[go: up one dir, main page]

JPS58111832A - Preparation of hydrophilic membrane - Google Patents

Preparation of hydrophilic membrane

Info

Publication number
JPS58111832A
JPS58111832A JP56209339A JP20933981A JPS58111832A JP S58111832 A JPS58111832 A JP S58111832A JP 56209339 A JP56209339 A JP 56209339A JP 20933981 A JP20933981 A JP 20933981A JP S58111832 A JPS58111832 A JP S58111832A
Authority
JP
Japan
Prior art keywords
film
hydrophilic
hydrophilic membrane
producing
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56209339A
Other languages
Japanese (ja)
Other versions
JPS6044334B2 (en
Inventor
Tadashi Inoue
正 井上
Kiyotaka Yoshie
清敬 吉江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Dow Ltd
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Dow Ltd
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Dow Ltd, Asahi Chemical Industry Co Ltd filed Critical Asahi Dow Ltd
Priority to JP56209339A priority Critical patent/JPS6044334B2/en
Publication of JPS58111832A publication Critical patent/JPS58111832A/en
Publication of JPS6044334B2 publication Critical patent/JPS6044334B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To obtain a hydrophilic membrane with improved selective permeability, by a method wherein a film comprising a specific ethylene copolymer is reacted with a sulfonating agent to yield a hydrophilic membrance which is then heat-treated. CONSTITUTION:A film comprising a resin compsn. containing an ethylene copolymer of 97-82mol% ethylene with 3-18mol% monomer of formula[wherein R1 is H, CH3; R2 is OCOR3 (wherein R3 is a 1-5C hydrocarbon group), COOR4 (wherein R4 is H, 1-6C hydrocarbon group, an alkali metal or the other ions capable of forming a salt with a carboxyl group)]or a composite film having at least one layer of said film is reacted with a sulfonating agent to yield an hyrophilic membrance with an electrical resistance of 0.01-5OMEGA.cm<2> in dilute H2SO4. Then the hydrophilic membrance is heat-treated in a state in which at least part of sulfone goups of the hydrophilic membrance is SO3H.

Description

【発明の詳細な説明】 本発明は、エチレン系共重合体にスルホン基を導入して
得られる親水性膜の新規な製造方法に゛関し、特に1選
択透過性を着るしく改善した親水性膜の新規な製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new method for producing a hydrophilic membrane obtained by introducing a sulfone group into an ethylene copolymer. The present invention relates to a new manufacturing method.

高分子樹脂フィルムにスルホン基等のイオン交換基な導
入したイオン交換性を有する親水性膜は、種六の特異な
選択透過性を有する機能性高分子膜として種Aの用途で
注目を浴びている。
Hydrophilic membranes with ion exchange properties, in which ion exchange groups such as sulfone groups are introduced into polymer resin films, are attracting attention for use in Type A as functional polymer membranes with unique permselectivity. There is.

例えば、(1)  溶質の濃度差による拡散透析法によ
る溶質の分1目収、(匂 電気エネルギーによる電気透
析法による溶質の分離回収技術、(3)  電気透析法
に絖いておこる電極反応による酸化還元生成物製造技術
、(4) 逆浸透法、浸透気化法等による分離技術、優
) 燃料電池用隔膜等の高分子電解質として利用する技
術等々の技術分骨で検討され、一部実用化されている。
For example, (1) fractional collection of solutes by diffusion dialysis using differences in solute concentration, (solute separation and recovery technology by electrodialysis using electrical energy, and (3) oxidation due to electrode reactions that occur during electrodialysis). Reduction product manufacturing technology, (4) Separation technology using reverse osmosis, pervaporation, etc. (excellent) Technology for use as polymer electrolyte in fuel cell membranes, etc. have been studied in the technical framework, and some have been put into practical use. ing.

そして、これらの技術分骨でイオン交換性な有する親水
性膜は、異符号のイオン、同符号のイオン等のイオン間
の選択透過性、中性分子とイオン、間の選択透過性、中
性分子間の選択透過性等の条各の目的とする選択透過性
機能を生かされている。
In addition, hydrophilic membranes with ion-exchange properties are the backbone of these technologies. The selective permselectivity function of each article, such as intermolecular permselectivity, is utilized.

従来、エチレン系共重合体フィルムから、単時間で、し
かも、内部まで、はば均一にスルホン基な導入したイオ
ン交換性を有する親水性膜が得られることは、すでに、
特公11f151−41035号。
Previously, it was already known that a hydrophilic membrane having ion-exchange properties with sulfonic groups introduced uniformly throughout the interior could be obtained from an ethylene copolymer film in a short period of time.
Special Publication No. 11f151-41035.

特公昭52−29988号及び米国%lI’FlIJl
l書j13925332号等により公知である。
Special Publication No. 52-29988 and U.S.%lI'FlIJl
It is publicly known from Book I, No. J13925332, etc.

また、エチレン系共重合体と、スルホン化剤に比較的不
活性な熱可畷性樹脂とを混合した樹脂組成物よりなるフ
ィルムから、同様K、イオン交換性を有する親水性膜が
得られることも、零1141許明細書−3925332
号により公知であ番。
Furthermore, a hydrophilic membrane having similar K and ion exchange properties can be obtained from a film made of a resin composition in which an ethylene copolymer and a thermoplastic resin relatively inert to the sulfonating agent are mixed. Also, Zero 1141 Permit Specification-3925332
Publicly known by number.

また、特願昭55−101890号、特願昭55−11
4684号、IF!ll1i昭56−157911号、
特願昭56−96500号により、従来全知のエチレン
系共重合体にスルホン基を導入して得られる親水性膜を
改良した親水性膜及び親水性膜の製造方法が提案されて
いる。
Also, Japanese Patent Application No. 55-101890, Japanese Patent Application No. 1983-11
No. 4684, IF! ll1i No. 56-157911,
Japanese Patent Application No. 56-96500 proposes a hydrophilic membrane that is an improved version of the hydrophilic membrane obtained by introducing a sulfone group into an ethylene copolymer and a method for producing the hydrophilic membrane.

そして、かかる親水性膜は、優れたイオン交換性能を有
し、かつ、電解液中での電気抵抗が小さい特性を有する
と同時に、(1)有機物に対するノくリヤー性に優れる
、(2)陰イオンに対するノ(リヤー性に優れる等々の
各種の選択透過性に優れ、さらに、(4)乾燥状態で膜
性能をほとんど変化させく取扱うことができる、(4)
  膜が柔軟である等々の実用特性にも優れるため、イ
オン交換膜、電解隔離膜、透析膜、各種の電池用隔膜2
分−膜勢、O多岐にわたる会費に応用されるポテンシャ
ルを有するものである。
Such a hydrophilic membrane has excellent ion exchange performance and low electrical resistance in an electrolytic solution, and at the same time has (1) excellent repellency against organic matter, and (2) anion exchange properties. It has excellent permselective properties such as excellent repellency against ions, and (4) can be handled in a dry state with almost no change in membrane performance.
Because the membrane has excellent practical properties such as flexibility, it can be used for ion exchange membranes, electrolytic separation membranes, dialysis membranes, and various battery diaphragms2.
It has the potential to be applied to a wide variety of membership fees.

本発明者らは、上記したエチレン系共重合体にスルホン
基を導入して得られる親水性膜の選択透過性をさらに改
良する目的で鋭意検討した績呆、本発明に到達した。
The present inventors have arrived at the present invention after extensive research aimed at further improving the selective permselectivity of a hydrophilic membrane obtained by introducing a sulfone group into the above-mentioned ethylene copolymer.

本発明の目的についてさらに詳MKI!nすると、本発
明の目的は、電解液中での電気抵抗が低く、かつ、各種
の選択透過性を改善することであって、411に有機物
に対するバリヤー性を改良することにある。
Learn more about the purpose of the inventionMKI! Accordingly, an object of the present invention is to provide a material with low electrical resistance in an electrolytic solution and to improve various permselective properties, and secondly, to improve barrier properties against organic substances.

