[go: up one dir, main page]

JPS58104041A - Material for optical waveguide of mid-infrared band - Google Patents

Material for optical waveguide of mid-infrared band

Info

Publication number
JPS58104041A
JPS58104041A JP56201180A JP20118081A JPS58104041A JP S58104041 A JPS58104041 A JP S58104041A JP 56201180 A JP56201180 A JP 56201180A JP 20118081 A JP20118081 A JP 20118081A JP S58104041 A JPS58104041 A JP S58104041A
Authority
JP
Japan
Prior art keywords
waveguide
zno
loss
glass
gas laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56201180A
Other languages
Japanese (ja)
Other versions
JPS6243939B2 (en
Inventor
Tatsuhiko Hidaka
日高 建彦
Takitaro Morikawa
森川 滝太郎
Junichi Shimada
潤一 島田
Ken Kumada
熊田 ▲けん▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56201180A priority Critical patent/JPS58104041A/en
Priority to US06/371,809 priority patent/US4453803A/en
Publication of JPS58104041A publication Critical patent/JPS58104041A/en
Publication of JPS6243939B2 publication Critical patent/JPS6243939B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/048Silica-free oxide glass compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/102Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type for infrared and ultraviolet radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:A material for forming an optical waveguide of CO2 gas laser, obtained by adding specific amounts of ZnO and K2O to a GeO type glass, and having a slight transmission loss without the deliquescence. CONSTITUTION:Germanium dioxide glass consisting of 80mol% GeO2, 10mol% ZnO and 10mol% K2O is used as a glass fiber material for CO2 gas laser. The GeO2 glass of pure composition has a frequncy of minimal transmission loss in disagreement with that of the CO2 gas laser, and K2O is added to reduce the loss as a waveguide and suppress the accompanying increase in the deliquescence by the addition of ZnO. The resultant waveguide of the above-mentioned composition has improved performance as a hollow optical waveguide of the CO2 gas laser.

Description

【発明の詳細な説明】 本発明は、脚醗ガスレーザ光(波長/%声−1波数94
cOCa’″1)を低損失で伝送するための中空従来、
炭酸ガスレーザ光用光÷アイパーには、主としてKH2
−5をコア材とし、ポリマーをクラツド材としたものが
使用されて≠た・しかし1このKH2−5及び他のパラ
イト糸材kIIi、次のような欠点がある・ 、 (i)  KH2−5及ヒ他のハライド系材がガラ
ス化しないため細線加工が困銀である◎ (2)  熱的1機械的、化学的に弱いこと。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes a foot gas laser beam (wavelength/% frequency - 1 wave number 94
Hollow conventional method for transmitting cOCa'''1) with low loss,
Mainly KH2 is used for carbon dioxide laser light ÷ eyeper.
KH2-5 and other pallite yarns kIIi have the following drawbacks: (i) KH2-5 Fine wire processing is difficult because other halide materials do not vitrify. (2) Thermal 1 Mechanically and chemically weak.

(1)  使用中に結晶粒が巨大化して損失が増大する
こと〇 ←)入出力端面が破壊されやすいこと。
(1) During use, the crystal grains become huge and losses increase.〇←) The input and output end faces are easily destroyed.

従って、炭酸ガスレーザ充用光ファイバーの実用化II
i困銀であった0そこで、本発明者等はこのような従来
の炭酸ガスレーザ用光ファイバーに課せられた制約の問
題を解決する仁とを主目的とし、全く新しい原理に基づ
く断層光導波路を提案した(特願昭6j−993コ1号
)。本発きるようにしたもので、本発明の中赤外型光導
波路用材料の理解のためにこのt″44波路略を説明す
る。いま、ある材料の使用波数(9参〇備−亀)での屈
折率n、がlより小さければ、空気の側から、この材料
(十分平滑であると仮定する)へ、斜めに入射した当該
光畔、いわゆる全反射をおこし、反射率が―めて高くな
ることが期待できる。従って、このような材料で作った
中空型導波路は、中空部に閉じこめられた当該波数の光
波を充分低損失で導波で怠る。そこで、案した光導波路
(特願昭1l−99324c号)で轄、810m  を
主体としたガラスが中赤外帯において、確かにnr <
 /となって−ることを見いだしたが、炭酸ガスレーザ
発振波数9410Cx” l  に対しては、−)、前
述の先導波路で開示した技術の範囲内\ では炭酸ガスレーザ光で充、:分低損失の導波路は作れ
なかった。     1.1.1:本発明は、以上に鑑
みなされたもので導波路として構成した場合の損失が炭
酸ガスレーザ光(9弘Oぽl)で最小になるような材料
を提供するものである。
Therefore, practical application of carbon dioxide laser-equipped optical fiber II
Therefore, the present inventors proposed a tomographic optical waveguide based on a completely new principle, with the main purpose of solving the problem of limitations imposed on conventional optical fibers for carbon dioxide lasers. (Patent Application No. 1, Showa 6J-993). In order to understand the material for the mid-infrared optical waveguide of the present invention, this t''44 waveguide abbreviation will be explained. If the refractive index n, at Therefore, a hollow waveguide made of such a material will guide the light wave of the relevant wave number confined in the hollow part with sufficiently low loss. It is true that glass mainly composed of 810 m has nr < nr in the mid-infrared band.
/, but for the carbon dioxide laser oscillation wave number 9410Cx''l, -), which is within the scope of the technology disclosed in the above-mentioned leading waveguide, is sufficient with carbon dioxide laser light: low loss. 1.1.1: The present invention was made in view of the above, and is designed to minimize loss when configured as a waveguide using carbon dioxide laser light (9 Hiroo Pol). It provides materials.

