JPS58104041A - Material for optical waveguide of mid-infrared band - Google Patents
Material for optical waveguide of mid-infrared bandInfo
- Publication number
- JPS58104041A JPS58104041A JP56201180A JP20118081A JPS58104041A JP S58104041 A JPS58104041 A JP S58104041A JP 56201180 A JP56201180 A JP 56201180A JP 20118081 A JP20118081 A JP 20118081A JP S58104041 A JPS58104041 A JP S58104041A
- Authority
- JP
- Japan
- Prior art keywords
- waveguide
- zno
- loss
- glass
- gas laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 10
- 230000003287 optical effect Effects 0.000 title abstract description 5
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229940119177 germanium dioxide Drugs 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 239000000654 additive Substances 0.000 claims 1
- 230000000996 additive effect Effects 0.000 claims 1
- 239000011521 glass Substances 0.000 abstract description 13
- 230000005540 biological transmission Effects 0.000 abstract description 9
- 239000003365 glass fiber Substances 0.000 abstract 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 16
- 229910002092 carbon dioxide Inorganic materials 0.000 description 8
- 239000001569 carbon dioxide Substances 0.000 description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 5
- 239000013307 optical fiber Substances 0.000 description 3
- 239000011162 core material Substances 0.000 description 2
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 2
- 229910001950 potassium oxide Inorganic materials 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 240000006890 Erythroxylum coca Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 235000008957 cocaer Nutrition 0.000 description 1
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
- C03C13/04—Fibre optics, e.g. core and clad fibre compositions
- C03C13/048—Silica-free oxide glass compositions
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/102—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type for infrared and ultraviolet radiation
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Toxicology (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
- Optical Integrated Circuits (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、脚醗ガスレーザ光(波長/%声−1波数94
cOCa’″1)を低損失で伝送するための中空従来、
炭酸ガスレーザ光用光÷アイパーには、主としてKH2
−5をコア材とし、ポリマーをクラツド材としたものが
使用されて≠た・しかし1このKH2−5及び他のパラ
イト糸材kIIi、次のような欠点がある・
、 (i) KH2−5及ヒ他のハライド系材がガラ
ス化しないため細線加工が困銀である◎
(2) 熱的1機械的、化学的に弱いこと。DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes a foot gas laser beam (wavelength/% frequency - 1 wave number 94
Hollow conventional method for transmitting cOCa'''1) with low loss,
Mainly KH2 is used for carbon dioxide laser light ÷ eyeper.
KH2-5 and other pallite yarns kIIi have the following drawbacks: (i) KH2-5 Fine wire processing is difficult because other halide materials do not vitrify. (2) Thermal 1 Mechanically and chemically weak.
(1) 使用中に結晶粒が巨大化して損失が増大する
こと〇
←)入出力端面が破壊されやすいこと。(1) During use, the crystal grains become huge and losses increase.〇←) The input and output end faces are easily destroyed.
従って、炭酸ガスレーザ充用光ファイバーの実用化II
i困銀であった0そこで、本発明者等はこのような従来
の炭酸ガスレーザ用光ファイバーに課せられた制約の問
題を解決する仁とを主目的とし、全く新しい原理に基づ
く断層光導波路を提案した(特願昭6j−993コ1号
)。本発きるようにしたもので、本発明の中赤外型光導
波路用材料の理解のためにこのt″44波路略を説明す
る。いま、ある材料の使用波数(9参〇備−亀)での屈
折率n、がlより小さければ、空気の側から、この材料
(十分平滑であると仮定する)へ、斜めに入射した当該
光畔、いわゆる全反射をおこし、反射率が―めて高くな
ることが期待できる。従って、このような材料で作った
中空型導波路は、中空部に閉じこめられた当該波数の光
波を充分低損失で導波で怠る。そこで、案した光導波路
(特願昭1l−99324c号)で轄、810m を
主体としたガラスが中赤外帯において、確かにnr <
/となって−ることを見いだしたが、炭酸ガスレーザ
発振波数9410Cx” l に対しては、−)、前
述の先導波路で開示した技術の範囲内\
では炭酸ガスレーザ光で充、:分低損失の導波路は作れ
なかった。 1.1.1:本発明は、以上に鑑
みなされたもので導波路として構成した場合の損失が炭
酸ガスレーザ光(9弘Oぽl)で最小になるような材料
を提供するものである。Therefore, practical application of carbon dioxide laser-equipped optical fiber II
Therefore, the present inventors proposed a tomographic optical waveguide based on a completely new principle, with the main purpose of solving the problem of limitations imposed on conventional optical fibers for carbon dioxide lasers. (Patent Application No. 1, Showa 6J-993). In order to understand the material for the mid-infrared optical waveguide of the present invention, this t''44 waveguide abbreviation will be explained. If the refractive index n, at Therefore, a hollow waveguide made of such a material will guide the light wave of the relevant wave number confined in the hollow part with sufficiently low loss. It is true that glass mainly composed of 810 m has nr < nr in the mid-infrared band.
