JPS58111760A - Handy measurment of insulation resistance - Google Patents
Handy measurment of insulation resistanceInfo
- Publication number
- JPS58111760A JPS58111760A JP21113981A JP21113981A JPS58111760A JP S58111760 A JPS58111760 A JP S58111760A JP 21113981 A JP21113981 A JP 21113981A JP 21113981 A JP21113981 A JP 21113981A JP S58111760 A JPS58111760 A JP S58111760A
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- insulation resistance
- current transformer
- zero
- inductance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009413 insulation Methods 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 claims description 12
- 230000005284 excitation Effects 0.000 claims description 10
- 239000003990 capacitor Substances 0.000 claims description 7
- 238000005259 measurement Methods 0.000 abstract description 3
- 239000002131 composite material Substances 0.000 abstract description 2
- 230000007935 neutral effect Effects 0.000 abstract description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910001219 R-phase Inorganic materials 0.000 description 1
- 230000018199 S phase Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- NGDPCAMPVQYGCW-UHFFFAOYSA-N dibenzothiophene 5-oxide Chemical compound C1=CC=C2S(=O)C3=CC=CC=C3C2=C1 NGDPCAMPVQYGCW-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/16—Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
- G01R27/18—Measuring resistance to earth, i.e. line to ground
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Resistance Or Impedance (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は活線回路の絶縁抵抗測定方法の改良に関する。[Detailed description of the invention] The present invention relates to an improvement in a method for measuring insulation resistance of a live circuit.
従来の活線回路の絶縁抵抗の測定、特に単相三線式回路
の絶縁測定方法としては特開56−119860に開示
されたものがある。A conventional method for measuring the insulation resistance of a live circuit, particularly for a single-phase three-wire circuit, is disclosed in Japanese Patent Laid-Open No. 56-119860.
その方法は電路もしくは接地線に零相変流器とインダク
タンス素子を挿入し、インダクタンス素子に商用周波の
励at流を流した場合と流さない場合とにおける零相質
流器で検出される漏洩電流値の差を検出して絶縁抵抗を
測定する方法であるがこの方法には次の(1)〜(4)
の欠点がある。The method involves inserting a zero-phase current transformer and an inductance element into the electrical circuit or grounding line, and measuring the leakage current detected by the zero-phase current transformer when a commercial frequency excited current is flowing through the inductance element and when it is not flowing. This method measures insulation resistance by detecting the difference in values, but this method requires the following (1) to (4).
There are drawbacks.
(1)商用周波数の励磁電流をインダクタンス素子に流
して電路に一定電圧を誘起させるわけであるが、大きな
誘起電圧を発生しないと前記の漏洩電流値の差の変化を
検出することができない。(1) A commercial frequency excitation current is passed through the inductance element to induce a constant voltage in the electrical circuit, but unless a large induced voltage is generated, changes in the difference in leakage current values cannot be detected.
そして大きな誘起電圧を得るには大きなインダクタンス
を必要とする。(2)同公報の明細書3ページの下から
5行目〜8行目に記載の如く、単相3線回路の場合は、
R相とT相の電圧で励磁電流上流し、それぞれの場合に
ついて上記「漏洩電流の差」を測定しなければならない
煩雑さがある。(3)上記励磁電流を流した場合と流さ
ない場合の漏洩電流値の差を求めるためには前者の値を
記憶保持しないかぎり自動測定はできない。従ってそれ
だけ桧雑になる。(4)上記「大きな誘起電圧」の発生
によって電路と天地間の電圧が急激に増加することにな
るため計算機等が負荷に接続されている場合、たとえノ
イズフィルタ等が設けられていても大きなノイズを発生
し該動作を発生する可能性がある。In order to obtain a large induced voltage, a large inductance is required. (2) In the case of a single-phase three-wire circuit, as stated in the fifth to eighth lines from the bottom of page 3 of the specification of the same publication,
There is a complication in that the excitation current is applied upstream by the R-phase and T-phase voltages, and the above-mentioned "difference in leakage current" has to be measured for each case. (3) In order to determine the difference in leakage current values when the excitation current is applied and when it is not applied, automatic measurement cannot be performed unless the former value is stored in memory. Therefore, it becomes that much more complicated. (4) Due to the generation of the above-mentioned "large induced voltage", the voltage between the electric circuit and the ground increases rapidly, so if a computer etc. is connected to the load, there will be a large amount of noise even if a noise filter etc. is installed. There is a possibility that the operation will occur.
