JPS58103807A - Control system for electric rolling stock - Google Patents
Control system for electric rolling stockInfo
- Publication number
- JPS58103807A JPS58103807A JP56201571A JP20157181A JPS58103807A JP S58103807 A JPS58103807 A JP S58103807A JP 56201571 A JP56201571 A JP 56201571A JP 20157181 A JP20157181 A JP 20157181A JP S58103807 A JPS58103807 A JP S58103807A
- Authority
- JP
- Japan
- Prior art keywords
- current
- value
- inverter
- electric
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005096 rolling process Methods 0.000 title 1
- 238000005266 casting Methods 0.000 claims 1
- 238000001514 detection method Methods 0.000 claims 1
- 230000004907 flux Effects 0.000 claims 1
- 230000011664 signaling Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 10
- 241000555745 Sciuridae Species 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 241000277331 Salmonidae Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000010291 electrical method Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P5/00—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
- H02P5/46—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はサイリスタなどによる可変電圧・可変周波数イ
ンバータ(以下VVVFインバータと称する)によりか
ご形鋳導電動嶺を駆動することによ2
り動力を得る電気車の制御方式に関するもので、かご形
豹導電m徐を迩切なjiilla状緒でかつvvvrイ
ンバータにも過大な負葡電流が加えられることがないよ
うに、かご形酵導電動機およびVVVFインバータを制
御する実用的な電気車制御方式を提供せんとするもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control system for an electric vehicle that obtains power by driving a squirrel cage cast conduction ridge using a variable voltage/variable frequency inverter (hereinafter referred to as a VVVF inverter) using a thyristor or the like. This is a practical electrical method for controlling squirrel cage conduction motors and VVVF inverters so that the squirrel cage conduction motors and VVVF inverters are kept in a clear condition and an excessive negative current is not applied to the VVVR inverters. The aim is to provide a vehicle control system.
第1図は本発明に適用されるv v v yインバータ
により駆動を行う車両システムの基本構成を示すもので
、1は直流架線、2はパンタグラフ、3は開閉器、4は
フィルタリアクトル、5はフィルタコンデンサ、6麿、
ab、・・・・・・、6fなどはVVVFインパーク
タを構成する半導体電力変換素子である0半導体電力変
III素子6m 、 6b+・・・・・・、6fは図で
は逆碍通サイリスタの例を示すが、これらは逆導通サイ
リスタに限定されず一般サイリスタまたはGTOサイリ
スタなどとダイオードとの逆並列ma体であってもよい
・豊するにサイリスタの通電時間比により架線から流入
する電力を1lJIL、かつ該サイリスタオフ時の#尋
負荷としての電動機無効電流を環流させる機能を有する
素子筐たは素子対ならばよP3
い。ただし、一般サイリスタおよび逆導通サイリスタの
場合には第1図には図示してない転流補助回路が必費で
あることはいうまでもない・また第1図において7.8
はそれぞれ正、負母−19は車輪、10はレールである
a llu、IIY、IIWはv v v Fインバー
タの出力交流−路であり、複数個の3相かご形−尋電動
*MteMm、・・・・・・、 Mmに接続される0
第2図は第1図に示した中導体電力変換素子6a。Fig. 1 shows the basic configuration of a vehicle system driven by a vvvy inverter applied to the present invention, in which 1 is a DC overhead wire, 2 is a pantograph, 3 is a switch, 4 is a filter reactor, and 5 is a filter capacitor, 6maro,
ab, . However, these are not limited to reverse conduction thyristors, and may be a general thyristor or a GTO thyristor, etc., and a diode in antiparallel. It is acceptable if it is an element case or an element pair that has the function of circulating the motor reactive current as a load when the thyristor is off. However, in the case of general thyristors and reverse conduction thyristors, it goes without saying that a commutation auxiliary circuit, which is not shown in Figure 1, is required.
