JPS58101506A - Simple compensator for shaking for mobile body mounting device - Google Patents
Simple compensator for shaking for mobile body mounting deviceInfo
- Publication number
- JPS58101506A JPS58101506A JP20001081A JP20001081A JPS58101506A JP S58101506 A JPS58101506 A JP S58101506A JP 20001081 A JP20001081 A JP 20001081A JP 20001081 A JP20001081 A JP 20001081A JP S58101506 A JPS58101506 A JP S58101506A
- Authority
- JP
- Japan
- Prior art keywords
- pendulum
- brake
- antenna
- ship
- mobile body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/18—Means for stabilising antennas on an unstable platform
Landscapes
- Details Of Aerials (AREA)
- Support Of Aerials (AREA)
Abstract
Description
【発明の詳細な説明】
(技術分野)
本発明は動揺補償装置に関し、例えば、船舶等の移動体
にアンテナを搭載して使用する際に利用する、移動体の
動揺によるアンテナの揺れを軽減するための簡易な動揺
補償装置に利用することができる。[Detailed Description of the Invention] (Technical Field) The present invention relates to a sway compensating device, which is used when an antenna is mounted on a moving object such as a ship, and is used to reduce the shaking of an antenna due to the oscillation of the moving object. It can be used as a simple vibration compensation device for
(背景技術)
例えば、移動体を船舶とすると、船舶と通信衛星等の飛
翔体との間で通信を行う場合、波浪により船舶が動揺を
受ける際、船舶に取り付けたアンテナモ船舶の動揺に従
って揺られる。このため、アンテナの主ビーム方向が衛
星方向からずれ、送受信レベルが変動して通信に支障を
きたす。この対策として、アンテナの動揺を安定化する
動揺補償装置が必要となる。(Background technology) For example, when the moving object is a ship, when communication is carried out between the ship and a flying object such as a communication satellite, when the ship is shaken by waves, the antenna attached to the ship is shaken by the ship's movement. . As a result, the main beam direction of the antenna deviates from the direction of the satellite, and the transmission and reception levels fluctuate, causing communication problems. As a countermeasure to this problem, a sway compensating device is required to stabilize the oscillation of the antenna.
従来のアンテナの動揺補償法として、サーボ機構による
能動形のもの、及び重力を利用した受動形のものが用い
られている。As conventional antenna oscillation compensation methods, an active type using a servo mechanism and a passive type using gravity are used.
第1図は、受動形補償装置の構成例を示す。1はレード
ーム、2はアンテナ、3は無線機、4はアンテナと無線
機の連結棒、5はアンテナと無線機から成る一体構造(
振り子)の重心、6は回転枠、7,8は回転軸、9は支
持柱、10は取付台、11は船舶のマスト等、12は船
舶、13は船舶の重心、14は鉛直軸であり、θP、θ
翼はそれぞれ船舶のピッチング方向及びローリング方向
の動揺角を表わし、Hは船舶の重心と振り子の回転軸の
間の距離である。第1図で7と8の回転軸により、ユニ
バーサルジヨイントが構成される。また、7及び8はそ
れぞれ船のピッチング軸及びローリング軸に平行に設定
される。船のピッチング及びローリングによる振り子の
振れは、理論的には同様に扱えるため、以後はピッチン
グ方向を例にとって説明する。FIG. 1 shows an example of the configuration of a passive compensator. 1 is a radome, 2 is an antenna, 3 is a radio device, 4 is a connecting rod between the antenna and the radio device, and 5 is an integrated structure consisting of the antenna and the radio device (
6 is the rotation frame, 7 and 8 are the rotation axes, 9 is the support column, 10 is the mounting base, 11 is the mast of the ship, etc., 12 is the ship, 13 is the center of gravity of the ship, and 14 is the vertical axis. , θP, θ
The wings represent the pitching and rolling angles of the ship, respectively, and H is the distance between the center of gravity of the ship and the axis of rotation of the pendulum. In FIG. 1, the rotation axes 7 and 8 constitute a universal joint. Further, 7 and 8 are set parallel to the pitching axis and rolling axis of the ship, respectively. Since the pendulum swing due to pitching and rolling of a ship can theoretically be treated in the same way, the pitching direction will be explained below as an example.