本発明の方法はこの問題を解決するもので、電路もしく
は接地線に零相変流器とインダクタンス素子全挿入し、
インタフタンス素子に流す商用周波数foの励磁電流を
搬送周波数成分としてこれを商用周波より低い周波数f
tで制御して振@変調することにより、励磁電流の周波
数成分が商用周波数成分以外の成分を含むように変換し
零相変流器出力に得られる漏洩電流中の周波数成分子o
ftまたはf o+f 1の成分を検出することに
よシ絶縁抵抗を測定するものである。したがって本発明
の方法によれば上述の引用例にみられるごとく「大きな
誘起電圧」の発生を不要とし、かつ誘起電圧による漏洩
電流中の商用周波成分を用いないため上記「漏洩電流値
の差」を測定する必要もなくなり極めて経済的に絶縁抵
抗の測定、それも自動測定を可能にするものである。The method of the present invention solves this problem by completely inserting a zero-phase current transformer and an inductance element into the electrical circuit or grounding line,
The excitation current of the commercial frequency fo that flows through the interface element is used as a carrier frequency component, and is converted to a frequency f lower than the commercial frequency.
By controlling and modulating with t, the frequency component of the exciting current is converted to include components other than the commercial frequency component, and the frequency component in the leakage current obtained at the output of the zero-phase current transformer is
The insulation resistance is measured by detecting the component of ft or f o+f 1. Therefore, according to the method of the present invention, it is not necessary to generate a "large induced voltage" as seen in the above cited example, and since the commercial frequency component in the leakage current due to the induced voltage is not used, the "difference in leakage current value" mentioned above is eliminated. This eliminates the need to measure insulation resistance, making it possible to measure insulation resistance very economically and automatically.
以下実施例をもとに本発明の詳細説明を行なう。第1図
は本発明の1実施例であり、ここには単相3線回路の場
合を示しているが、以下に述べる本発明の方法はこれに
限定されず、2次1端接地の単相21fM、3相3線等
の回路へも同様に適応可能なものである。The present invention will be explained in detail below based on Examples. FIG. 1 shows one embodiment of the present invention, and the case of a single-phase three-wire circuit is shown here, but the method of the present invention described below is not limited to this. It is similarly applicable to circuits such as phase 21fM, 3-phase 3-wire, etc.
さて第1図にて単相3i)ランス1′の1次fi11に
は高圧が印加され、2次側のR・、S、T相(のン)に
は負荷2..22,2.が接続されている。Now, in Fig. 1, a high voltage is applied to the primary fi11 of the single-phase lance 1', and a load 2. .. 22,2. is connected.
R,T、S相の絶縁抵抗をRg+tRg2+Rg3とし
、中性線Sは接地線E2にて第2種地されているものと
する。It is assumed that the insulation resistances of the R, T, and S phases are Rg+tRg2+Rg3, and the neutral wire S is grounded as a type 2 grounding wire E2.
接地線E2は零相変流器ZCTを貫通している。The grounding wire E2 passes through the zero-phase current transformer ZCT.
また電路はインダクタンスLi貫通している。Further, the electric path passes through the inductance Li.
