JPS58102152A - Ultrasonic microscope - Google Patents
Ultrasonic microscopeInfo
- Publication number
- JPS58102152A JPS58102152A JP56200819A JP20081981A JPS58102152A JP S58102152 A JPS58102152 A JP S58102152A JP 56200819 A JP56200819 A JP 56200819A JP 20081981 A JP20081981 A JP 20081981A JP S58102152 A JPS58102152 A JP S58102152A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- rotary drum
- ultrasonic
- parallel
- sample stand
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/26—Arrangements for orientation or scanning by relative movement of the head and the sensor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02854—Length, thickness
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Microscoopes, Condenser (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は超音波顕微−に関する−ので、特にその走査繭
重の改良に関するものである・従来の超音波−微鏡の走
査は、ボイスコイルによる往復移動と、モータによるI
[線移動との組合わせにより、試料上を1IjiiF波
の微小スlットが第1図に一例を示すようにラスター状
に走査するものである。第1図において、試料lの上方
にトランスジューサおよび音響レンズより成る超音波送
受素子邸を配置し、駆動軸δを介してラウドスピーカと
同じ機構より成るボイスコイル曇すなわちX方向駆動装
置と連結し、超音波送受素子畠をX方向に高速往復移動
をさせるようにする。また、試料lを保持する試料台6
に設けたy方向移動機構C例えばリード・スクリュー等
による41IIII)によりX方向に低速移動させて超
音波による二次元走査を行なっている。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic microscope, and particularly relates to an improvement in its scanning weight. Conventional ultrasonic microscopes scan by reciprocating movement by a voice coil and by a motor. I
[In combination with line movement, a minute slit of 1IjiiF waves scans the sample in a raster pattern as shown in FIG. 1. In FIG. 1, an ultrasonic transmitting/receiving device consisting of a transducer and an acoustic lens is placed above the sample l, and connected via a drive shaft δ to a voice coil cloud, that is, an X-direction drive device consisting of the same mechanism as the loudspeaker. The ultrasonic transmitting/receiving element field is caused to reciprocate at high speed in the X direction. In addition, a sample stage 6 that holds the sample l
A two-dimensional scan using ultrasonic waves is performed by moving at a low speed in the X direction using a y-direction moving mechanism C (eg, 41III) using a lead screw or the like.
走査においては、超音波ビームが最小に絞られる位置に
試料が配置されねばならない。すなわち、面の走査にお
いて、最小の超音波ビー^が作る平面と、試料の試料面
が平行にならなければならない。そのため試料台6とし
ては、X、yf)j方向に間して面の平行度を出すこと
が可能な部材が用いられている。そして最小の超音波ビ
ームの作る面と、試料1を平行にするためには、滝壷を
繰返し、層像に表われる干渉縞を減少さすように、試料
台6を調整し、干渉縞が表われなくなった時点で、はじ
めて試料1の平面性がとれることになっていた。この試
料台6のlIllmlは非常に手間がかかり、試料lが
傾自をもっている場合は、仁の平面性を出すための調整
に大中の観察時間を使うと一つ欠点があった。During scanning, the sample must be placed at a position where the ultrasonic beam is minimized. In other words, when scanning a surface, the plane created by the smallest ultrasonic beam must be parallel to the sample surface of the sample. Therefore, as the sample stage 6, a member is used that can provide parallelism of the surfaces in the X, yf)j directions. Then, in order to make the surface created by the minimum ultrasonic beam parallel to the sample 1, repeat the water drop and adjust the sample stage 6 so as to reduce the interference fringes that appear in the layer image. When the particles disappeared, Sample 1 was to become flat for the first time. Illml of this sample stage 6 is very time-consuming, and if the sample l has a tilt, there is one drawback in using the large and medium observation time for adjustment to bring out the flatness of the grain.