船舶のピッチング方向の最大振幅をθ−とじ、この時の
振り子の振幅θの最大値をθ□とする。また、7の回転
軸と5の振り子の重心の距離なlとする。The maximum amplitude in the pitching direction of the ship is expressed as θ-, and the maximum value of the amplitude θ of the pendulum at this time is θ□. Also, let l be the distance between the rotation axis of 7 and the center of gravity of the pendulum of 5.
第2図は、lとθ、の関係の計算値を示す。条件は船舶
の動揺諸元として、振幅θPm=300、周期T=5秒
、船舶の重心と振り子の回転軸との距離H=1.7mを
与えている。適切なlの値により、輻は船の動揺角oP
mより小さくできることがわかる。FIG. 2 shows the calculated value of the relationship between l and θ. The conditions are as follows: amplitude θPm = 300, period T = 5 seconds, and distance H between the center of gravity of the ship and the axis of rotation of the pendulum = 1.7 m. With an appropriate value of l, the radius is the ship's rolling angle oP
It can be seen that it can be made smaller than m.
θ。を極度に小さくするためには、lを零に近ずければ
よいが、この状態では振り子の回転軸まわりの回転モー
メントが小さくなるため、回転軸に少しの摩擦でも存在
すると、摩擦力により振り子は船舶の動揺と同じ振幅で
揺れるようになり、回転軸受けの設計が困難である。そ
こでlは、回転軸の摩擦を無視できるようなある程度大
きい値にする必要がある。実用上は振り子の長さが余り
大きくならない範囲として、lは10u+程度が適切で
あるが、振り子の振幅θ1は約1fになるにすぎず、ア
ンテナのビーム幅が200程度の比較的利得の高いアン
テナを支持するには、動揺の抑圧が充分でないという欠
点があった。θ. In order to make l extremely small, l should be close to zero, but in this state, the rotational moment around the pendulum's rotational axis is small, so if there is even a small amount of friction on the rotational axis, the pendulum will swing due to frictional force. This causes the ship to sway with the same amplitude as the ship, making it difficult to design a rotating bearing. Therefore, l needs to be set to a somewhat large value so that the friction of the rotating shaft can be ignored. Practically speaking, as long as the length of the pendulum does not become too large, l is appropriate to be about 10u+, but the amplitude θ1 of the pendulum is only about 1f, and the beam width of the antenna is about 200, which is a relatively high gain. The drawback was that the suppression of vibration was not sufficient to support the antenna.
一方、能動形は、振り子の回転軸7,8に駆動モータを
取り付け、振り子の動揺を補償するものである。この場
合、モータによる駆動角を決定するため、”船舶の動揺
角あるいは振り子の傾き角を検出する必要があり、バー
チカルジャイロまたは加速度計を用いた動揺検出器が必
要となる。本方式は高い補償精度の得られる特長がある
が、高価な動揺検出器を使用する必要のあること、それ
と共に全体として大形かつ高価になる欠点があった。On the other hand, in the active type, a drive motor is attached to the rotating shafts 7 and 8 of the pendulum to compensate for the oscillation of the pendulum. In this case, in order to determine the drive angle by the motor, it is necessary to detect the oscillation angle of the ship or the tilt angle of the pendulum, and a oscillation detector using a vertical gyro or an accelerometer is required.This method provides high compensation. Although it has the advantage of high accuracy, it has the disadvantage of requiring the use of an expensive motion detector and making the whole device large and expensive.
(発明の課題)
本発明は、これらの欠点を解決することを目的とし、構
造が簡易で安価にできる受動形動揺補償装置において、
ユニバーサルジヨイント部の互いに直交する2つの回転
軸に制動機構をもうけてアンテナ部の動揺を抑えるよう
にしたもので、以下図面について詳細に説明する。(Problems to be solved by the invention) The present invention aims to solve these drawbacks, and provides a passive vibration compensator with a simple and inexpensive structure.
A braking mechanism is provided on the two mutually orthogonal rotation axes of the universal joint part to suppress the vibration of the antenna part, and the drawings will be described in detail below.