ここでR相、T相の電圧を図示の如<V+、v2とする
。商用周波数foより低い周波数f1を発振する発娠器
O8(商用周波数を分周する等して発生するものをO8
に代えてもよい。)の出力は例えばVstl−電源電圧
とするリレーのコイルRL=i連続動作させ、その接点
γノは図示の如く例えば抵抗R1を介してインダクタン
スLに励磁電流を流すものとする。このとき励磁電流を
、周波数foの電流を周波数ftでオン・オフキーイン
グしたものにすればそれは搬送周波数foが周波数f1
で矩形波振幅変調されえヤよヶ、。(接点r l 11
pl VC蛯別ヤ抵抗ヶ挿入しておいてオン中オフキー
イングしてもよい。この場合これによる消費電力は増加
する。)□かくすることによシ各電路にはインダクタン
スLによシミ圧vを誘起させることができる。さてこの
ときの接地線E2に帰還する漏洩電流Igは
となる。Here, the voltages of the R phase and T phase are set to <V+, v2 as shown in the figure. Oscillator O8 that oscillates a frequency f1 lower than the commercial frequency fo (O8 is the one generated by dividing the commercial frequency, etc.)
You can also replace it with ) is set to, for example, Vstl-power supply voltage, and the coil RL=i of the relay is continuously operated, and its contact .gamma. flows an excitation current to the inductance L via, for example, a resistor R1, as shown in the figure. At this time, if the excitation current is a current of frequency fo that is keyed on and off at frequency ft, it means that the carrier frequency fo is the frequency f1.
It's a square wave amplitude modulated. (Contact r l 11
You may insert a resistor for the VC and turn it off while it is on. In this case, power consumption increases. ) □ By doing this, a stain pressure v can be induced in each electric circuit by the inductance L. Now, the leakage current Ig fed back to the ground line E2 at this time is as follows.
零相変流器ZCTによりこの漏洩電流Igを検出する。This leakage current Ig is detected by a zero-phase current transformer ZCT.
ところで0式の第1項、第2項の? 。By the way, what about the first and second terms of equation 0? .
、?2は商用周波成分であるが、第3項のVは商用周波
four周波数f1でオン・オフキーイングされている
ため、振幅変調された電圧であり、そのスペクトルは第
1側帯波のみを考えれば周波数fo ft成分の;−
1と周波数fo+f+の成分のξ1が存在する。したが
って零相変流器出力を増幅回路AMPで増幅し、これを
例えば周波数fo flの成分のみを通過させるフィ
ルタBPFに通すと、その出力電圧e−,はとなる。従
ってバンドパスフィルタBPF出力全整流回路DETに
加えることにより、DET出力OUTには全電路の並列
合成絶縁抵抗に相当する電圧が得られ絶縁抵抗の測定が
可能となる。,? 2 is a commercial frequency component, but the third term V is an amplitude-modulated voltage because it is keyed on and off at the commercial frequency four frequency f1, and its spectrum is equal to the frequency if only the first sideband is considered. fo ft component;-
1 and a component ξ1 of frequency fo+f+ exists. Therefore, when the output of the zero-phase current transformer is amplified by the amplifier circuit AMP and passed through a filter BPF that passes only the component of the frequency fo fl, for example, the output voltage e-, becomes. Therefore, by adding the output of the bandpass filter BPF to the total rectifier circuit DET, a voltage corresponding to the parallel composite insulation resistance of all the electric circuits is obtained at the DET output OUT, making it possible to measure the insulation resistance.
ところで本実施例では励磁電流のオン・オフキーイング
にリレーを用いたが、リレーの代りに半導体スイッチを
利用できることは明らかである。Incidentally, in this embodiment, a relay is used for on/off keying of the excitation current, but it is clear that a semiconductor switch can be used instead of the relay.
なおまた第2図の第2の実施例如くインダクタンスを接
地線E2に貫通させそれに第1図の如く例えば矩抗R1
ヲ介してリレー接点r11で励磁電流をオン・オフキー
イングしても同様の結果を得ることができる。更にまた
零相変流器ZCT 、インダクタンスLのいずれか一方
を接地線、他方を電路が貫通するごとくしても同じ結果
が得られることは容易に理解できる。Furthermore, as in the second embodiment shown in FIG. 2, an inductance is passed through the grounding wire E2, and a rectangular resistor R1 is connected thereto as shown in FIG.
A similar result can be obtained by keying the excitation current on and off using the relay contact r11. Furthermore, it is easy to understand that the same result can be obtained even if one of the zero-phase current transformer ZCT and the inductance L is connected to a ground wire, and the other is connected to an electric path.