以下、本発明につ−て説明する。第1図は、本発明によ
る二酸化ゲルマニウムガラス(jOmo1% Goos
 ” 701101%ZnO−10mol % KsO
)の赤外領域における複素屈折率nr−1にのn、とK
の値特したものである。この二酸化ゲルマニウムガラス
は、本発明において初めて試作されたものである・第1
図示のようK、9110aa−1にお−て、n、 NQ
IK NQ/ とlkつており、確カK nr < 6
又にもその最大値(1,a)よりFi>かなり小さルミ
とが分る。従って、デダQ cxa−1にお−で、斜入
射波に対しては有効なる全反射が期待賂れる。
The present invention will be explained below. FIG. 1 shows germanium dioxide glass (jOmo1% Goos) according to the present invention.
”701101%ZnO-10mol%KsO
) for the complex refractive index nr-1 in the infrared region, and K
The value of This germanium dioxide glass is the first prototype produced in the present invention.
As shown in the figure, K, 9110aa-1, n, NQ
IK NQ/ and it is certain that K nr < 6
Also, from the maximum value (1, a), it can be seen that Fi>considerably smaller Lumi. Therefore, effective total reflection can be expected for obliquely incident waves at Deda Q cxa-1.

第2図は本発明による二酸化ゲルマニウムガラスを用≠
て、l■φの中空導波路を作製したと1の予想される、
伝送損失の波数特性を示したものである。かな)・り強
−波数依存性があるが、これは二酸化ゲル1マニウムの
屈折率n、と損失項Xが強い波数依存性を持って―るこ
とによるものである。第2図示のように、伝送損失は?
ll0CS−■で最大とな〉、その値はQldBlmで
ある。このような特性は上述の組成(10mol G6
0m−1011o1ZnO+ 701101 % Ks
O) においてのみ得られるのであり、従って、このよ
うな−組成の研究が重要である。ここで、二酸化ゲルマ
ニウムガラスへの、/□m1o1%ZnO,10i11
o1% KsOを道を説明する。純粋な二酸化ゲルマニ
ウ ムガラスは、それを用いて導波路を構成した場合、伝送
損失が最も低−波数は97jC11″″lであり、使用
レーザ光である炭酸ガスレーザ光(タダQoa−”)と
一致しない。そこで、この純粋な二酸化ゲルマニウムに
、ある種の金属酸化物を添加して、比例して、導波路と
しての損失の最低を示す波数が94IOCA””を超え
て、rsocx−程度まで移動させることができる。と
ころが、酸化カリウム(icsO)のみ添加した場合、
その量が多くなるにつれ潮解性が発生し、このため実用
性が無くなる。このような、潮解性を持つガラスに対し
、安定剤として、例えば酸化亜鉛(ZnO)、酸化アル
ミニウムCム1sOs)、酸化ジルコニウムarom)
等をさらに添加すると(第3成分として)、酸化カリウ
ム(KsO)が同じモル量でも潮解性を消すことができ
る。酸化亜鉛(ZnO)はこの安定化の為に使用したも
のである・上述の各種資化カリウムの多−領域でQOj
dB/11を得ることが可能である◎ さて、二酸化ゲルマニウムガラス(10mo1%Goo
s −10wno1% ZnO−10iao1%Xll
0)を用い作製した中空型導波路では炭酸ガスレーザ光
をωjdf37’ah〜QIdB/ll&の損失で伝送
することがで自る。これ社現存する、いかなる中赤外導
波路における損失より良好な値である0 以上の説明から明らかなように、本発明により、伝送損
失が9ダQcxl″凰で、/■φの中空導波路に対して
Q/dB/111が期待できることが判明した。
Figure 2 shows the use of germanium dioxide glass according to the present invention.
It is expected that a hollow waveguide of l■φ was created by
This shows the wave number characteristics of transmission loss. There is a strong wavenumber dependence, and this is because the refractive index n of manium dioxide gel and the loss term X have a strong wavenumber dependence. As shown in the second diagram, what is the transmission loss?
It is maximum at ll0CS-■, and its value is QldBlm. Such characteristics are due to the above-mentioned composition (10 mol G6
0m-1011o1ZnO+ 701101% Ks
Therefore, the study of such compositions is important. Here, /□m1o1%ZnO,10i11 to germanium dioxide glass