/, but for the carbon dioxide laser oscillation wave number 9410Cx''l, -), which is within the scope of the technology disclosed in the above-mentioned leading waveguide, is sufficient with carbon dioxide laser light: low loss. 1.1.1: The present invention was made in view of the above, and is designed to minimize loss when configured as a waveguide using carbon dioxide laser light (9 Hiroo Pol). It provides materials.
以下、本発明につ−て説明する。第1図は、本発明によ
る二酸化ゲルマニウムガラス(jOmo1% Goos
” 701101%ZnO−10mol % KsO
)の赤外領域における複素屈折率nr−1にのn、とK
の値特したものである。この二酸化ゲルマニウムガラス
は、本発明において初めて試作されたものである・第1
図示のようK、9110aa−1にお−て、n、 NQ
IK NQ/ とlkつており、確カK nr < 6
又にもその最大値(1,a)よりFi>かなり小さルミ
とが分る。従って、デダQ cxa−1にお−で、斜入
射波に対しては有効なる全反射が期待賂れる。The present invention will be explained below. FIG. 1 shows germanium dioxide glass (jOmo1% Goos) according to the present invention.
”701101%ZnO-10mol%KsO
) for the complex refractive index nr-1 in the infrared region, and K
The value of This germanium dioxide glass is the first prototype produced in the present invention.
As shown in the figure, K, 9110aa-1, n, NQ
IK NQ/ and it is certain that K nr < 6
Also, from the maximum value (1, a), it can be seen that Fi>considerably smaller Lumi. Therefore, effective total reflection can be expected for obliquely incident waves at Deda Q cxa-1.
第2図は本発明による二酸化ゲルマニウムガラスを用≠
て、l■φの中空導波路を作製したと1の予想される、
伝送損失の波数特性を示したものである。かな)・り強
−波数依存性があるが、これは二酸化ゲル1マニウムの
屈折率n、と損失項Xが強い波数依存性を持って―るこ
とによるものである。第2図示のように、伝送損失は?
ll0CS−■で最大とな〉、その値はQldBlmで
ある。このような特性は上述の組成(10mol G6
0m−1011o1ZnO+ 701101 % Ks
O) においてのみ得られるのであり、従って、このよ
うな−組成の研究が重要である。ここで、二酸化ゲルマ
ニウムガラスへの、/□m1o1%ZnO,10i11
o1% KsOを道を説明する。純粋な二酸化ゲルマニ
ウ
ムガラスは、それを用いて導波路を構成した場合、伝送
損失が最も低−波数は97jC11″″lであり、使用
レーザ光である炭酸ガスレーザ光(タダQoa−”)と
一致しない。そこで、この純粋な二酸化ゲルマニウムに
、ある種の金属酸化物を添加して、比例して、導波路と
しての損失の最低を示す波数が94IOCA””を超え
て、rsocx−程度まで移動させることができる。と
ころが、酸化カリウム(icsO)のみ添加した場合、
その量が多くなるにつれ潮解性が発生し、このため実用
性が無くなる。このような、潮解性を持つガラスに対し
、安定剤として、例えば酸化亜鉛(ZnO)、酸化アル
ミニウムCム1sOs)、酸化ジルコニウムarom)
等をさらに添加すると(第3成分として)、酸化カリウ
ム(KsO)が同じモル量でも潮解性を消すことができ
る。酸化亜鉛(ZnO)はこの安定化の為に使用したも
のである・上述の各種資化カリウムの多−領域でQOj
dB/11を得ることが可能である◎
さて、二酸化ゲルマニウムガラス(10mo1%Goo
s −10wno1% ZnO−10iao1%Xll
0)を用い作製した中空型導波路では炭酸ガスレーザ光
をωjdf37’ah〜QIdB/ll&の損失で伝送
することがで自る。これ社現存する、いかなる中赤外導
波路における損失より良好な値である0
以上の説明から明らかなように、本発明により、伝送損
失が9ダQcxl″凰で、/■φの中空導波路に対して
Q/dB/111が期待できることが判明した。Figure 2 shows the use of germanium dioxide glass according to the present invention.