上述の如くする本発明の方法によれば、励磁電流を流し
た場合と、流さない場合の「漏洩電流値の差」を求める
必要がなくなる。また電路に誘起させる電圧Vがかなり
低くてもバンドパスフィルタBPFの選択特性を充分シ
ャープにするか、または必要に応じてバンドパスフィル
タ出力を増幅する等により、容易に高精度の絶縁抵抗の
測定が可能となる。したがって引用例における従来の方
法よりもインダクタンスの大きさをはるかに小さくする
ことができて経済的である。According to the method of the present invention as described above, there is no need to determine the "difference in leakage current value" between when an excitation current is applied and when it is not applied. In addition, even if the voltage V induced in the electric path is quite low, it is possible to easily measure insulation resistance with high precision by making the selection characteristics of the bandpass filter BPF sufficiently sharp, or by amplifying the bandpass filter output as necessary. becomes possible. Therefore, the inductance can be much smaller than the conventional method in the cited example, which is economical.
ところで、上記説明にては電路の対地浮遊容量を無視し
たが、多くの場合、この対地浮遊容量は絶縁抵抗の測定
を困難にし、判定誤差を太きくするので、この影41除
去する方法全以下にのべる。By the way, in the above explanation, we have ignored the stray capacitance to the ground of the electric circuit, but in many cases, this stray capacitance to the ground makes it difficult to measure the insulation resistance and increases the judgment error. to climb on.
例えば第1図のJS、T相の対地浮遊容量kCI+C2
+C3とする。そして上記の如く例えば漏洩電流中の周
波数fo flの成分を用いるとすれば、バンドパス
フィルタBPFの出力電圧ep1は
となる。ここで ω0=2πfoeω1=2πflであ
る。For example, the stray capacitance to ground of the JS and T phases in Figure 1 kCI+C2
+C3. If, for example, the component of the frequency fo fl in the leakage current is used as described above, the output voltage ep1 of the band pass filter BPF will be as follows. Here, ω0=2πfoeω1=2πfl.
したがって、
1 1 1
1 ”−丁t;”1τ;−)(ω0−ω1)(C1+0
2+03) ■のときにのみ対地浮遊容量の影
響を無視して、上記整流回路DBTO出力OUTで絶縁
抵抗を測定できることになる。Therefore, 1 1 1 1 ”-dingt;”1τ;-)(ω0-ω1)(C1+0
2+03) Only in the case (2), the insulation resistance can be measured by the output OUT of the rectifier circuit DBTO, ignoring the influence of the stray capacitance to the ground.
しかし実際には、測定対象とする電路の対地浮遊容量は
一般に未知であり上記方法で測定された絶縁抵抗との関
係が0式をみたすか否かの確認が困難である。しかし本
発明の方法は次に述べるようにこの問題を解決し、対地
浮遊容量の影餐ヲ除去することを可能にする。However, in reality, the stray capacitance to ground of the electrical circuit to be measured is generally unknown, and it is difficult to confirm whether the relationship with the insulation resistance measured by the above method satisfies Equation 0. However, the method of the invention, as described below, solves this problem and makes it possible to eliminate the effects of ground floating capacitance.
第1□□□、第2図に示されるごとく、インダクタンス
Lと零相変流器ZCTに対して誘起電圧が逆相となるよ
うな新たな接続#LINK(破線で表示)を貫通させこ
れにコンデンサC′fr挿入接続する。かくするときは
、零相変流器ZCTには、コンデンサC=z−通るルー
プ蜜、流によって誘起電圧↓と逆相の電流を流すことが
できる。As shown in 1st □□□ and Figure 2, a new connection #LINK (indicated by a broken line) is passed through this so that the induced voltage is in reverse phase with respect to the inductance L and the zero-phase current transformer ZCT. Insert and connect capacitor C'fr. In this case, a current having the opposite phase to the induced voltage ↓ can be caused to flow through the zero-phase current transformer ZCT due to the loop current passing through the capacitor C=z-.