本発明について説明すると、本発明の親水性膜C0〜C
5の炭化水素基、アルカリ金属及びその他のカルボン酸
基と塩を形成し得るイオン類)〕の構造を有する単量体
とのエチレン系共重合体より選ばれた少なくとも1種類
のエチレン系共重合体を、少なくとも含有する樹脂組成
物よりなるフィルム又は骸フィルムを少なくとも一表i
Iに有する複合フィルムをスルホン化剤と反応させ、希
硫酸中の電気抵抗が0.01〜5Ω・−の親水性膜とし
、次いで、該親水性膜のスルホン基の少な(とも1部が
−80,Hの状態で加熱処履することを特徴とする親水
性膜の製造方法である。
To explain the present invention, the hydrophilic membrane C0 to C of the present invention
At least one type of ethylene-based copolymer selected from ethylene-based copolymers with a monomer having the structure of 5) (ions that can form salts with hydrocarbon groups, alkali metals, and other carboxylic acid groups) At least one film or skeleton film made of a resin composition containing at least
The composite film in I is reacted with a sulfonating agent to form a hydrophilic film with an electrical resistance of 0.01 to 5 Ω·- in dilute sulfuric acid, and then the hydrophilic film has a small number of sulfonic groups (in both cases, one part is - This is a method for producing a hydrophilic membrane, characterized by heat treatment in a state of 80.H.

かかる製造方法で製造された親水性膜は、従来のエチレ
ン系共重合体にスルホン基を導入して得られる親水性膜
に比べて、選択透過性が着るしく改善されたものとなる
A hydrophilic membrane produced by such a production method has significantly improved permselectivity compared to a hydrophilic membrane obtained by introducing a sulfone group into a conventional ethylene copolymer.

本発明の親水性膜の製造方法についてさらに詳!IKm
l明すると、本発明は、エチレン系共重合体を少なくと
も1種類含有する樹脂組成物を従来公知のフィルム成形
法にて、単一フィルム又は複合フィルム等の形で、フィ
ルム状に成形した後、該樹脂組成物が、可塑剤を含有し
たものでは、スルホン化剤にて可塑剤を抽出しなからス
ルホン化反応させるか、又は、スルホン化する前に溶剤
にて可塑剤を少なくとも一部抽出し、次いでスルホン化
反応させ、希硫酸中の電気抵抗が0.01〜5Ω・33
、好ましくは0.05〜1Ω・C1m″の親水性膜とし
、次いで、皺親水性膜のスルホン基ノ少す<トも一部が
−80,!(0状態で加熱処理することを特徴とする選
択性を改善した親水性膜の製造方法である。
Learn more about the method for producing the hydrophilic membrane of the present invention! IKm
To be clear, the present invention involves forming a resin composition containing at least one type of ethylene copolymer into a film, such as a single film or a composite film, by a conventionally known film forming method, and then forming the resin composition into a single film or a composite film. If the resin composition contains a plasticizer, the plasticizer may be extracted with a sulfonating agent before being subjected to a sulfonation reaction, or at least a portion of the plasticizer may be extracted with a solvent before sulfonation. , then subjected to sulfonation reaction, and the electrical resistance in dilute sulfuric acid is 0.01-5Ω・33
, preferably 0.05 to 1Ω・C1m″, and then the wrinkled hydrophilic film is characterized by being heat-treated in such a state that some of the sulfone groups are in the -80,!(0) state. This is a method for producing a hydrophilic membrane with improved selectivity.

そして、本発明で言うエチレン系共重合体とは、−CO
OR4(但し、R,=C,=C5の炭化水素基、R4x
H,c、=C6の炭化水素基、アルカリ金属、及びその
他の金属イオン等の倫にカルボン酸基と轍を形成し得る
イオン類)〕の構造を有する単量体とのエチレン系共重
合体から遷ばれるものであ収この範囲において、希硫酸
中の電気抵抗が、0.01〜5Ω・C1l”の親水性膜
な生産性よく高品質に得ることができる。
The ethylene copolymer referred to in the present invention is -CO
OR4 (however, R, =C, =C5 hydrocarbon group, R4x
Ethylene-based copolymer with a monomer having a structure of H, c, =C6 hydrocarbon groups, alkali metals, and other metal ions (ions that can form ruts with carboxylic acid groups) Within this range, a hydrophilic film having an electrical resistance in dilute sulfuric acid of 0.01 to 5 Ω·C1l'' can be obtained with good productivity and high quality.

そして、本発明における前記のその他のカルボン酸基と
塩を形成し得るイオン類とは、例えばMgス++  C
& ” ” + Zn”十勢の2価の金属イオン。
In the present invention, the ions that can form salts with other carboxylic acid groups include, for example, MgS++ C
& “ ” + Zn” Ten divalent metal ions.

hts+勢の3価の金属イオンの他にNH4+等0−C
OO−基と塩を形成し得るカチオンを意味するものであ
る。
In addition to hts+ trivalent metal ions, NH4+ and other 0-C
It means a cation that can form a salt with an OO- group.

また、本発明において、エチレン系共重合体組成物とは
、エチレン系共重合体の少なくとも1at類よりなるも
の及び、スルホン化剤に比較的不活性な熱可塑性樹脂を
添加したもの及び、前記樹脂成分に対し咳暑脂成分に相
溶性を有し、しかも溶剤及び/又は、スルホン化剤等に
よりフィルム及び/又は親水性膜より抽出可能な可塑剤
を拠金したものである。
Furthermore, in the present invention, the ethylene copolymer composition refers to one consisting of at least 1at of ethylene copolymers, one in which a relatively inert thermoplastic resin is added to a sulfonating agent, and one in which a relatively inert thermoplastic resin is added to the sulfonating agent; It contains a plasticizer that is compatible with the cough oil component and that can be extracted from the film and/or hydrophilic membrane using a solvent and/or a sulfonating agent.

また、エチレン系共重合体組成物よりなるフィルムとは
、前記エチレン系共重合体組成物を、通常のフィルム成
形方法にて成形された単一フィルム及び多層フィルムや
これら単一フィルム又は多層フィルムと、織布、不織布
、微多孔膜勢の補強材の1種又は2種以上とを組み合わ
せた複合フィルムである。
In addition, a film made of an ethylene copolymer composition refers to a single film or a multilayer film formed by molding the ethylene copolymer composition using a normal film molding method, or a single film or a multilayer film formed from the ethylene copolymer composition. It is a composite film that combines one or more reinforcing materials such as , woven fabric, non-woven fabric, and microporous membrane.

そして、本発明で貫うスルホン化剤に比較的不活性な熱
可塑性樹脂としては、上記のエチレン系共重合体に比較
して、スルホン化反応が着るしく遅いものであれば良く
、41に限定するものではないが、通常のプラスチック
加工法で、容易に混合分散できるものが、生産性及び均
一な品質を有する膜を得やすいため良好で例えば、低密
度ポリエチレン、中密度ポリエチレン、高密度ポリエチ
レン、直鎖状低密度ポリエチレン、ポリプロピレン。
The thermoplastic resin that is relatively inert to the sulfonating agent used in the present invention may be one that exhibits a relatively slow sulfonation reaction compared to the above-mentioned ethylene copolymer, and is limited to 41. However, materials that can be easily mixed and dispersed using normal plastic processing methods are good because they are easy to produce and obtain films with uniform quality.For example, low-density polyethylene, medium-density polyethylene, high-density polyethylene, Linear low density polyethylene, polypropylene.

ポリブテン−1等のポリオレフィン樹脂が好適である。Polyolefin resins such as polybutene-1 are preferred.