are the positive and negative motherboards, 19 is the wheel, 10 is the rail, a llu, IIY, and IIW are the output AC paths of the v v v F inverter, and a plurality of three-phase squirrel cage electric motors *MteMm, ・. . . 0 connected to Mm. FIG. 2 shows the medium conductor power conversion element 6a shown in FIG.
sb、・・・・・、sf+c菅用される別の構成例の半
導体電力変換素子対を示したもので、第8図(1)は6
gがGTOサイリスタ、@hが帰還ダイオードで第2図
(b)は6kが普通サイリスタ、ahは第2図(a)と
同様の帰還ダイオードである。sb, .
g is a GTO thyristor, @h is a feedback diode, 6k in FIG. 2(b) is an ordinary thyristor, and ah is a feedback diode similar to FIG. 2(a).
第3図は、第1図または第2図で述べた主回路方式の制
御ブロック図を示す公知例である1第3図において、
20は主電動機トルクまたは車両引張カバターン設定器
で、第6図に示す特性曲線のように車速に見合ったトル
クのパターンを発生するブロックである・トルクパター
ンの発生は後述するタコゼネ29または電圧制御弾発振
器24などの信号を基準に合成することが通常用いられ
るo 20暑はトルクバタン設定器20から与えられる
トルク指令に見合った電流指令を発生する電流指令発生
器で、20bは同じくトルク指令信号によりこれに見合
ったすべり周波数指令を発生するすべり周波数指令発生
器である・電流指令発生器goa eすべり周波数指令
II Robは第SvAに併記したような非線形関数発
生機能をもつ。whomは主電動機トルクT1すなわち
加速度あるいは荷重を変化させたときの電流指令発生器
20m、すべり周波#L推命令器0bの出力信号の電流
指令およびすべり周波数指令である・すべり周波数と電
流値は、同一トルクT1に対しても誘導電動機8次抵抗
値の温度上昇値によって、例えば破線のように大巾に変
化し、これを補償することなしにはこの種駆動方式は実
用的にならないおそれがある。FIG. 3 is a known example showing a control block diagram of the main circuit system described in FIG. 1 or 2.
Reference numeral 20 is a traction motor torque or vehicle tension cover turn setting device, which is a block that generates a torque pattern commensurate with the vehicle speed as shown in the characteristic curve shown in FIG. Normally, it is used to synthesize signals from an oscillator 24, etc. 20 is a current command generator that generates a current command commensurate with the torque command given from the torque button setting device 20, and 20b is a current command generator that generates a current command commensurate with the torque command given from the torque command signal. The current command generator goa e slip frequency command II Rob, which is a slip frequency command generator that generates a slip frequency command commensurate with the current command, has a nonlinear function generation function as described in No. SvA. whom is the current command and slip frequency command of the output signal of the current command generator 20m and the slip frequency #L thrust command unit 0b when changing the traction motor torque T1, that is, acceleration or load.The slip frequency and current value are as follows: Even for the same torque T1, the temperature rise value of the 8th order resistance of the induction motor causes a wide change as shown by the broken line, and without compensating for this, this type of drive system may not be practical. .