(発明の構成及び作用)
第3図(a)及び(blは本発明の一実施例である。第
3図(alに全体の構成を示すが、振り子及び支持部の
構成は第1図と同様である。第3図(b)に回転軸部分
の詳細図を示す。本実施例の特徴は、ユニバーサルジヨ
イントの回転軸7,8に制動機構を有することである。(Structure and operation of the invention) Figures 3 (a) and (bl) show an embodiment of the present invention. Figure 3 (al) shows the overall configuration, but the structure of the pendulum and support part is the same as in Figure 1. The same is true. Fig. 3(b) shows a detailed view of the rotating shaft portion.The feature of this embodiment is that the rotating shafts 7 and 8 of the universal joint have a braking mechanism.
15は回転軸7の軸受、16は7の軸に対する制動機、
17は制動機の取付板、18は振り子構造の固定部で、
19のネジにより締め付けて固定するようになっている
。制動機として、例えば電磁ブレーキ等が考えられる。15 is a bearing for rotating shaft 7, 16 is a brake for shaft 7,
17 is the mounting plate of the brake, 18 is the fixed part of the pendulum structure,
It is tightened and fixed with 19 screws. As the brake, for example, an electromagnetic brake can be considered.
電磁ブレーキは励磁電圧により制動力を変化できるので
、電磁ブレーキの励磁電圧を制御して、振り子軸の回転
に対する制動力を制御できる。Since the electromagnetic brake can change the braking force depending on the excitation voltage, the braking force relative to the rotation of the pendulum shaft can be controlled by controlling the excitation voltage of the electromagnetic brake.
本構成の動作を以下に説明する。The operation of this configuration will be explained below.
まず、回転軸に制動が全(かからない場合の振り子の動
揺モードを第4図に示す。船舶の動揺の典型的な状態を
図中に(+) 、 (2) 、 (3) 、 (4)で
示す。(1)は船舶が中立点にある状態、(2)及び(
3)はそれぞれ左及び右に最も傾いた状態で−+(a、
!遷移状態である。First, Fig. 4 shows the swing mode of the pendulum when full braking is not applied to the rotating shaft. (1) is the state where the ship is at the neutral point, (2) and (
3) is −+(a,
! It is in a transition state.
この振り子の動揺状態は第2図で/=10冨富とした値
に対応している。θP、θはそれぞれ遷移状II!(4
1における船舶、ぼり子の揺れ角で、θ8は遷移状態(
4)における振り子と支持柱との間の角度である。This state of oscillation of the pendulum corresponds to the value /=10 Tomomi in FIG. θP and θ are respectively transition state II! (4
1, θ8 is the swing angle of the ship and the boat in the transition state (
4) is the angle between the pendulum and the support column.
また、θpmはθPの、θ□はθの、08mはθ8のそ
れぞれ最大値である。制動の無い場合は、(1)→(4
)及び(4)→(2)の変化に伴い、θP、θは共に増
加し、θ8が増加する様な動揺モードである。Further, θpm is the maximum value of θP, θ□ is the maximum value of θ, and 08m is the maximum value of θ8. If there is no braking, (1) → (4
) and (4)→(2), both θP and θ increase, and this is an oscillation mode in which θ8 increases.
これに対し、本発明の主張点である回転軸に制動を働か
せた場合の動揺モードの一例を第5図(alに示す。本
動作例は第4図における遷移状態(4)で制動機を働か
せたり切ったりするものである。θ′。On the other hand, an example of the oscillation mode when braking is applied to the rotating shaft, which is the point of the present invention, is shown in FIG. It is something that works or cuts.θ′.
θ二はそれぞれ制動時の振り子の振れ角及び振り子と支
持柱の間の角度である。θ2 is the swing angle of the pendulum during braking and the angle between the pendulum and the support column, respectively.