また、本発@における、熱可塑性樹脂を含有するエチレ
ン系樹脂組成物中O熱可履性樹脂の配合割合は、多くと
も全樹脂成分のうち855重量部するのが好ましく、よ
り好ましくは、70重量襲以下〜15重量襲以上におい
て%に耐酸化性に優れ、かつ、電解液中での電気抵抗の
低い親水性膜を生産性良く得ることができる。
In addition, in the present invention, the blending ratio of the O thermoplastic resin in the ethylene resin composition containing the thermoplastic resin is preferably at most 855 parts by weight, more preferably 70 parts by weight of the total resin components. It is possible to obtain a hydrophilic membrane with good productivity, which has excellent oxidation resistance in the range of 15% by weight or less to 15% by weight or more and has low electrical resistance in an electrolytic solution.

また、上記樹脂成分に対し、相溶性を有し、かつ抽出可
能な可塑剤とは、上記樹脂成分の溶融状態で、樹脂成分
100jli量部に対して、少なくとも5重量部が均一
に分散し、溶融成形法にて薄肉フィルムが成形できるも
のであって、しかも可塑剤の抽出条件で、上記樹脂成分
をはとんど滴群しない溶剤又は、スルホン化剤等により
反応前、反応中又は反応後、すみやかにフィルム又は膜
から抽出できるものであれば良い。
Further, the plasticizer that is compatible with and extractable from the resin component is a plasticizer that is uniformly dispersed in an amount of at least 5 parts by weight per 100 parts of the resin component in the molten state of the resin component; A thin film can be formed by melt molding, and under the extraction conditions of the plasticizer, the above-mentioned resin components are hardly formed into droplets using a solvent or a sulfonating agent, etc., before, during or after the reaction. Any material that can be quickly extracted from the film or membrane may be used.

可塑剤の例としては、例えば、フタJ/@ジエチル、フ
タル酸ジオクチル等に代表されるフタJw−エステ九類
、の他に、直鎖二塩基酸エステル類。
Examples of plasticizers include Futa Jw-ESTE Class 9 represented by Futa J/@diethyl and dioctyl phthalate, as well as linear dibasic acid esters.

リン酸ニス、チル類、エポキシ系可塑剤、ポリエステル
系可塑剤、塩化パラフィン等の塩素化物 *素化脂肪酸
エステル類等の通常プラスチック用可塑剤として使用さ
れるもの、あるいは、上記の要件を満たしかつ、可塑効
果及び/又は**効果を有するその他種々の添加剤から
少なくとも1種選ばれる。
Chlorinated products such as phosphate varnishes, chills, epoxy plasticizers, polyester plasticizers, and chlorinated paraffins *Those commonly used as plasticizers for plastics such as chlorinated fatty acid esters, or those that meet the above requirements. , at least one kind selected from various other additives having plasticizing effect and/or ** effect.

そして可塑剤の添加量としては、多い程、スルホン化に
要する時間が短縮されるため好ましいが、通常、薄肉フ
ィルムを安定して成形するためには、多くとも樹脂成分
100重量部に対して可塑剤200重量部が適当であり
、好ましくは、10〜100重量部である。
The amount of plasticizer added is preferably as large as possible because the time required for sulfonation is shortened; however, in order to stably form a thin film, it is usually necessary to add plasticizer to at most 100 parts by weight of the resin component. 200 parts by weight of the agent is suitable, preferably 10 to 100 parts by weight.

また、本発明で言5織布とは、無機又は高分子繊維より
、平織り、斜文織り、朱子織り、からみ織等の織り方に
よって得られる織物であって、糸の太さ及び打込本数等
は、前記樹脂組成物との接着時及び/又は堆扱時に、織
物の組織が、極度にくずれない範囲内で、用途に応じて
適宜選択すれば良い、また、繊維素材としては、スルホ
ン化剤、1・□・11: に比較的不活性でかつ、本発明の加熱処理時に、物理的
にも、化学的にも、大きく変化しないものであれば良く
、%に限定するものではないが、使用目的及び用赤に応
じて適宜選択することが必要である。例えば、ポリエチ
レン、ポリプロピレン。
In addition, in the present invention, the term woven fabric refers to a fabric obtained from inorganic or polymeric fibers by weaving methods such as plain weave, oblique weave, satin weave, leno weave, etc., and the thickness of the threads and the number of threads The fiber material may be selected as appropriate depending on the application, within a range in which the structure of the fabric does not collapse to an extreme degree during adhesion with the resin composition and/or during composting. Agents 1, □, and 11: Any agent may be used as long as it is relatively inert and does not change significantly either physically or chemically during the heat treatment of the present invention, and is not limited to %. , it is necessary to make an appropriate selection depending on the purpose and color of use. For example, polyethylene, polypropylene.

フッ素樹脂系の繊維が、スルホン化剤及びその他の薬品
に対して比較的不活性であり、かつ比峻的耐熱性に優れ
るため好適となる。
Fluororesin fibers are preferred because they are relatively inert to sulfonating agents and other chemicals and have excellent relative heat resistance.

また、不織布及び微多孔膜についても、織布と同様で、
前記樹脂組成物との接着時及び/又は、取扱い時に形状
が極度にくずれない範囲のもので、耐薬品性、耐熱性に
優れたものから、用途に応じて素材、厚み及び有効導電
面積等を適宜選択すれば良い。
Also, non-woven fabrics and microporous membranes are the same as woven fabrics,
The material, thickness, effective conductive area, etc. can be selected depending on the application, from a material that does not lose its shape extremely when adhering to the resin composition and/or when handling, and has excellent chemical resistance and heat resistance. You can choose as appropriate.

そして、本発明の親水性膜の製造方法において、エチレ
ン系共重合体組成物よりなるフィルムの成形方法として
は、通常のプラスチック加工で行なわれる成形方法、例
えば、単一フィルムでは、圧縮成形法、押出成形法、キ
ャスト法等によるフラット状フィルムあるいはチューブ
状フィルムを、また多層フィルムでは、各種の単一フィ
ルムを舎各作成した後、所望の組合せで圧縮成形等の方
妹で多層化するか、共押出法で多層フィルムを作成すれ
ば良い。又、織布、不織布、微多孔膜等の補強材の1種
又は2種以上で補強した複合フィルムは、単一フィルム
を作成した後、補強材とフィルムを圧縮成形又は熱ロー
ル間を通過させて複合化するか、押出ラミネートあるい
は、溶液あるいはラテックス勢な補強材に塗布する等の
方法で複合化すれば良く、特に限定するものではなく、
目的に応じて適宜選択すれば良い。
In the method for producing a hydrophilic film of the present invention, the method for molding the film made of the ethylene copolymer composition includes a molding method performed in ordinary plastic processing, for example, for a single film, compression molding, Flat films or tubular films are produced by extrusion molding, casting, etc., or for multilayer films, various single films are produced individually, and then multi-layered by compression molding, etc. in the desired combination, or A multilayer film may be created by coextrusion. In addition, composite films reinforced with one or more types of reinforcing materials such as woven fabrics, non-woven fabrics, and microporous membranes can be made by forming a single film and then compression molding the reinforcing material and the film or passing it between hot rolls. The compound may be compounded by extrusion lamination, solution or latex-like reinforcing material, etc., and is not particularly limited.
It may be selected appropriately depending on the purpose.

そして、上記フィルムにスルホン基を導入するKあたり
、可塑剤を添加した樹脂組成物よりなるフィルムでは、
使用する可塑剤の種類に応じて、溶剤を適宜選択し、フ
ィルムから樹脂成分をほとんど溶解することなく可塑剤
のみを抽出した後又は、可塑剤を抽出することなく含有
した状態で発煙硫酸単独又は、三酸化イオウ、クロルス
ルホン−などを必!!に応じて溶剤で希釈したもの、又
は三酸化イオウな錯化合物としたものでスルホン化する
のが好適である。
In a film made of a resin composition to which a plasticizer is added per K for introducing sulfone groups into the film,
Depending on the type of plasticizer used, select the appropriate solvent and extract only the plasticizer from the film without dissolving the resin component, or use fuming sulfuric acid alone or with the plasticizer contained without dissolving the plasticizer. , sulfur trioxide, chlorsulfone, etc. are required! ! Depending on the situation, it is preferable to carry out sulfonation using a diluted solution with a solvent or a complex compound such as sulfur trioxide.