このときの上記バンドパスフィルタBPF の出力電圧
eご、は
■
となる。したがってもしこのとき、整流回路DETの出
力OUTが最小と々るようにコンデンサCの値を自動調
整する手段を設けるならば、そのときのCは
C1+C2+C3→C■
となり対地浮遊容量の影響はなくな90式の如く絶縁抵
抗のみを測定することが可能となる。At this time, the output voltage e of the band pass filter BPF becomes . Therefore, in this case, if a means is provided to automatically adjust the value of capacitor C so that the output OUT of the rectifier circuit DET reaches the minimum value, C at that time becomes C1+C2+C3→C■, and the influence of stray capacitance to ground disappears. It becomes possible to measure only the insulation resistance as in Equation 90.
この調整手段は既知に属し、当業者には実状容易である
。This adjustment means is known and readily available to those skilled in the art.
また更に周波数fo十、ftの成分のみ全通過させるバ
ンドパスフィルタを増幅器AMPの出力に別途設けたと
きのその出力電圧’re’、’、とすれは、
■
となるので、+v−、+とIV+、lとの比を一定とす
れは
が零に近づくようにコンデンサCの値を自動調整しても
0式の関係が得られる。この自動調整も当業者には実現
容易である。Furthermore, when a band-pass filter is separately provided at the output of the amplifier AMP that allows all of the components of frequencies fo1 and ft to pass through, the output voltages 're', ', and sore become (2), so +v-, + Even if the value of the capacitor C is automatically adjusted so that the ratio of IV+ and l is constant and the ratio approaches zero, the relationship of equation 0 can be obtained. This automatic adjustment is also easily realized by those skilled in the art.
上記説明の如く本発明は従来の問題点を解決するだけで
なく必要に応じて対地浮遊容量の形勢も除去でき経済的
に絶縁抵抗の測定ができ工業的な価値が犬なるものであ
る。As explained above, the present invention not only solves the conventional problems, but also eliminates stray capacitance to the ground if necessary, and enables economical measurement of insulation resistance, which has great industrial value.
、・′□。,・′□.
参考文献:ベネット著「データ伝送」 ラティス社刊、38ページ。References: “Data Transmission” by Bennett Published by Lattice, 38 pages.
第1図 第1の実施例を示す図
第2図 第2の実施例を示す図
Tニドランス
L:インダクタンス
Zl +Z2 +Z3 :負荷
Rg、、11・g2.Rga:絶縁抵抗ZCT :零相
変流器
AMP :増幅器
BPF :バンドパスフィルタ
DET :整流器
O8:発振器
RL :リレーコイル
γl :リレー接点
R11:抵抗等
LINK:接続線
C:コンデンサFIG. 1 shows the first embodiment FIG. 2 shows the second embodiment T Nidorance L: Inductance Zl +Z2 +Z3: Load Rg, 11·g2. Rga: Insulation resistance ZCT: Zero-phase current transformer AMP: Amplifier BPF: Band pass filter DET: Rectifier O8: Oscillator RL: Relay coil γl: Relay contact R11: Resistance, etc. LINK: Connection wire C: Capacitor
Claims (1)
はその接地線をして零相変流器とインダクタンス素子を
貫通せしめ、該インダクタンス素子に流す商用周波数f
oの励磁電流を該商用周波数foより低い周波数f1で
オン・オフキーイングしてこれ金振幅変晒し、該零相変
流器出力に得られる漏洩電流中の周波数fo+11もし
くはfo fsの成分を検出することにより該電路の
絶縁抵抗を測定することを特徴とする簡易絶縁抵抗測定
方法。 2、特許請求の範囲1において、該零相質流器と該イン
ダクタンスの両者を前記とは互に逆相となるように貫通
する新たなループ接続線を設け、かつ該ループ接続線に
はコンデンサを内挿接続し、該コンデンサの値は該零相
変流器出力に得られる漏洩電流中の周波数fo十ftも
しくはfo fx の成分の値が最小となるごとく
決定することにより該零相変流器出力中の周波数fo+
f*もしくはfo ftの成分の値を検出することに
より該電路の絶縁抵抗を測定することを特徴とする簡易
絶縁抵抗測定方法。[Claims] 1. In measuring the insulation resistance of a current-carrying electrical circuit, the electrical circuit or its grounding wire is passed through a zero-phase current transformer and an inductance element, and a commercial frequency f is applied to the inductance element.