o1% Explain the way of KsO. When pure germanium dioxide glass is used to construct a waveguide, the transmission loss is the lowest - the wave number is 97jC11""l, which does not match the carbon dioxide laser light used (free Qoa-"). Therefore, by adding a certain kind of metal oxide to this pure germanium dioxide, the wave number that shows the lowest loss as a waveguide exceeds 94 IOCA'' and moves to about rsocx-. However, when only potassium oxide (icsO) is added,
As the amount increases, deliquescent properties occur, which makes it impractical. For such glasses with deliquescent properties, stabilizers such as zinc oxide (ZnO), aluminum oxide (Cum1sOs), zirconium oxide (arom) are used as stabilizers.
If KsO is further added (as a third component), the deliquescent property can be eliminated even with the same molar amount of potassium oxide (KsO). Zinc oxide (ZnO) was used for this stabilization. QOj in the various ranges of assimilated potassium mentioned above.
It is possible to obtain dB/11◎ Now, germanium dioxide glass (10mo1%Goo
s-10wno1% ZnO-10iao1%Xll
The hollow waveguide fabricated using 0) can transmit carbon dioxide laser light with a loss of ωjdf37'ah~QIdB/ll&. This is a value better than the loss in any existing mid-infrared waveguide. It has been found that a Q/dB/111 can be expected.

このことは従来技術に比し1次の点で圧倒的に優れた導
波路の作製が期待できる◎ (1)伝送損失が小さいこと(現在あるKH2−6をコ
ア材とした光ファイバーの伝送損失は最良のもので、Q
IldB/Mkである)。
This means that we can expect to create a waveguide that is overwhelmingly superior in terms of first order compared to conventional technology. (1) Low transmission loss (the transmission loss of the current optical fiber with KH2-6 as the core material The best one, Q
IldB/Mk).

(2)  人、出力端での反射損がな−こと(■S−5
中実コア型ファイバーは屈折率が大き−ため、これによ
る反射が大きく (片面20襲)損失値として無視で古
ない。全体の透過率は合計してjO%以下である。本発
明によれば、この反射損は解消される。     ・・
・ (3)潮解性、不純物混入c主として水分)による損失
の増大がない。
(2) There should be no reflection loss at the output end (■S-5
Since the solid core fiber has a large refractive index, the reflection caused by this is large (20 reflections on one side) and can be ignored as a loss value. The total transmittance is less than jO%. According to the present invention, this reflection loss is eliminated.・・・
- (3) There is no increase in loss due to deliquescent properties and impurity contamination (mainly water).

(4)  使用材がガラスであるので、これ以上の品質
劣化が起らない・ (5)機械的、熱的、化学的に強い〇 と−うことになる。
(4) Since the material used is glass, no further quality deterioration will occur. (5) Mechanically, thermally, and chemically strong.