そして、スルホン化剤応の温度は60℃以下、反応時間
は、2時間以内が適当でこの条件を越える反応では、好
ましくない副反応が発生しやすくなる。
The temperature of the reaction with the sulfonating agent is suitably 60° C. or less and the reaction time is suitably within 2 hours; if the reaction exceeds these conditions, undesirable side reactions are likely to occur.

そして、この条件内でフイ長ム厚み、組成、補強材の種
類及び有無、及び所望の電解液中での電気抵抗等に応じ
て、スルホン化剤の種類や鰻度を適宜選択することによ
り、希硫酸中の電気抵抗が0.01〜5Ω・(j”の範
囲の親水性膜になるようにスルホン基を導入する。
Then, within these conditions, by appropriately selecting the type and degree of sulfonating agent according to the film length, composition, type and presence or absence of reinforcing material, electrical resistance in the desired electrolyte, etc. A sulfone group is introduced so that the film becomes a hydrophilic film having an electrical resistance in dilute sulfuric acid of 0.01 to 5 Ω·(j”).

そして、上記の方法で得られる親水性膜を、骸親水性展
に結合したスルホン基の少なくとも1部が−80,Hの
状態で、加熱処理することにより、目的とする選択透過
性に優れた親水性膜を得ることができる。
Then, the hydrophilic membrane obtained by the above method is heat-treated in a state in which at least a part of the sulfone groups bonded to the skeleton hydrophilic group is -80,H, thereby achieving the desired excellent permselectivity. A hydrophilic membrane can be obtained.

これは、電解液中の電気抵抗が同一の従来法及び本発明
の方法で各女得られる親水性膜を比験して、本発明の方
法で得られる親水性膜が選択1aj11性、特に有機物
に対するイオンの選択透過性が着るしく優れていること
を意味するものである。
Comparing the hydrophilic membranes obtained by the conventional method and the method of the present invention with the same electrical resistance in the electrolyte, it was found that the hydrophilic membrane obtained by the method of the present invention has a high selectivity, especially against organic matter. This means that it has excellent ion permselectivity.

そして、本発明において、加熱処理前の希硫酸中の電気
抵抗は、0.01〜5Ω・Cal”が望ましく、%K 
O,05〜1Ω・ell”が好適となる。
In the present invention, the electrical resistance in dilute sulfuric acid before heat treatment is preferably 0.01 to 5 Ω・Cal", and %K
O.05 to 1Ω·ell” is suitable.

希硫酸中の抵抗が50・catsを越えると加熱処理の
効果が小さく、またo、oiΩ・−未満では、加熱処理
時に膜がモロク取扱いが困難なため、上記した0、01
〜5Ω・−八好ましくは、0.05〜1Ω・C3I雪が
望ましい。
If the resistance in dilute sulfuric acid exceeds 50.cats, the effect of heat treatment will be small, and if it is less than 0, oiΩ.-, it will be difficult to handle the film during heat treatment.
~5Ω・-8 Preferably, 0.05 to 1Ω・C3I snow is desirable.

また、該親水性膜な加熱処理するKあたり、腋部水性基
に結合したスルホン基の少なくとも一部が−80,Hの
状態にあることが必要で、例えばス、ルホン基のすべて
がカリウム等との金属塩の状態では、加熱処理の効果は
、期待しがたい。
In addition, it is necessary that at least a part of the sulfone groups bonded to the axillary aqueous groups be in the -80,H state, for example, all of the sulfone groups should be in the -80,H state for K to be heat-treated in the hydrophilic membrane. In the state of metal salt, the effect of heat treatment is difficult to expect.

また、加熱鵡通温度は50〜250℃の範囲が望ましく
、41に100〜200℃が好適である。
Further, the heating temperature is preferably in the range of 50 to 250°C, and preferably 100 to 200°C.

50℃未満では、処理時間が着るしく長く、また、25
0℃を越えるζ逆に着るしく短かくコントーールする必
要があるため、実質的に上記した50〜250℃好まし
くは100〜200℃の温度条件が、品質の安定性及び
生産1性の函から好適となる。
If the temperature is below 50°C, the processing time will be unnecessarily long, and if the temperature is below 50°C,
On the other hand, it is necessary to control the temperature of ζ exceeding 0℃, so it is necessary to control the temperature to be short and wearable, so the above-mentioned temperature conditions of 50 to 250℃, preferably 100 to 200℃, are preferable from the viewpoint of quality stability and productivity. becomes.

また、加熱l&llk要する時間は、加熱処理方法(伝
熱加熱方法、輻射加熱方法、対流加熱方法*)、親水性
膜の厚み0組成、補強材の種類及び有無。
In addition, the time required for heating depends on the heat treatment method (conduction heating method, radiation heating method, convection heating method*), the thickness of the hydrophilic film, the composition, and the type and presence of reinforcing material.

加熱処理前及び処理後の親水性膜の電解液中の電気抵抗
等により適宜決定されるが、通常、30秒〜60分程度
の範囲で、加熱処理することが、品質の安定性及び生産
性等の理由により望ましい。
This is determined appropriately depending on the electrical resistance in the electrolyte of the hydrophilic membrane before and after the heat treatment, but it is generally recommended to heat the membrane for a period of about 30 seconds to 60 minutes to ensure quality stability and productivity. It is desirable for the following reasons.

また、本発明の製造方法において、スルホ/化後に加熱
処理するとは、■スルホン化処理後、スルホン化剤を硫
酸及び水等で洗浄した後、加熱処理する、■スルホン化
処理後、スルホン化剤を硫酸及び水等で洗浄した後、乾
燥し、次いで加熱処理する、■スルホン化処理後、スル
ホン化剤を硫酸及び水等で洗浄し、次いでスルホン基を
アルカリ性薬品等で処理し、次いで水等で洗浄、次いで
乾燥のIjK処理した後、酸でスルホン酸塩を少なくと
も一部−8o、H基に変えた後、加熱処理する等の方法
で実施することが望ましく、使用するエチレン系共重合
体のエステル基の含有量及び加熱処理方法の違いにより
、適宜選択することができる。また、本発明の加熱処理
方法が前記した伝熱加熱方法、輻射加熱方法、対流加熱
方法のいずれの方法でも実施できることは言うまでもな
く、前記の加熱処理前の親水性膜の処理方法により適宜
選択すれば良い。
In addition, in the production method of the present invention, heat treatment after sulfonation means: (1) After sulfonation treatment, the sulfonation agent is washed with sulfuric acid, water, etc., and then heat treated; (2) After sulfonation treatment, the sulfonation agent is heated; After washing with sulfuric acid and water, etc., drying and then heat-treating. After sulfonation treatment, wash the sulfonating agent with sulfuric acid and water, etc., then treat the sulfone group with an alkaline chemical, etc., and then heat-treat. It is preferable to perform the IjK treatment by washing and drying, converting at least a portion of the sulfonate into -8O, H groups with an acid, and then heat-treating the ethylene copolymer used. It can be selected as appropriate depending on the content of ester groups and the heat treatment method. It goes without saying that the heat treatment method of the present invention can be carried out by any of the above-mentioned heat transfer heating methods, radiant heating methods, and convection heating methods, which may be selected as appropriate depending on the method for treating the hydrophilic film before heat treatment. Good.