The excitation current of o is turned on/off keyed at a frequency f1 lower than the commercial frequency fo to change the amplitude thereof, and detect the frequency fo+11 or fo fs component in the leakage current obtained at the output of the zero-phase current transformer. A simple insulation resistance measuring method characterized by measuring the insulation resistance of the electric circuit. 2. In claim 1, a new loop connection line is provided that passes through both the zero-phase flow device and the inductance so as to be in opposite phases to the above, and a capacitor is provided in the loop connection line. The zero-phase current transformer is connected by interpolation, and the value of the capacitor is determined so that the value of the frequency component of the frequency foft or fofx in the leakage current obtained at the output of the zero-phase current transformer is minimized. Frequency fo+ in the device output
A simple insulation resistance measuring method characterized by measuring the insulation resistance of the electric circuit by detecting the value of the f* or fo ft component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21113981A JPS58111760A (en) | 1981-12-25 | 1981-12-25 | Handy measurment of insulation resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21113981A JPS58111760A (en) | 1981-12-25 | 1981-12-25 | Handy measurment of insulation resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58111760A true JPS58111760A (en) | 1983-07-02 |
JPH0143912B2 JPH0143912B2 (en) | 1989-09-25 |
Family
ID=16601021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21113981A Granted JPS58111760A (en) | 1981-12-25 | 1981-12-25 | Handy measurment of insulation resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58111760A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6021972U (en) * | 1983-07-21 | 1985-02-15 | 本重 正行 | Insulation checker for live wires |
-
1981
- 1981-12-25 JP JP21113981A patent/JPS58111760A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6021972U (en) * | 1983-07-21 | 1985-02-15 | 本重 正行 | Insulation checker for live wires |
Also Published As
Publication number | Publication date |
---|---|
JPH0143912B2 (en) | 1989-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5153506A (en) | Apparatus for measuring a winding temperature of electric machines | |
JPH0143911B2 (en) | ||
JPS58111760A (en) | Handy measurment of insulation resistance | |
JPS61155869A (en) | Measuring method of phase-compensated insulation resistance | |
JPH01143971A (en) | Method for measuring insulation resistance | |
JPH0552466B2 (en) | ||
JP2614447B2 (en) | Insulation resistance measurement method that compensates for the effect of ground resistance | |
JPH0640113B2 (en) | Simple insulation resistance measuring method | |
JP2750705B2 (en) | Insulation resistance measurement method | |
JP2754011B2 (en) | Insulation resistance measurement method with phase compensation | |
JPS58127172A (en) | Insulation resistance measuring apparatus for electric line with suppressed stray capacity | |
JPS60165559A (en) | Measuring method of insulation resistance and ground stray capacity | |
JP2750690B2 (en) | Leakage current detection method | |
JP2896572B2 (en) | Simple insulation resistance measurement method | |
JP2612719B2 (en) | Simple insulation resistance measurement method for electrical circuits | |
JP2614449B2 (en) | Insulation resistance measurement method compensated for ground resistance | |
JPH028529B2 (en) | ||
JP2612703B2 (en) | Insulation resistance measurement method with canceling ground resistance | |
JPH0282170A (en) | Insulation resistance measuring method compensated for ground resistance | |
JPH01114765A (en) | Simplified measuring method for insulation resistance | |
JPS637349B2 (en) | ||
JPH01116455A (en) | Measurement of insulation resistance compensated for ground resistance effect | |
JPS6159267A (en) | Method for measuring insulating resistance of electric circuit | |
JPH0814593B2 (en) | Stray capacitance compensation method in insulation resistance measurement of electric circuits etc. | |
JPS6252822B2 (en) |