以上説明したように、本発明は伝送損失が941−Oc
III″lでl■φの中空導波路に対してQ#B/sと
極めて小さい組成の材料を提供できるので、従来のもの
に比べて充分損失の導波路が得られる効果を有するもの
である。
As explained above, the present invention has a transmission loss of 941-Oc.
Since it is possible to provide a material with an extremely small composition of Q#B/s for a hollow waveguide of III''l and l■φ, it has the effect of obtaining a waveguide with sufficient loss compared to conventional ones. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による二酸化ゲルマニウムガラx (r
Omol % Ge0s= 10mo1%ZnO−10
1101% KsO)フQ赤外領域における複素屈折率
n、−iK及び反射・1+ −nol % Gem5 = 10n+ol % Zn
OZnO−1O% Hl O)を7−の導波路K11l
成したぷきの伝送損失の予想される波数依存性trm#
1iる図、fig j kl tt G60m−ZnO
−Ks0三成分系の組成を変えたときの#I#、路損;
1′2図 ; : +000    −900       800Wav
enumber  (cm−1);t3図 e02 ZnOK20
FIG. 1 shows germanium dioxide glass x (r
Omol% Ge0s= 10mol%ZnO-10
1101% KsO) FQ Complex refractive index n, -iK and reflection in the infrared region 1+ -nol % Gem5 = 10n+ol % Zn
OZnO-1O% HlO) 7-waveguide K11l
The expected wavenumber dependence of the transmission loss of the generated wave trm#
fig j kl tt G60m-ZnO
- #I#, road loss when changing the composition of the Ks0 ternary system;
1'2 figure; : +000 -900 800Wav
enumber (cm-1); t3 figure e02 ZnOK20

Claims (1)

【特許請求の範囲】[Claims] 二酸化ゲルマニウム(Gem5)を主体とし、前記二酸
化ゲルマニウムに適当なf&加剤を混入した組成からな
ることを特徴とする中赤外蓄光導波路用材料。
A material for a mid-infrared phosphorescent waveguide, characterized in that the composition is mainly composed of germanium dioxide (Gem5) and an appropriate f&additive is mixed into the germanium dioxide.
JP56201180A 1981-06-25 1981-12-14 Material for optical waveguide of mid-infrared band Granted JPS58104041A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56201180A JPS58104041A (en) 1981-12-14 1981-12-14 Material for optical waveguide of mid-infrared band
US06/371,809 US4453803A (en) 1981-06-25 1982-04-26 Optical waveguide for middle infrared band

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56201180A JPS58104041A (en) 1981-12-14 1981-12-14 Material for optical waveguide of mid-infrared band

Publications (2)

Publication Number Publication Date
JPS58104041A true JPS58104041A (en) 1983-06-21
JPS6243939B2 JPS6243939B2 (en) 1987-09-17

Family

ID=16436673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56201180A Granted JPS58104041A (en) 1981-06-25 1981-12-14 Material for optical waveguide of mid-infrared band

Country Status (1)

Country Link
JP (1) JPS58104041A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013115826A (en) * 2011-11-29 2013-06-10 Epcos Ag Micro acoustic device with waveguide layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013115826A (en) * 2011-11-29 2013-06-10 Epcos Ag Micro acoustic device with waveguide layer

Also Published As

Publication number Publication date
JPS6243939B2 (en) 1987-09-17

Similar Documents

Publication Publication Date Title
US4453803A (en) Optical waveguide for middle infrared band
US20150057142A1 (en) Ir heavy metal oxide glasses
US4402570A (en) Triple minimum dispersion wavelengths for a high NA single-mode step-index fiber
US4674835A (en) Fluoride glass optical fiber
JPH01105220A (en) Optical wavelength converting element
JPS59148005A (en) Optical fiber for propagating single mode single polarized wave
JPS5983105A (en) Flexible dielectric waveguide for high efficiency medium ir wavelength transmission
JPH055813A (en) Flexibility graded type optical fiber substantially holding mode structure and transmitting high-output laser radiation
JPH0420861B2 (en)
JPS58104041A (en) Material for optical waveguide of mid-infrared band
US4603943A (en) Structure of an optical fiber
US4189208A (en) Zinc chloride optical fibers for transmission in the infrared
US5026142A (en) Hollow glass waveguide
JPS5988338A (en) Optical fiber for infrared light
JPS6035839B2 (en) Optical fiber for fiber Brahman laser
US5563730A (en) Thallium arsenic sulfide crystals (t13 AsS3) high efficiency nonlinear optical applications
JP2643315B2 (en) Hollow optical waveguide
JPS6095404A (en) Optical fiber for infrared light
Saggese et al. Calcium-aluminate glass for use as n< 1 hollow waveguides in the delivery of CO2 laser energy
SU370572A1 (en) CHALCOGENID GLASS
JPH0356443B2 (en)
JPS54149652A (en) Optical transmission path
RU2107937C1 (en) Acousooptical converter of electromagnetic radiation
JPS6022103A (en) transmission cable
SU970517A1 (en) Dielectric wave guide