そして、本発明の製造方法によって得られる親水性膜が
、従来法で得られる親水性膜に比べて、選択透過性が着
るしく優れる理由について、現状では、定かではないが
、本発明者らは、下記の理由によるものと推定している
Although it is not currently clear why the hydrophilic membrane obtained by the production method of the present invention has superior permselectivity compared to the hydrophilic membrane obtained by conventional methods, the present inventors It is assumed that this is due to the following reasons.

エチレン系共重合体を含有するフィルムに相当量のスル
ホン基を導入するととKより、電解液中の電気抵抗の小
さいエレクトロポーラスな親水性膜が得られることは、
従来より公知である。
When a considerable amount of sulfone groups are introduced into a film containing an ethylene copolymer, an electroporous hydrophilic film with low electrical resistance in an electrolytic solution can be obtained from K.
It is conventionally known.

そして、上記の親水性膜は、−OH,あるいは−C00
M及び−80,M基(M=H、アルカリ金属あるいはそ
の他のカルボン酸基及びスルホン基ζ塩を形成し得るイ
オンII)を有するため、水、Il水性物質、カチオン
を透過させやすく、逆に親油性物質及び大きいアニオン
を透過させがたいという選択透過性を有している。
The above hydrophilic film is made of -OH or -C00
Because it has M and -80, M groups (M=H, ion II that can form alkali metal or other carboxylic acid groups and sulfonic group ζ salts), it is easy to permeate water, Il aqueous substances, and cations; It has selective permeability that makes it difficult for lipophilic substances and large anions to pass through.

そして、本発明において−80,H基を有する親水性膜
を加熱処理することにより、−80,H基が何らかの化
学変化をし、該親木性膜の部分疎水化及び/又は部分架
橋を生じさせたことにより、諌親水性膜の選択透過性を
向上させたものと推定される。
In the present invention, by heat-treating the hydrophilic film having -80,H groups, the -80,H groups undergo some chemical change, resulting in partial hydrophobization and/or partial crosslinking of the woodphilic film. It is presumed that this improves the selective permselectivity of the hydrophilic membrane.

例えば、親水性物質問の選択透過性が向上する場合につ
いて記載すると、親水性の強弱あるいは、分子あるいは
イオンの大きさの大小の違う物質に対して、上記した部
分疎水化及び/又は部分架橋の影響が異なり、従来法で
得られる親水性膜が有する選択透過性が、より大きく発
現されたものと推察される。
For example, to describe the case where the selective permeability of hydrophilic substances is improved, the above-mentioned partial hydrophobization and/or partial cross-linking can be applied to substances with different hydrophilic strengths or different molecular or ion sizes. It is surmised that the influence was different, and that the selective permselectivity of the hydrophilic membrane obtained by the conventional method was expressed to a greater extent.

その結果、本発明の方法で得られる親木性膜は、従来法
で得られる親木性膜の各種のすべての用途。
As a result, the wood-loving film obtained by the method of the present invention can be used for all the various uses of wood-loving films obtained by conventional methods.

例えば、電解隔離膜、透析膜、各種の分離膜、電池用隔
膜、及び、燃料電池用の高分子電解質WI44II等で
、効率よく使用することが可能となる。
For example, it can be efficiently used in electrolytic separation membranes, dialysis membranes, various separation membranes, battery diaphragms, polymer electrolyte WI44II for fuel cells, and the like.

そして本発明な実施するにあたり、上記の加熱処理した
後、用途に応じて、アルカリ性薬品等にて中和し、十分
水洗して乾燥させて取り扱うことが、実用的に便利であ
る。
In carrying out the present invention, it is practically convenient to carry out the above-mentioned heat treatment, then neutralize with an alkaline chemical or the like, wash thoroughly with water, and dry before handling.

更に上記の条件で、本発明を実施するKは、その他の任
意所望の方法で、例えば連続的なフィルム以外にチュー
ブ状1袋状、ホローファイバー状等の異形の形状で処理
できることは言うまでもない。
Furthermore, under the above conditions, it goes without saying that the K used in the present invention can be processed in any other desired manner, for example, in other shapes than a continuous film, such as a tube, a single bag, a hollow fiber, and the like.

また、加熱処理前あるいは後に、耐酸化性、耐薬品性等
を改善する目的で、スルホン化前の三次元架橋化、ある
いはスルホン化後の化学的処理(特願昭56−1579
8号参照)勢の方法を実施することも可能である。
In addition, for the purpose of improving oxidation resistance, chemical resistance, etc., before or after heat treatment, three-dimensional crosslinking before sulfonation or chemical treatment after sulfonation (Japanese Patent Application No. 56-1579
It is also possible to implement other methods (see No. 8).

以下、実施例、比曽例において、本発明の方法により得
られる親水性膜の選択透過性について、親水性が大きく
、かつ分子径の比較的小さいメタノール(通常、電解液
中の電気抵抗の水さい親水性膜な害鳥に透過する)のバ
リヤー性の向上について記載し、本発明についてさらに
詳細に説明する。
In the following Examples and Comparative Examples, the selective permselectivity of the hydrophilic membrane obtained by the method of the present invention will be explained using methanol, which has large hydrophilicity and has a relatively small molecular diameter (normally, water with a large electrical resistance in the electrolytic solution). The present invention will be explained in more detail by describing the improvement of the barrier properties of the hydrophilic membrane (which is permeable to harmful birds).

崗、本明細書を通じ、各物性値の測定条件及び試験方法
は、下記のとおりである。
Throughout this specification, the measurement conditions and test methods for each physical property value are as follows.

(11希硫酸中の電気抵抗(Ω・013)比重が1.2
(at23℃)の希硫酸を満たした測定装置(JI8C
2313に準拠)k試料をセットし、電極間に、25 
mA/cm”の直流定電流を通電したときの試料による
電圧降下を測定し、下記の式より算出した値を希硫酸中
の電気抵抗とする。〔測定前に、試料を、比重が1.2
(az23℃)の希硫酸に24時間以上浸浸漬 孔−試料の希硫酸中の電気抵抗(Ω・3鵞)■l=試料
をセットしないときの電圧降下(V)v自=試料をセッ
トしたときの電圧降下(V)比重が1.2(at23℃
)の希硫11(A)と比重が1.2(ai23℃)の希
硫酸FC4vol IGのメタノールを混合した溶液(
B)を試料を介して接触させ、23℃の温度条件で(B
)液から(A)液へのメタノールの透過量を測定し、常
法に従ってメタノールの透過係数を算出した値である。
(11 Electrical resistance in dilute sulfuric acid (Ω・013) Specific gravity is 1.2
Measuring device (JI8C) filled with dilute sulfuric acid (at 23℃)
2313)) Set the sample, and place the 25 mm between the electrodes.
Measure the voltage drop across the sample when a constant DC current of mA/cm'' is applied, and use the value calculated from the following formula as the electrical resistance in dilute sulfuric acid. 2
Immerse in dilute sulfuric acid at (AZ23℃) for 24 hours or more - Electrical resistance of sample in dilute sulfuric acid (Ω・3Ω) ■l = Voltage drop when sample is not set (V) v = When sample is set When the voltage drop (V) specific gravity is 1.2 (at 23℃
) dilute sulfuric acid 11(A) and methanol of dilute sulfuric acid FC4vol IG with specific gravity 1.2 (ai 23℃) mixed solution (
B) was brought into contact with the sample through the sample, and at a temperature of 23°C (B)
The permeation coefficient of methanol is calculated by measuring the amount of methanol permeated from the liquid (A) to the liquid (A) according to a conventional method.