本発明は上記の欠点を解消し、超音波−微鏡に関して、
超音波が最小に絞られる面と、試料平面とe容易に平行
にする装置を提供することを目的とするものである0
本発明は第1の方向に延在する軸1mおよびこれとほば
直交する第8の方向に延在する軸線を制心として揺動a
I能な試料台と、仁の試料台を前記第1および@Sの方
向にそれぞれ変位させる駆動手段と、前記試料台に増肉
して互いにl11関して配置した少く共8個のギャップ
センサとな具見、これらギャップセンサの出力に基いて
前記試料台が平行となるように前記駆動手段を制御する
ようW成したことf:検値とするものである。The present invention overcomes the above-mentioned drawbacks and provides:
It is an object of the present invention to provide a device that can easily align the surface where ultrasonic waves are minimized with the sample plane. Swinging a with the axis extending in the eighth orthogonal direction as a control center
a drive means for displacing the second sample stand in the first and @S directions, respectively, and at least eight gap sensors that are thickened on the sample stand and arranged with respect to each other with respect to each other; Specifically, based on the outputs of these gap sensors, the driving means is controlled so that the sample stage is parallel to each other.
以下図−をJl照して不発明をIl#細に説明する。The non-invention will be explained in detail with reference to the following figure.
第iv!Jは本発明の超音波顕微鏡の走査装置の−・実
施例を示すMA図的斜視図である。この走査装置では、
モータ11を駆動軸1!lを介して回転ドラム18に連
結し、回転ドラム18の内には図示しない超音波送受素
子の直線往復移動部材があり、この部材の直線往復移動
と回転ドラム18の回転移動の組会わせにより、試料1
4の平面上を超音波ビームがスパイラル状に走査するも
のである。Chapter iv! J is an MA perspective view showing an embodiment of a scanning device for an ultrasound microscope according to the present invention. In this scanning device,
Motor 11 as drive shaft 1! The rotary drum 18 is connected to the rotary drum 18 via the rotary drum 18, and there is a linear reciprocating member (not shown) for an ultrasonic transmitting and receiving element within the rotary drum 18, and the combination of the linear reciprocating movement of this member and the rotational movement of the rotating drum 18 , sample 1
The ultrasonic beam scans the plane No. 4 in a spiral manner.
この走査装置において、回転ドラム18の底面は、超音
波送受素子からの超音波ビームの最小スポットが走査の
際に作るであろう平面と平行である。従って、この回転
ドラム1δの底面と、観察しようとする試料14の面、
あるーは試料14に傾禽が無い場合には、試料台15の
面とを平行にすれば、走査において、超音波ビームの最
小スポットが試料14の面に平行な面を走査することに
なる。試料14を載置する試料台IIは、X方向に延在
する軸線を中心として揺動する第1部材と、y方向に延
在する軸線を中心として揺動する第2部材と、固定部に
取付けられたIIIIa部材とを以って構成する。In this scanning device, the bottom surface of the rotating drum 18 is parallel to the plane that the minimum spot of the ultrasonic beam from the ultrasonic transceiver element would create during scanning. Therefore, the bottom surface of this rotating drum 1δ and the surface of the sample 14 to be observed,
Alternatively, if the sample 14 is not tilted, if the surface of the sample stage 15 is made parallel, the minimum spot of the ultrasonic beam will scan a plane parallel to the surface of the sample 14 during scanning. . The sample stage II on which the sample 14 is placed has a first member that swings around an axis extending in the X direction, a second member that swings around an axis that extends in the y direction, and a fixed part. and the attached IIIa member.
・ 回転ドラム18の底面と試料台15上に保持された
試料14の面を平行にするため、回転ドラム18の底面
にその回転の中心に関して4個のギャップセンサ16,
1丁、111.19が対称の位置に配設されている。こ
のうちギャップセンサ161’FはX方向に関する平面
性を、ギャップセンサ18.19はy方向に関する平面
性を検出するものである。比較器goはギャップセンサ
16゜17に接続されその出力を比較し、比較#1g1
はギャップセンサ18.19に接&eされその出力を比
較するもので、比較器ilOは試料台1sの第3部材1
50に取付けられ、第8部材Ilbを揺動させる駆[!
i装ggに、同様に比較#21は試料台isのggg材
11sbに取付けられ、j11部材15aをl1iII
Iさせる駆動装@gaに接続されている。回転ドラム1
8内の超音波送受素子からの超音波ビームの最小スポッ
トが走査の際つくるであろう平面と回転ドラム18の底
面の平行は、X方向については、ギャップセンサ16.