ひ合つづ合第3図を説明すると、電ms+発生器201
の出力は、電流帰還信号贅含回路2丁から帰還されて(
る実際電spa量値との差の値を求めるB
代数加算点21を経て実際値との偏差を増巾する電流−
!Il器22により電圧指令に変換され、 vvvrイ
ンバータ出力電圧−整機能を有する変調回路26の入力
の一つとして加えられる・
またすべり周波数指令発生器26bより出力されるすべ
り周波数指令は、タコゼネ!9からの電動機連膨峙II
信号の整合回路30を介して帰還されてくる電動一回転
速度と加算点23にて加算され1所畳のトルクを発生す
べ舎すべり周波数を実速度に加算された信号を電圧制御
弾発振器24に加え、所望のVVVFインバータ馬波畝
の基準となる周波数を発生する・1!6は分周器で、電
圧制御弾発振器24の発−周波数を適宜分周してvvv
rインバータ28が動作するのに適した処理を行う。分
周器2sの出力は前記変調回路26のもう一つの入力と
して加えられる・
かかる変調回路26の出力は図示のように電流帰還傷号
贅金回路2丁およびVVVFインバータ28に与えられ
ている。前述の第1IEIのVVVFインバータはいわ
ゆるPWM制御を行うものの一例で、変調回6
路26の出力と電圧制御弾発振器24の出力とを混合し
て出力電圧のパルス中制御を行いVVVFインバータ出
力電流を刺整し発生トルクの制御を行うO第7図(1)
4ζvvvrインバータの出力−間電圧波形の例を示す
が、一般゛は半サイクル中のパルスの数は低速度、低周
波数はど多(磁気回路が飽和することを防止している・
仁のため車速に応じて何らかの方法て半サイクルのパル
ス数を切替変化させることが、^連載でVVVFインバ
ータ周波数を高くしない一つの手段となっているが、こ
の技術はすでに公知のため省略する・
さて3相かご形鱒導電動機”* * Ms#・・・・・
、Mnの1次電流の最適値は第6図で示したように電動
機負荷により非線形で俊る0これは1次および2次イン
ピーダンス降下の影畳であるが、電圧制御弾発振器84
の電圧信号と変調回路!!6からの周波数信号とが整合
していないと無効電流が多くてトルクがでない、あるい
はせん願値の高い過励磁電流が流れ騒音、振動ともに多
くなるなどの欠点があった。To explain Fig. 3, electric ms+generator 201
The output of is fed back from two current feedback signal inclusion circuits (
Find the value of the difference between the actual electric spa amount value and the current that amplifies the deviation from the actual value through the algebraic addition point
! It is converted into a voltage command by the Il generator 22, and is added as one of the inputs to the modulation circuit 26 having a vvvr inverter output voltage adjustment function.The slip frequency command output from the slip frequency command generator 26b is also output from the tachogenerator! Motor-linked expansion series II from 9
The motor rotation speed fed back through the signal matching circuit 30 is added at the addition point 23 to generate one torque.The signal obtained by adding the sliding frequency to the actual speed is sent to the voltage controlled bullet oscillator 24. In addition, a frequency that becomes a reference for the desired VVVF inverter wave ridge is generated. 1!6 is a frequency divider, which appropriately divides the oscillation frequency of the voltage controlled bullet oscillator 24 to obtain vvv.
Perform processing suitable for the operation of the r inverter 28. The output of the frequency divider 2s is added as another input to the modulation circuit 26. The output of the modulation circuit 26 is applied to two current feedback circuits and a VVVF inverter 28 as shown. The VVVF inverter of the first IEI described above is an example of a device that performs so-called PWM control, and mixes the output of the modulation circuit 6 and the output of the voltage-controlled bullet oscillator 24 to control the output voltage during the pulse, thereby controlling the VVVF inverter output current. Figure 7 (1) for controlling the stabilization generation torque
An example of the output-to-voltage waveform of a 4ζvvvr inverter is shown below, but in general, the number of pulses during a half cycle is low speed and low frequency is high (to prevent the magnetic circuit from becoming saturated).
For convenience, one way to avoid increasing the VVVF inverter frequency is to change the number of half-cycle pulses in some way depending on the vehicle speed, but this technology is already well known and will be omitted here. Now, 3-phase squirrel cage trout conduction motor" * * Ms#...
, Mn's primary current varies non-linearly depending on the motor load as shown in FIG.
voltage signal and modulation circuit! ! If the frequency signals from 6 and 6 are not matched, there are drawbacks such as a large amount of reactive current resulting in no torque, or an overexciting current with a high desired value flowing, resulting in increased noise and vibration.