以下、実施例にて本発明についてさらに詳細に説明する
Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例、1〜4 94.2(−ル弧のエチレンと5.8%ル襲のメタクリ
ル酸メチルとの共重合体を、ナン化(ケン化度=60モ
ル%)及び中和(中和度=30モル襲)して得た一00
0C!H,、−000H及び−00ON、基を有するエ
チレン系共重合体(MI = 1.0) 80重量傅に
対し、20重量弧の高密度ポリエチレン(密度= 0.
955 f/am” 、 MI = 7 )を、ニーダ
−にて、190℃で約30分混練し、次いで、上記樹脂
混合物100重量部に対して、43重量部の流動パラフ
ィン(13i産化学株式金社製)を添加し、190℃で
約30分、さらに混線した。次いで、上記樹脂組成物を
、180℃の温度で、押出機で1熱可塑し、サーキュラ
−ダイより押出して、周囲より20℃の水で急冷する方
法で、原反厚み%40J1ml厚みのフィルムを得た。
Examples, 1 to 4 A copolymer of 94.2 (-) ethylene and 5.8% methyl methacrylate was subjected to nanization (degree of saponification = 60 mol%) and neutralization (neutralization). degree = 30 mole attack) and obtained 100
0C! H,, -000H and -00ON, ethylene-based copolymers (MI = 1.0) for 80 weight squares, 20 weight arc high density polyethylene (density = 0.
955 f/am'', MI = 7) was kneaded in a kneader at 190°C for about 30 minutes, and then, 43 parts by weight of liquid paraffin (13i Sankagaku Kinki Co., Ltd. (manufactured by S.A. Co., Ltd.) and further mixed for about 30 minutes at 190°C.Then, the resin composition was thermoplasticized in an extruder at a temperature of 180°C, extruded through a circular die, and A film with an original film thickness of %40J and a thickness of 1 ml was obtained by quenching with water at .degree.

そして、上記フィルムを常温の1.1. t −)リタ
aOエタンに約10分間浸漬し、流動パラフィンを抽出
し、遊■の三酸化イオウを12%含む発煙硫酸中に入れ
135℃で7分間処理し)濃硫酸、希硫酸、水の順に洗
浄し、水酸化カリウム水溶液で中和処理後、水洗、乾燥
し親水性膜を得た。この親水性膜の希硫酸中の電気抵抗
は%0.15″Q−ex”であった〇 次いで1この親水性膜を、INの塩酸水溶液で処理し、
−80,に基を大部分−80,H基に変え、蒸留水で洗
浄後%室温で乾燥した。
Then, the above film was heated to 1.1. t-)Immerse in RitaO ethane for about 10 minutes to extract liquid paraffin, then place in fuming sulfuric acid containing 12% free sulfur trioxide and treat at 135°C for 7 minutes) Concentrated sulfuric acid, dilute sulfuric acid, water The membrane was sequentially washed, neutralized with an aqueous potassium hydroxide solution, washed with water, and dried to obtain a hydrophilic membrane. The electrical resistance of this hydrophilic membrane in dilute sulfuric acid was %0.15"Q-ex"〇This hydrophilic membrane was then treated with an aqueous solution of IN hydrochloric acid,
Most of the -80, groups were changed to -80,H groups, washed with distilled water, and then dried at room temperature.

次いで、この親水性膜を、150℃の熱風乾燥器内で1
処理時間を慶えて、加熱処理を行なった。
Next, this hydrophilic membrane was dried for 1 hour in a hot air dryer at 150°C.
Heat treatment was performed taking into account the treatment time.

結果は、表1に示すように、希硫酸中の電気抵抗が小さ
いにもかかわらず、極めてメタノールのバリヤー性に優
れた親水性膜であった。
As shown in Table 1, the result was a hydrophilic membrane with extremely excellent methanol barrier properties despite having low electrical resistance in dilute sulfuric acid.

表1 1実施例4  1 G    1.55  4.8 X
 l O=比較例1〜4 実施例1のスルホン化条件を種々蛮更して一実施例1〜
4とほぼ同様の希硫酸中の電気抵抗を有する親水性膜を
作成し、メタノールのバリヤー性を測定したところ、表
2に示すように実施例1〜4に比較して、メタノールの
バリヤー性の劣るものであった。(比較例1〜4の親水
性膜は、実施例1〜4で実施した加熱処理は、なされて
いない)表2 実施例5〜7 92.3モル幡のエチレンと7.7モル一のアクリル酸
エチルとの共重合体(MI=2)400重量部対し、高
密度ポリエチレン(密度=0.965f/amへMI 
= 13 ) 60重量襲を実施例1と類似の方法でニ
ーダ−にて溶融混練し、次いで1上記樹脂温合物100
重量部に対し、流動パラフィン66.7重量部を加え、
さらに溶融混練したO 次いで、上記樹脂組成物を、サーキュラダイを取り付け
た押出機より押出成形し、原反厚み30μmのフィルム
を得た。
Table 1 1 Example 4 1 G 1.55 4.8 X
l O = Comparative Examples 1 to 4 Examples 1 to 4 were obtained by variously modifying the sulfonation conditions of Example 1.
A hydrophilic membrane having almost the same electrical resistance in dilute sulfuric acid as in Example 4 was prepared, and the methanol barrier property was measured. It was inferior. (The hydrophilic membranes of Comparative Examples 1 to 4 were not subjected to the heat treatment performed in Examples 1 to 4.) Table 2 Examples 5 to 7 92.3 moles of ethylene and 7.7 moles of acrylic 400 parts by weight of copolymer with ethyl acid (MI = 2), MI to high density polyethylene (density = 0.965 f/am)
= 13) 60% by weight was melt-kneaded in a kneader in a similar manner to Example 1, and then 100% of the above resin mixture was melt-kneaded.
Adding 66.7 parts by weight of liquid paraffin to the parts by weight,
The resin composition was then extruded using an extruder equipped with a circular die to obtain a film having a thickness of 30 μm.

以下実施例1と類似の方法で可塑剤の抽出を行なった後
、35℃の温度条件で15分間スルホン化処理を行ない
、以下濃硫酸、希硫酸1水の順に洗浄し、水酸化カリウ
ム水溶液で処理した後、水洗、乾燥し親水性膜を得た。
After extracting the plasticizer in the same manner as in Example 1, sulfonation treatment was carried out at 35°C for 15 minutes, followed by washing with concentrated sulfuric acid, diluted sulfuric acid with 1 water, and potassium hydroxide aqueous solution. After the treatment, the membrane was washed with water and dried to obtain a hydrophilic membrane.

この親水性膜の希硫酸中の電気抵抗は、O,SOΩ1国
2であった。
The electrical resistance of this hydrophilic membrane in dilute sulfuric acid was O.SOΩ1/2.

次いで1この親水性膜を実施例!同様塩酸水源液で処理
し、−80,に基の大部分を一80sH基に嶽え、蒸留
水で洗浄後、室温で乾燥した。
Next, 1 Example of this hydrophilic membrane! It was similarly treated with an aqueous hydrochloric acid solution to convert most of the -80 and -80 groups into -80sH groups, washed with distilled water, and then dried at room temperature.

次いで−この親水性膜を150℃の熱風乾燥器内で、処
理時間を変えて、加熱処理を行なった。
Next, this hydrophilic membrane was heat-treated in a hot air dryer at 150°C for varying treatment times.