11により回転ドラム18の底面と試料14tでの距−
に関する一出力を、比較器goで比較し、出力が同一に
なる、すなわち用層が2点において等しくなるようX方
向に関する駆動装置g2を制御する。また、同様にy方
向についてはギャップセンナ18゜19、比較器21に
よりy方向に関する駆動装置88を制御する。- In order to make the bottom surface of the rotating drum 18 parallel to the surface of the sample 14 held on the sample stage 15, four gap sensors 16 are installed on the bottom surface of the rotating drum 18 with respect to the center of rotation.
One gun, 111.19, is arranged in symmetrical positions. Among these, the gap sensor 161'F detects the flatness in the X direction, and the gap sensors 18.19 detect the flatness in the Y direction. Comparator go is connected to gap sensor 16゜17 and compares its output, comparison #1g1
are in contact with the gap sensors 18 and 19 and compare their outputs, and the comparator ilO is connected to the third member 1 of the sample stage 1s.
50 and swings the eighth member Ilb [!
Similarly, comparison #21 is attached to the ggg material 11sb of the sample stand is, and the j11 member 15a is attached to l1iII.
It is connected to the drive unit @ga that causes I. Rotating drum 1
In the X direction, the gap sensor 16 .
11, the distance between the bottom of the rotating drum 18 and the sample 14t is
The comparator go compares one output with respect to the two points, and the drive device g2 in the X direction is controlled so that the outputs are the same, that is, the layers used are equal at two points. Similarly, in the y-direction, a gap sensor 18.degree. 19 and a comparator 21 control a driving device 88 in the y-direction.
以上説明したように4発明によれば、走査する以前にお
いて、超音波ビームの最小スーットが走査の際に作るで
あろう走査平面と、試料面と【平行にすることが可能と
なり、従来のように、何度−走査を行なって試料面を平
行にする観察調整等のIIIIaな手間を省略できる。As explained above, according to the fourth invention, before scanning, it is possible to make the minimum suit of the ultrasonic beam parallel to the scanning plane that would be created during scanning and the sample surface, unlike the conventional method. In addition, it is possible to omit the trouble of performing observation adjustments to make the sample surface parallel by performing multiple scans.
なお、本発明は前述の実施例にIiI定されるもつでな
く幾多の変形や変更がIIIT I!である。例えばス
パイラル状の走査によらないボイスコイルによるラスタ
走査装置の場合でも用いることがで自る。Note that the present invention is not limited to the above-described embodiments, but may include numerous modifications and changes. It is. For example, it can be used even in the case of a raster scanning device using a voice coil that does not rely on spiral scanning.
第1鴎は一来の超音波St*鏡の走査fII置の一例の
41図的!Il視図、
第2図は本発明の超音波gi徽鏡の走査装置の−実施例
の線図的斜視図である。
11・・・モータ、 ls・・・駆動軸、18・
・・回転ドラム、 14・・・試料、16・・・試料
台、
iia・・・試料台の第1部材、
11ib・・・試料台の第8部材、
160・・・試料台の第8部材、
18.11.18.19・・・ギャップセンサ、10.
11・・・比較−5”as、sa・・・駆動装置。
特許出願人 オリンパス光学工業株式会社第璽図
/The first seagull is 41 diagrams of an example of the scanning fII position of Kazuki's ultrasonic St* mirror! FIG. 2 is a diagrammatic perspective view of an embodiment of the scanning device of the ultrasonic GI mirror according to the present invention. 11...Motor, ls...Drive shaft, 18...
... Rotating drum, 14... Sample, 16... Sample stand, iia... First member of sample stand, 11ib... Eighth member of sample stand, 160... Eighth member of sample stand , 18.11.18.19... gap sensor, 10.