P7
本発明はこの点に着目してなされたもので、以下本発明
を第4図の制御ブロック因により説明する。なお、図中
第3図の公知の制御ブロック図と同一機能で可とするブ
ロック部分については同一番号記号を付した。第4図と
第3図との相違点は、絡4図においては所望トルクを発
生させるための電流パターン発生器がない点である。ず
なわち第4図本発明の制御ブロック図では、励磁電流指
令に相幽した第7図(b)のvvvrインバータ電流波
形の電流ピーク値IP、リプル値1.を設定する設定器
31が設けられており、変調回路26の出力線路では電
流瞬時値検出器33にて電流瞬時値を検出し、その検出
信号を電流帰還信号整合回路27を介して1前記設定器
31の設定最高値と比較演算し、電流ピーク値1.およ
びリプル値I、がともに所定値を越えないように電流−
整器22が調整する。電流調整器1!2は調整された電
圧指令信号を発生するブayりで、電流−隻器22の出
力信号によりVVVFインバータのPWMパルス巾ひい
ては電圧平均値が制御される点はすでに述べた第3図で
の電流調整器22と同様である・
なお、あらかじめ周波数に比例した電圧制御目標値を具
えておき、上記電流ピーク値I、、13プル値I、など
が所定値をこえないように補償要素として使用すること
も有効である。例えば温度による電動機抵抗変化あるい
は車輪9の空転などにより、VVVFインバータ出力の
電圧8周波数のバランスがくずれ過大な励磁電流が流れ
るようなトラブルを1この方式によれば回避することが
できる。P7 The present invention has been made with attention to this point, and the present invention will be explained below with reference to the control block shown in FIG. 4. In addition, in the figure, the same numbers and symbols are given to block parts that have the same functions as those in the known control block diagram of FIG. 3. The difference between FIG. 4 and FIG. 3 is that in diagram 4 there is no current pattern generator to generate the desired torque. That is, in the control block diagram of the present invention shown in FIG. 4, the current peak value IP, ripple value 1. On the output line of the modulation circuit 26, an instantaneous current value detector 33 detects the instantaneous current value, and the detected signal is sent to the current feedback signal matching circuit 27 to set the above-mentioned setting. The current peak value 1. The current −
Adjuster 22 makes the adjustment. The current regulators 1 and 2 are used to generate regulated voltage command signals, and the output signal of the current regulator 22 controls the PWM pulse width of the VVVF inverter, and thus the voltage average value, as mentioned above. It is similar to the current regulator 22 in Figure 3. Additionally, a voltage control target value proportional to the frequency is provided in advance, and the current peak value I, 13 pull value I, etc. are set so as not to exceed a predetermined value. It is also effective to use it as a compensation element. For example, this system can avoid troubles in which the voltage 8 frequency of the VVVF inverter output is unbalanced and excessive excitation current flows due to changes in motor resistance due to temperature or wheels 9 idling.
また電動機電流指令器32は前述の第3図のすべり周波
数指令発生* sobと類似のもので、車速の炭化とと
もに第BaOのようなトルクあるいは電流の変化を要求
されるため必要とされるものである。Also, the motor current command device 32 is similar to the slip frequency command generation * sob shown in FIG. be.
電動機電流指令器32の出力の電動機電流指令は電流検
出器34の検出値と加算点23で比軟演算され一指令と
検出値が相等しくなるように偏差増巾−35が作動し、
偏差増巾111!Iの出力が前述の第3図の場合と同様
に電圧制御形見振器24を制御する◎なお第7図(C)
はvvvrインバータ入力電流(直a)を示すが、肱入
力波形に図示した如く電fIL瞬9
時mIr、Irを検出することもできる。The motor current command output from the motor current command device 32 is soft-calculated with the detected value of the current detector 34 at the addition point 23, and the deviation amplification -35 is activated so that one command and the detected value are equal to each other.