結果は、表3に示すように希望酸中の電気抵抗が、小さ
いにもかかわらず、極めてメタノールのバリヤー性に優
れた親水性膜であった0表3 比較例5〜7 実施例5のスルホン化条件を種々変更して、実施例5〜
7とほぼ同様の希硫酸中の電気抵抗を有する親水性膜を
作成し、メタノールのバリヤー性を測定したところ、表
4に示すように実施例5〜7に比較して、メタノールの
バリヤー性の劣るものであった。(比較例5〜7の親水
性膜は、lllII例5〜7で実施した加熱処理は、な
されていなし〜)表4 実施例8〜12 実施例1と類似の方法で、希硫酸中の電気抵抗がO,l
a、t−の親水性膜とし表5に示す条件で、加熱処理を
行なった結果、メタノールのバリヤー性に優れた親水性
膜を得た。これらの親水性膜は、岡−の希硫酸中の電気
抵抗を有する従来法で得られる親水性膜に比べて、着る
しく選択透過性に優れるものであった。
As shown in Table 3, although the electrical resistance in the desired acid was small, the membrane was a hydrophilic membrane with extremely excellent methanol barrier properties.Table 3 Comparative Examples 5 to 7 Sulfone of Example 5 Examples 5-
A hydrophilic membrane having almost the same electrical resistance in dilute sulfuric acid as in Example 7 was prepared, and the methanol barrier property was measured. It was inferior. (The hydrophilic membranes of Comparative Examples 5 to 7 were not subjected to the heat treatment performed in II II Examples 5 to 7.) Table 4 Examples 8 to 12 In a similar manner to Example 1, electrolysis in dilute sulfuric acid was performed. resistance is O, l
A, t-hydrophilic membranes were heat-treated under the conditions shown in Table 5, and as a result, hydrophilic membranes with excellent methanol barrier properties were obtained. These hydrophilic membranes were more comfortable and had superior permselectivity than hydrophilic membranes obtained by the conventional method having electrical resistance in Oka's dilute sulfuric acid.

表5 実施例13〜16 92.9モル襲のエチレンと7,1モル襲の酢酸ビニル
、!=(F)共重合体(MI=2.5)よりなる4 0
 am厚みのフィルム(実施例13.14 )及び、実
施例1で使用したエチレン系共重合体よりなる40μm
・ 厚みのフィルム(実施例15.16 )を、従来公知の
方法で、スルホン化処理し、スルホン基が、はとん゛ど
、−5o−、、の状態で・表6の条件で加熱処理を実棒
した結果、従来法で得られる親水性膜に比べて、着るし
く、メタノールのバリヤー性に優れる親水性膜であった
Table 5 Examples 13 to 16 92.9 moles of ethylene and 7.1 moles of vinyl acetate! = (F) 40 made of copolymer (MI=2.5)
am-thick film (Example 13.14) and a 40 μm film made of the ethylene copolymer used in Example 1.
・ A thick film (Example 15.16) was sulfonated by a conventionally known method, and the sulfone group was in the state of -5o-.Heat-treated under the conditions shown in Table 6. As a result of actual testing, it was found that the hydrophilic membrane was more comfortable to wear and had superior methanol barrier properties compared to hydrophilic membranes obtained by conventional methods.

実施例17 実施例5で使用したエチレン系共重合体と高密度ぎりエ
チレンの組成比を、各々、80重量襲と20重量襲に変
更し、樹脂成分100重量部に対して43重量部のジオ
クチル7タレートを上記樹脂混合物に添加し、50μm
厚みのフィルムを作成した。上記フィルムを電子線照射
装置にて、ゲル分率■=15%になるよう照射架橋した
後ポリプロピレン製の織布〔50デニ一ルM使用(マル
チフィラメント)−50メツシユ織〕を該フィルム2枚
でサンドイッチ状に重ね120℃の温度条件で加圧接着
した。該複合フィルムを、冷却後、1゜1、 l −)
リフ四ロエタンに30分間浸漬し1流動パラフインを抽
出し、常温で乾燥後、スルホン化処理し、希硫酸中の電
気抵抗が0.20.amの親水性膜を作成した。
Example 17 The composition ratios of the ethylene copolymer and high-density ethylene used in Example 5 were changed to 80% by weight and 20% by weight, respectively, and 43 parts by weight of dioctyl was added to 100 parts by weight of the resin component. 7 tallate was added to the above resin mixture, and 50 μm
A thick film was created. The above film was irradiated and crosslinked using an electron beam irradiation device so that the gel fraction = 15%, and then two sheets of the film were coated with polypropylene woven fabric [50 denier M (multifilament) - 50 mesh weave]. They were stacked like a sandwich and bonded under pressure at a temperature of 120°C. After cooling the composite film, 1°1, l −)
1-liquid paraffin was extracted by immersion in rift tetraloethane for 30 minutes, dried at room temperature, and sulfonated to give an electrical resistance of 0.20 in dilute sulfuric acid. A hydrophilic membrane of am was prepared.

スルホン基の大部分が、−8o、Hの状態で150℃0
温度条件で、3分間、加熱処理を実施し、希硫酸中の電
気抵抗が0.630.eIll”、メタノールノ透過係
数が、4.8 X l Oam/ winの親木性膜を
得た。
Most of the sulfone groups are in the -8o, H state at 150℃0
Heat treatment was performed for 3 minutes under temperature conditions, and the electrical resistance in dilute sulfuric acid was 0.630. A wood-loving membrane with a methanol permeability coefficient of 4.8 X l Oam/win was obtained.

この親水性膜は、従来法で得られる親水性膜に比べて、
着るしく、選択透過性に優れるものであったO ■ ゲル分率(襲) 沸とうp−キシレン中で、樹脂を溶解し、非溶解部分の
割合を前記の式より算出した値毫可暖剤、無機フィラー
等を含まない 樹脂部分のみの重量 実施例18 実施I!1IIlで使用したエチレン系共重合体より、
40μm厚みのフィルムを作成した。
This hydrophilic membrane has the following characteristics compared to hydrophilic membranes obtained by conventional methods:
It was comfortable to wear and had excellent selective permselectivity. Gel fraction (temperature) The value obtained by dissolving the resin in boiling p-xylene and calculating the proportion of the undissolved portion from the above formula. , weight of only the resin part without inorganic filler etc. Example 18 Implementation I! From the ethylene copolymer used in 1IIIl,
A film with a thickness of 40 μm was created.

また、一方、ジオクチル7タレート、無水微粉ケイ酸及
び粉末高密度ポリエチレン(密度=ois。
Also, on the other hand, dioctyl 7 tallate, anhydrous finely divided silicic acid and powdered high-density polyethylene (density=ois).

t/♂、MI=1)より得られた樹・脂□組成物より従
来公知の方法で200声m厚みの微多孔膜を成形したO 次いで、前記の薄肉フィルム2枚で上記微多孔膜をサン
ドインチ状に重ね、110℃の温度条件で加圧接着した
t/♂, MI=1) A microporous membrane with a thickness of 200 meters was formed using a conventionally known method from the resin/resin composition obtained. They were stacked in a sandwich shape and bonded under pressure at a temperature of 110°C.

次いで、上記の複合フィルムを、テンター法にて、10
0℃の温度条件で3X3倍延伸した後1スルホン化処理
し、希硫酸中の電気抵抗が0.18Ωd−の親木性膜と
して、スルホン基の大m分が−80,Hの状態で150
℃の温度条件で3分間加熱処理したところ、希硫酸中の
1!気抵抗が0.410.32、メタノールの透過係数
が、5.1XtOcm/+ninの親水性膜となった。
Next, the above composite film was heated by tenter method for 10
After being stretched 3x3 times at a temperature of 0°C, it was subjected to 1 sulfonation treatment, and the electric resistance in dilute sulfuric acid was 0.18Ωd- as a wood-loving film, with the major m of sulfone groups being -80 and 150 in the H state.
When heat-treated for 3 minutes at a temperature of ℃, 1! The resulting hydrophilic membrane had an air resistance of 0.410.32 and a methanol permeability coefficient of 5.1XtOcm/+nin.

この親水性膜は、従来法で得られる親水性膜に比して、
着るしく選択透過性に優れるものであった。
Compared to hydrophilic membranes obtained by conventional methods, this hydrophilic membrane has
It was comfortable to wear and had excellent selective permeability.

