Corp <Ntt> Monolithic microwave integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106202A (en) * 1983-11-14 1985-06-11 Nippon Telegr & Teleph Corp <Ntt> Monolithic microwave integrated circuit

Similar Documents

Publication Publication Date Title
US5753546A (en) Method for fabricating metal oxide field effect transistors
JP2637937B2 (en) Method for manufacturing field effect transistor
KR900008277B1 (en) Manufacturing Method of Field Effect Transistor
JPH05275373A (en) Manufacture of compound semiconductor device
JPS58112373A (en) Manufacture of gaas ic
JP3219056B2 (en) Processing method of organic insulating film
JPH01244666A (en) Manufacture of semiconductor device
JPS62132366A (en) Manufacturing method of vertical field effect transistor
JPS598378A (en) Gaas fet
JPS63273363A (en) Manufacture of semiconductor device
JPS61176162A (en) Field-effect semiconductor device and manufacture thereof
JPS6163063A (en) Manufacturing method of semiconductor device
JP3353773B2 (en) Method for manufacturing semiconductor device
JPS6292478A (en) Manufacture of semiconductor device
JP2000332029A (en) Manufacture of semiconductor device
JPS6239071A (en) Manufacture of semiconductor device
JPS6351679A (en) Semicondictor device
JPH07183312A (en) Forming method of gate electrode for field-effect transistor
JPS613466A (en) Manufacturing method of semiconductor device
JPH0226385B2 (en)
JPS6050967A (en) Manufacture of field effect transistor
JPS61290777A (en) Method of manufacturing shot key gate electrode
JPS59189678A (en) Semiconductor device and manufacture thereof
JPH03268332A (en) Manufacture of semiconductor device
JPS6068662A (en) Semiconductor device and manufacture thereof