It is expected that a hollow waveguide of l■φ was created by
This shows the wave number characteristics of transmission loss. There is a strong wavenumber dependence, and this is because the refractive index n of manium dioxide gel and the loss term X have a strong wavenumber dependence. As shown in the second diagram, what is the transmission loss?
It is maximum at ll0CS-■, and its value is QldBlm. Such characteristics are due to the above-mentioned composition (10 mol G6
0m-1011o1ZnO+ 701101% Ks
Therefore, the study of such compositions is important. Here, /□m1o1%ZnO,10i11 to germanium dioxide glass
o1% Explain the way of KsO. When pure germanium dioxide glass is used to construct a waveguide, the transmission loss is the lowest - the wave number is 97jC11""l, which does not match the carbon dioxide laser light used (free Qoa-"). Therefore, by adding a certain kind of metal oxide to this pure germanium dioxide, the wave number that shows the lowest loss as a waveguide exceeds 94 IOCA'' and moves to about rsocx-. However, when only potassium oxide (icsO) is added,
As the amount increases, deliquescent properties occur, which makes it impractical. For such glasses with deliquescent properties, stabilizers such as zinc oxide (ZnO), aluminum oxide (Cum1sOs), zirconium oxide (arom) are used as stabilizers.
If KsO is further added (as a third component), the deliquescent property can be eliminated even with the same molar amount of potassium oxide (KsO). Zinc oxide (ZnO) was used for this stabilization. QOj in the various ranges of assimilated potassium mentioned above.
It is possible to obtain dB/11◎ Now, germanium dioxide glass (10mo1%Goo
s-10wno1% ZnO-10iao1%Xll
The hollow waveguide fabricated using 0) can transmit carbon dioxide laser light with a loss of ωjdf37'ah~QIdB/ll&. This is a value better than the loss in any existing mid-infrared waveguide. It has been found that a Q/dB/111 can be expected.
このことは従来技術に比し1次の点で圧倒的に優れた導
波路の作製が期待できる◎
(1)伝送損失が小さいこと(現在あるKH2−6をコ
ア材とした光ファイバーの伝送損失は最良のもので、Q
IldB/Mkである)。This means that we can expect to create a waveguide that is overwhelmingly superior in terms of first order compared to conventional technology. (1) Low transmission loss (the transmission loss of the current optical fiber with KH2-6 as the core material The best one, Q
IldB/Mk).
(2) 人、出力端での反射損がな−こと(■S−5
中実コア型ファイバーは屈折率が大き−ため、これによ
る反射が大きく (片面20襲)損失値として無視で古
ない。全体の透過率は合計してjO%以下である。本発
明によれば、この反射損は解消される。 ・・
・
(3)潮解性、不純物混入c主として水分)による損失
の増大がない。(2) There should be no reflection loss at the output end (■S-5
Since the solid core fiber has a large refractive index, the reflection caused by this is large (20 reflections on one side) and can be ignored as a loss value. The total transmittance is less than jO%. According to the present invention, this reflection loss is eliminated.・・・
- (3) There is no increase in loss due to deliquescent properties and impurity contamination (mainly water).
(4) 使用材がガラスであるので、これ以上の品質
劣化が起らない・
(5)機械的、熱的、化学的に強い〇
と−うことになる。(4) Since the material used is glass, no further quality deterioration will occur. (5) Mechanically, thermally, and chemically strong.
以上説明したように、本発明は伝送損失が941−Oc
III″lでl■φの中空導波路に対してQ#B/sと
極めて小さい組成の材料を提供できるので、従来のもの
に比べて充分損失の導波路が得られる効果を有するもの
である。As explained above, the present invention has a transmission loss of 941-Oc.
Since it is possible to provide a material with an extremely small composition of Q#B/s for a hollow waveguide of III''l and l■φ, it has the effect of obtaining a waveguide with sufficient loss compared to conventional ones. .