Deviation increase width 111! The output of I controls the voltage-controlled vibrator 24 in the same way as in the case of FIG.
indicates the vvvr inverter input current (direct a), but it is also possible to detect the electric current mIr and Ir as shown in the input waveform.
速皺番こよらず一定の励磁電流を与え、かつ所望トルク
に見合ったすべり周波数を与えることは、■導電動機制
御の基本である・本発明方式によれば、比較的簡単な方
式により基本原理に近い制御を行うことがで自る・Applying a constant excitation current regardless of the speed and providing a slip frequency commensurate with the desired torque are the basics of conductive motor control.According to the method of the present invention, the basic principle can be achieved using a relatively simple method. It is possible to perform control close to
第1図は本発明に適用されるVVVFインバータにより
駆動を行う車両システムの主回路構成図、第2図は第1
図の電力変換器に使用される別の構成例の電力変換素子
対を示す図、第SvA、第4WAはともに制御ブロック
図で第3図は公知の例、第4図は本発明の詳細な説明す
る図、第6図は通常電気車によく用いられる車速と引張
力(トルク)。
電流勢の特性−線図、第6図はトルクに1、対する誘導
電動機の1次電流、すべり周波数などの特性−線図、第
7図(1) 、 (b) 、 (C)はVVVFインバ
ータの出力電圧、電流および入力電流を示す波形図であ
る。
l・・・・・・直流架線、2・・・・パンタグラフ、3
・・・・・・開閉器、4・・・・・フィルタリアクトル
、5・・・・・・フイIO
ルタコンデンサ、6a〜6f・・・・・・亭導体電力変
換素子、9・・・・・・車輪s 20・・・・・・トル
クパターン設定器、201・・・・・・電流指令発生器
、20b・・・・・・すべり周波数指令器、22・・・
・・・電流調整器、24・・・・・電圧制御形見振器、
2S・・・・・・分周器、26・・・・・・変調回路、
2フ・・・・・・電流帰還信号整合回路、28・・・・
・・vvvyインバータ、30・・・・・・電動機速度
帰還信号整置囲路、31・・・・・・設定器、32・・
・・・・電動機電流指令器、33・・・・・・′IIE
流瞬時値検出器、′34・・・・・・電流検出器s 8
B・・・・・・偏差増巾器。
咎許出願人
東洋電機製造株式会社
代表者 土 井 厚
扇 ! −
第2区
(g) (b)
為4図
θ γルア丁1毛71刀Fig. 1 is a main circuit configuration diagram of a vehicle system driven by a VVVF inverter applied to the present invention, and Fig.
A diagram showing a power conversion element pair of another configuration example used in the power converter shown in the figure, both SvA and 4WA are control block diagrams, FIG. 3 is a known example, and FIG. The explanatory diagram, Figure 6, shows the vehicle speed and tensile force (torque) commonly used in electric cars. Current force characteristics - diagram, Figure 6 is a diagram of characteristics such as primary current and slip frequency of induction motor with respect to torque 1, Figure 7 (1), (b) and (C) are VVVF inverter FIG. 3 is a waveform chart showing the output voltage, current, and input current of. l...DC overhead wire, 2...pantograph, 3
...Switch, 4...Filter reactor, 5...Filter capacitor, 6a to 6f...Tei conductor power conversion element, 9... ... Wheel s 20 ... Torque pattern setter, 201 ... Current command generator, 20b ... Slip frequency command device, 22 ...
...Current regulator, 24...Voltage control token,
2S... Frequency divider, 26... Modulation circuit,
2F...Current feedback signal matching circuit, 28...
...vvvy inverter, 30...Motor speed feedback signal alignment circuit, 31...Setter, 32...