比較例8 実施例8で作成した加熱処理前の親水性膜のスルホン基
がすべて、−80,にの状態で200℃の温度条件で1
時間及び3時間加熱処理した結果、希硫酸中の電気抵抗
がわずかに上昇したが、メタノールの透過係数は、はと
んど変化がみられず、選択透過性は改善されていなかっ
た。
Comparative Example 8 All the sulfone groups in the hydrophilic membrane before heat treatment prepared in Example 8 were 1 at a temperature of -80°C and 200°C.
As a result of heat treatment for 3 hours and 3 hours, the electrical resistance in dilute sulfuric acid slightly increased, but the methanol permeability coefficient hardly changed, and the permselectivity was not improved.

Claims (1)

【特許請求の範囲】 の炭化水素基、 R,=H,Cユ〜C6の炭化水素基、
アルカリ金属及びその他のカルボン酸基と塩を形成し得
るイオン類)〕の構造を有する単量体とのエチレン系共
重合体より選ばれた少なくとも1種類のエチレン系共重
合体を、少なくとも含有する樹脂組成物よりなるフィル
ム又は、諌フィ羨ムを少なくとも一層有する1合フィル
ムを、スルホン化剤と反応させ、希硫酸中の電気抵抗が
0.01〜5Ω・CIII冨の親水性膜とし、次いで、
該親木性膜のスルホン基O少なくとも一部が−80,H
の状1で加熱処理することを特徴とする親水性膜の製造
方法。 (2)希硫酸中の電気抵抗が、0.05〜1Ω・cam
である特許請求の範囲第(1)項記載の親水性膜の製造
方法。 (3) 50〜250℃の温度条件で加熱処理すること
を特徴とする特許請求の範囲第(1)項または第(2)
項記載の親水性膜の製造方法。 (4)  樹脂組成物が、エチレン系共重合体の少な(
とも1種類とその他の熱可塑性樹脂とを含有する特許請
求の範S第(1)項〜俤)項のいずれか1項に記載の親
水性膜の製造方法。 俤) 複合フィルムが、該樹脂組成物よりなるフィルム
と、織布、不織布、微多孔膜より選ばれる補強材の1種
又は2種以上とからなる特許請求の範囲第(1)〜(4
1項のいずれか1項に記載の親水性膜の製造方法。 悼) 樹脂組成物よりなるフイλムが、前記エチレン系
共重合体を少なくとも111111以上含有する樹脂成
分と該樹脂成分に相溶性でありかつ抽出可能である可塑
剤との混合物よりなるフィルムである特許請求の範囲第
(1)〜伜)項のいずれか1項に記載の親水性膜の製造
方法。
[Claims] A hydrocarbon group of R, = H, a hydrocarbon group of C to C6,
Contains at least one type of ethylene copolymer selected from ethylene copolymers with monomers having the structure (ions that can form salts with alkali metals and other carboxylic acid groups) A film made of a resin composition or a monopoly film having at least one layer of resin composition is reacted with a sulfonating agent to form a hydrophilic film having an electrical resistance of 0.01 to 5Ω·CIII in dilute sulfuric acid, and then ,
At least a portion of the sulfone groups O of the wood-philic film are -80,H
1. A method for producing a hydrophilic membrane, characterized by heat-treating it in Form 1. (2) Electrical resistance in dilute sulfuric acid is 0.05 to 1Ω・cam
A method for producing a hydrophilic membrane according to claim (1). (3) Claims (1) or (2) characterized in that the heat treatment is performed under a temperature condition of 50 to 250°C.
A method for producing a hydrophilic membrane as described in . (4) The resin composition contains less ethylene copolymer (
The method for producing a hydrophilic membrane according to any one of claims S (1) to (S), which contains one type of thermoplastic resin and another thermoplastic resin. Claims (1) to (4) wherein the composite film comprises a film made of the resin composition and one or more reinforcing materials selected from woven fabrics, nonwoven fabrics, and microporous membranes.
A method for producing a hydrophilic membrane according to any one of Item 1. ) The film made of the resin composition is a film made of a mixture of a resin component containing at least 111111 or more of the ethylene copolymer and a plasticizer that is compatible with and extractable from the resin component. A method for producing a hydrophilic membrane according to any one of claims (1) to (a).
JP56209339A 1981-12-25 1981-12-25 Method for manufacturing hydrophilic membrane Expired JPS6044334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56209339A JPS6044334B2 (en) 1981-12-25 1981-12-25 Method for manufacturing hydrophilic membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56209339A JPS6044334B2 (en) 1981-12-25 1981-12-25 Method for manufacturing hydrophilic membrane

Publications (2)

Publication Number Publication Date
JPS58111832A true JPS58111832A (en) 1983-07-04
JPS6044334B2 JPS6044334B2 (en) 1985-10-03

Family

ID=16571304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56209339A Expired JPS6044334B2 (en) 1981-12-25 1981-12-25 Method for manufacturing hydrophilic membrane

Country Status (1)

Country Link
JP (1) JPS6044334B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6087803A (en) * 1983-10-19 1985-05-17 Sumitomo Bakelite Co Ltd Polysulphone permselective film and its preparation
JP2005314594A (en) * 2004-04-30 2005-11-10 Asahi Rubber:Kk Polymer porous cation exchanger and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6087803A (en) * 1983-10-19 1985-05-17 Sumitomo Bakelite Co Ltd Polysulphone permselective film and its preparation
JPH0122009B2 (en) * 1983-10-19 1989-04-25 Sumitomo Bakelite Co
JP2005314594A (en) * 2004-04-30 2005-11-10 Asahi Rubber:Kk Polymer porous cation exchanger and method for producing the same

Also Published As

Publication number Publication date
JPS6044334B2 (en) 1985-10-03

Similar Documents

Publication Publication Date Title
CA1094982A (en) Single film, high performance bipolar membrane
US4670146A (en) Composite hydrophilic membrane and method for manufacture thereof
CA2772306A1 (en) Ion exchange membranes featuring polymer-filled microporous supports
Afsar et al. SPPO-based cation exchange membranes with a positively charged layer for cation fractionation
JP2013545834A (en) Method for producing a monomer solution for producing a cation exchange membrane
US2731411A (en) Electrically conductive membranes and the like comprising the sulfonated polymerizates of polyvinyl aryl compounds
CN110461916A (en) Bipolar ion-exchange membrane using heterogeneous ion-exchange membrane carrier and its manufacturing method
KR20140126199A (en) Manufacturing Method of Ion Exchange Membrane Using Porous Substrate and Polymer Coating
US3607706A (en) Method of making stable laminated cation-exchange membranes
KR101188267B1 (en) Anion exchange composite membrane with olefin-based additives and method for preparing the same
US2858264A (en) Selective cation-permeable barriers
DE60014713T2 (en) Membranes of graft polymers and ion exchange membranes thereof
US6849688B2 (en) Polymer grafted support polymers
EP0153713B1 (en) Membranes from organic, non-cross-linked polymers containing ionogenic groups linked thereto
Kim et al. Preparation and characterizations of ionomer-coated pore-filled ion-exchange membranes for reverse electrodialysis
JPS58111832A (en) Preparation of hydrophilic membrane
CN108067102B (en) Cation exchange membrane and preparation method thereof
JPS594402A (en) Composite hydrophilic membrane
KR101799996B1 (en) Styrene-based and tert-butylstyrene-based cation exchange composite membrane having polyvinylidene fluoride and method of preparing thereof
JPS6069140A (en) Ionically conductive composite hydrophilic membrane
JPH0747655B2 (en) Reinforced ion exchange membrane
KR100473351B1 (en) Preparation method of Polyethylene/Polystyrene cation-exchange membrane
KR101190732B1 (en) Cation exchange composite membranes with olefin-based additives and method for preparing the same
KR20160060889A (en) Styrene-tert-butyl styrene based cation exchange composite membranes with nitrile rubber and method for preparing the same
KR100460454B1 (en) A swollen cation exchange membrane using water-soluble polymer and preparation method thereof