第1図は本発明による二酸化ゲルマニウムガラx (r
Omol % Ge0s= 10mo1%ZnO−10
1101% KsO)フQ赤外領域における複素屈折率
n、−iK及び反射・1+
−nol % Gem5 = 10n+ol % Zn
OZnO−1O% Hl O)を7−の導波路K11l
成したぷきの伝送損失の予想される波数依存性trm#
1iる図、fig j kl tt G60m−ZnO
−Ks0三成分系の組成を変えたときの#I#、路損;
1′2図
;
:
+000 −900 800Wav
enumber (cm−1);t3図
e02
ZnOK20FIG. 1 shows germanium dioxide glass x (r
Omol% Ge0s= 10mol%ZnO-10
1101% KsO) FQ Complex refractive index n, -iK and reflection in the infrared region 1+ -nol % Gem5 = 10n+ol % Zn
OZnO-1O% HlO) 7-waveguide K11l
The expected wavenumber dependence of the transmission loss of the generated wave trm#
fig j kl tt G60m-ZnO
- #I#, road loss when changing the composition of the Ks0 ternary system;
1'2 figure; : +000 -900 800Wav
enumber (cm-1); t3 figure e02 ZnOK20
Claims (1)
化ゲルマニウムに適当なf&加剤を混入した組成からな
ることを特徴とする中赤外蓄光導波路用材料。A material for a mid-infrared phosphorescent waveguide, characterized in that the composition is mainly composed of germanium dioxide (Gem5) and an appropriate f&additive is mixed into the germanium dioxide.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56201180A JPS58104041A (en) | 1981-12-14 | 1981-12-14 | Material for optical waveguide of mid-infrared band |
US06/371,809 US4453803A (en) | 1981-06-25 | 1982-04-26 | Optical waveguide for middle infrared band |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56201180A JPS58104041A (en) | 1981-12-14 | 1981-12-14 | Material for optical waveguide of mid-infrared band |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58104041A true JPS58104041A (en) | 1983-06-21 |
JPS6243939B2 JPS6243939B2 (en) | 1987-09-17 |
Family
ID=16436673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56201180A Granted JPS58104041A (en) | 1981-06-25 | 1981-12-14 | Material for optical waveguide of mid-infrared band |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58104041A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013115826A (en) * | 2011-11-29 | 2013-06-10 | Epcos Ag | Micro acoustic device with waveguide layer |
-
1981
- 1981-12-14 JP JP56201180A patent/JPS58104041A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013115826A (en) * | 2011-11-29 | 2013-06-10 | Epcos Ag | Micro acoustic device with waveguide layer |
Also Published As
Publication number | Publication date |
---|---|
JPS6243939B2 (en) | 1987-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4453803A (en) | Optical waveguide for middle infrared band | |
US20150057142A1 (en) | Ir heavy metal oxide glasses | |
US4402570A (en) | Triple minimum dispersion wavelengths for a high NA single-mode step-index fiber | |
US4674835A (en) | Fluoride glass optical fiber | |
JPH01105220A (en) | Optical wavelength converting element | |
JPS59148005A (en) | Optical fiber for propagating single mode single polarized wave | |
JPS5983105A (en) | Flexible dielectric waveguide for high efficiency medium ir wavelength transmission | |
JPH055813A (en) | Flexibility graded type optical fiber substantially holding mode structure and transmitting high-output laser radiation | |
JPH0420861B2 (en) | ||
JPS58104041A (en) | Material for optical waveguide of mid-infrared band | |
US4603943A (en) | Structure of an optical fiber | |
US4189208A (en) | Zinc chloride optical fibers for transmission in the infrared | |
US5026142A (en) | Hollow glass waveguide | |
JPS5988338A (en) | Optical fiber for infrared light | |
JPS6035839B2 (en) | Optical fiber for fiber Brahman laser | |
US5563730A (en) | Thallium arsenic sulfide crystals (t13 AsS3) high efficiency nonlinear optical applications | |
JP2643315B2 (en) | Hollow optical waveguide | |
JPS6095404A (en) | Optical fiber for infrared light | |
Saggese et al. | Calcium-aluminate glass for use as n< 1 hollow waveguides in the delivery of CO2 laser energy | |
SU370572A1 (en) | CHALCOGENID GLASS | |
JPH0356443B2 (en) | ||
JPS54149652A (en) | Optical transmission path | |
RU2107937C1 (en) | Acousooptical converter of electromagnetic radiation | |
JPS6022103A (en) | transmission cable | |
SU970517A1 (en) | Dielectric wave guide |