11...Comparison-5"as, sa...Drive device. Patent applicant: Olympus Optical Industry Co., Ltd. Seal chart/
Claims (1)
る嬉8の方向に延在する軸線を中心として揺動FiIw
itな試料台と、この試料台を前記第1および第1の方
向にそれぞれ変位させる駆動手段と、前配賦科白に対向
して互いに1関して配置した少く共8個のギャップセン
ナとを具え、これらギャップセンサの出力に基−で前記
試料台が平行となるように前記駆動手段を1IlI−す
るよう簿成したことを9I黴とする超音波m*鏡。L Swinging FiIw about the shaft extending in the first direction and the axis extending in the direction of the axis perpendicular to this
a sample stand, drive means for displacing the sample stand in the first and first directions, and at least eight gap sensors arranged one-way from each other and facing the front dispensing section. , an ultrasonic m* mirror that is configured to operate the driving means in such a way that the sample stage is parallel to the sample stage based on the outputs of these gap sensors.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56200819A JPS58102152A (en) | 1981-12-15 | 1981-12-15 | Ultrasonic microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56200819A JPS58102152A (en) | 1981-12-15 | 1981-12-15 | Ultrasonic microscope |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58102152A true JPS58102152A (en) | 1983-06-17 |
JPH0140952B2 JPH0140952B2 (en) | 1989-09-01 |
Family
ID=16430723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56200819A Granted JPS58102152A (en) | 1981-12-15 | 1981-12-15 | Ultrasonic microscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58102152A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62255864A (en) * | 1986-04-28 | 1987-11-07 | Olympus Optical Co Ltd | Automatic inclination adjusting sample base |
JP2007212387A (en) * | 2006-02-13 | 2007-08-23 | Seiko Instruments Inc | Device and method for producing thin section |
JP2009271049A (en) * | 2004-01-22 | 2009-11-19 | Sakura Finetex Usa Inc | Multi-axis workpiece chuck |
DE102016211126A1 (en) * | 2016-06-22 | 2017-12-28 | Osram Opto Semiconductors Gmbh | Measuring device for flat samples and methods for measuring |
-
1981
- 1981-12-15 JP JP56200819A patent/JPS58102152A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62255864A (en) * | 1986-04-28 | 1987-11-07 | Olympus Optical Co Ltd | Automatic inclination adjusting sample base |
JP2009271049A (en) * | 2004-01-22 | 2009-11-19 | Sakura Finetex Usa Inc | Multi-axis workpiece chuck |
JP2007212387A (en) * | 2006-02-13 | 2007-08-23 | Seiko Instruments Inc | Device and method for producing thin section |
DE102016211126A1 (en) * | 2016-06-22 | 2017-12-28 | Osram Opto Semiconductors Gmbh | Measuring device for flat samples and methods for measuring |
Also Published As
Publication number | Publication date |
---|---|
JPH0140952B2 (en) | 1989-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8072663B2 (en) | Scanning system for lidar | |
JP6171970B2 (en) | Laser scanning microscope apparatus and control method | |
JPH0428104B2 (en) | ||
CN107803590B (en) | Galvano scanner | |
JPS58102152A (en) | Ultrasonic microscope | |
US20200088979A1 (en) | Optical apparatus | |
US7239435B2 (en) | High-speed, high resolution, wide-format Cartesian scanning systems | |
CN113253471B (en) | Rotary three-dimensional optical excitation device | |
JPS6220525B2 (en) | ||
JP2002277812A (en) | Laser scanning method and scanner | |
JP3162779B2 (en) | Optical head of optical radar system | |
JP2801815B2 (en) | Two-dimensional scanner in laser scanning microscope | |
JP2639321B2 (en) | Laser beam scanning device | |
JP2002296524A (en) | Deflector and image forming device using the same | |
JP2709928B2 (en) | 2D scanning device | |
JP2743861B2 (en) | Laser scanning device | |
US20230359020A1 (en) | Deflection device for lissajous scanning | |
JPH01262520A (en) | Laser beam scanner | |
JP2655456B2 (en) | Mechanical scanning optics | |
SU1089539A1 (en) | Scanning device | |
KR20140146553A (en) | Apparatus manufacturing curved substrate using laser | |
CN118584493A (en) | Scanning device, laser radar and scanning method | |
JPS6363016A (en) | Light beam scanner | |
GB2130836A (en) | Optical rotational printer | |
JP2019174162A (en) | Scanning device and ranging device |