...Motor current command, 33...'IIE
Current instantaneous value detector, '34...Current detector s 8
B... Deviation amplification device. Atsushi Doi, representative of Toyo Denki Seizo Co., Ltd., the applicant for the approval! - Section 2 (g) (b) Tame 4 figure θ γ Lua cho 1 hair 71 sword
Claims (1)
および電s機電tIt411[出手段、空隙磁束適正時
におけるIIIIk′WLtIt値に対応した電流波高
値設定手段もしくは電流リプル設定手段と電rlLil
11時値検出手段とを少なくとも備えた可変電圧・可変
周波数インバータによりかご形鋳導主電動機を駆動する
電気車駆動系において、前記所望電流値が流れるように
前記インバータのすべり周波数を制御するとともに電流
波高値が前記電流波高値設定手段もしくは電流リプル設
定手段と岬しくなるように前記インバータの電圧割織を
行うことを%IIEとする電気車制御方式。Predetermined torque six turns according to vehicle speed Electric fIt value setting + power and electric s mechanical electric tIt411 [output means, current peak value setting means or current ripple setting means corresponding to IIIk'WLtIt value when air gap magnetic flux is appropriate, and electric rlLil
In an electric vehicle drive system that drives a squirrel-cage casting main motor by a variable voltage/variable frequency inverter having at least an 11 o'clock value detection means, the slip frequency of the inverter is controlled so that the desired current value flows, and the current An electric vehicle control system in which the voltage division of the inverter is performed as %IIE so that the peak value is similar to the current peak value setting means or the current ripple setting means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56201571A JPS58103807A (en) | 1981-12-16 | 1981-12-16 | Control system for electric rolling stock |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56201571A JPS58103807A (en) | 1981-12-16 | 1981-12-16 | Control system for electric rolling stock |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58103807A true JPS58103807A (en) | 1983-06-21 |
JPH0568162B2 JPH0568162B2 (en) | 1993-09-28 |
Family
ID=16443261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56201571A Granted JPS58103807A (en) | 1981-12-16 | 1981-12-16 | Control system for electric rolling stock |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58103807A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012016135A (en) * | 2010-06-30 | 2012-01-19 | Toyo Electric Mfg Co Ltd | Electric vehicle controller |
-
1981
- 1981-12-16 JP JP56201571A patent/JPS58103807A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012016135A (en) * | 2010-06-30 | 2012-01-19 | Toyo Electric Mfg Co Ltd | Electric vehicle controller |
Also Published As
Publication number | Publication date |
---|---|
JPH0568162B2 (en) | 1993-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4227138A (en) | Reversible variable frequency oscillator for smooth reversing of AC motor drives | |
US4066938A (en) | Input current modulation to reduce torque pulsations in controlled current inverter drives | |
EP0279415A1 (en) | Induction motor control apparatus | |
GB1383941A (en) | Adjustable speed polyphase ac motor drive utilizing an in-phase current signal for motor control | |
EP0059924A1 (en) | Control apparatus for electric cars propelled by induction motor | |
US4870334A (en) | Motor control apparatus | |
US4001660A (en) | Regulating the torque of an induction motor | |
KR970069851A (en) | Control device to control elevator AC motor with high driving efficiency | |
JPH0775478B2 (en) | AC elevator controller | |
JPS58103807A (en) | Control system for electric rolling stock | |
JP3255839B2 (en) | AC elevator control device | |
JPH027241B2 (en) | ||
JPS5819169A (en) | Controlling method for pwm control converter | |
SU1241391A1 (en) | Device for braking variable-frequency synchronous electric motor | |
RU2284645C1 (en) | Adjusting device for drive with asynchronous motor | |
JP2904315B2 (en) | Inverter device | |
SU1654963A1 (en) | Frequency-controlled electric drive | |
JP3153655B2 (en) | Electric car control device | |
SU1617611A1 (en) | Induction electric drive | |
JP2732619B2 (en) | Electric car control device | |
JP3373225B2 (en) | Elevator control device | |
JP2966210B2 (en) | Inverter control method | |
JP2000341984A (en) | Inverter equipment | |
JPH0235522B2 (en) | ||
JPH07222499A (en) | Flux control type inverter control circuit |