まず状態mから(a)ic向かう状態(4)の時に、回
転軸に強力な制動をかげる。すると、振り子は回転軸に
固定され、θBはθB−〇ニ一定となる。次にθPがθ
Pr1l=θP+ΔθPとなり状態(2)に移行した時
、振り子が鉛直軸となす角をθ′とするとθ′は状態(
4)のθに対して、ΔθPだけ小さくなりθ′=θ−Δ
θPで与えられ、振り子の見かけ上の振れ角はθ□から
輻−θ十ΔθPだけ小さくできる。次に状態(2)から
(4)に移った時点で制動を無くする。この状態ではθ
、θPの値が非制動時と全く等しくなるため、ここで制
動を切ると振り子はそのまま非制動時のモードに移行す
る。一連の動作におけるθの時間変化を表わすと、第5
図(b)のようになる。時間軸の(11〜(4)は、第
5図(alの状態(11〜(4)にそれぞれ対応する。First, when moving from state m to state (4) toward (a)ic, strong braking is applied to the rotating shaft. Then, the pendulum is fixed to the rotating shaft, and θB becomes constant as θB-〇ni. Next, θP is θ
When Pr1l = θP + ΔθP and transitions to state (2), if the angle the pendulum makes with the vertical axis is θ', θ' becomes the state (
4) θ is smaller by ΔθP, and θ'=θ−Δ
It is given by θP, and the apparent swing angle of the pendulum can be reduced from θ□ by −θ+ΔθP. Next, when the state changes from state (2) to state (4), the braking is eliminated. In this state θ
, θP are exactly the same as in the non-braking mode, so if the braking is turned off at this point, the pendulum shifts directly to the non-braking mode. Expressing the time change of θ in a series of operations, the fifth
The result will be as shown in figure (b). (11 to (4) on the time axis correspond to states (11 to (4)) in FIG. 5 (al), respectively.
船舶が右側に動揺する場合も同様で、これらの動作をく
り返すことにより、振り子の動揺を非制動時に比べて抑
圧する。ことができる利点がある。The same is true when the ship sways to the right; by repeating these operations, the oscillation of the pendulum is suppressed compared to when the brakes are not applied. There is an advantage that it can be done.
制動の働かせ方として、制動機を常時動作させた場合、
振り子の動揺モードは第6図(alに示す例のようにな
る。これは船舶が左方から右方へ揺れる時の振り子の動
揺モードであり、船舶が右方から左方へ揺れる時は振り
子は逆方向に振れる。この時のθの時間変化を第6図(
blに示す。動揺諸元は、第5図の条件と同様である。When the brake is operated all the time,
The swinging mode of the pendulum is as shown in the example shown in Figure 6 (al). This is the swinging mode of the pendulum when the ship is swinging from left to right; swings in the opposite direction.The time change of θ at this time is shown in Figure 6 (
Shown in bl. The oscillation specifications are the same as the conditions shown in FIG.
制動力は回転軸まわりのトルクとして2.8kg−fi
の値である。θの最大値は約IFf′で、非制動時の1
1°より大きくなる。制動トルクを小さくして零に近ず
けるにつれ、θも小さくなるが、非制動時のθに漸近す
るだけでありθを小さくする効果はない。Braking force is 2.8kg-fi as torque around the rotation axis
is the value of The maximum value of θ is approximately IFf', which is 1 when not braking.
It becomes larger than 1°. As the braking torque is made smaller and approaches zero, θ also becomes smaller, but it only approaches asymptotically to θ when braking is not applied, and there is no effect of reducing θ.
次に第5図(a)の状態(4)で制動機の動作起動及び
停止を行うための判断挙準を与える動揺センサの構成に
ついて説明する。第7図は動揺センサの構成例を丞す。Next, a description will be given of the configuration of the vibration sensor that provides the judgment criterion for starting and stopping the operation of the brake machine in state (4) of FIG. 5(a). FIG. 7 shows an example of the configuration of the vibration sensor.
頒は動揺センサの筐体、21.22は振り子のおもり、
n、24はおもりの位置調整用ネジ、5は振り子の重心
、%は振り子の支点、nは回転角検出器、あは振り子の
支柱である。振り子の固有振動数は、
で与えられる。ここにmは21とnの振り子のおもりの
全質量、gは重力の加速度、loは振り子の重心と支点
間の距離、■は振り子の支点まわりの慣性モーメントで
ある。振り子の重心まわりの慣性モーメントをIGとす
ると、■、== ■a、 + m1loとなる。The holder is the housing of the vibration sensor, 21.22 is the pendulum weight,
n, 24 is a screw for adjusting the position of the weight, 5 is the center of gravity of the pendulum, % is the fulcrum of the pendulum, n is the rotation angle detector, and A is the support of the pendulum. The natural frequency of the pendulum is given by. Here, m is the total mass of the pendulum weights of 21 and n, g is the acceleration of gravity, lo is the distance between the center of gravity of the pendulum and the fulcrum, and ■ is the moment of inertia around the fulcrum of the pendulum. If the moment of inertia around the center of gravity of the pendulum is IG, then ■, == ■a, + m1lo.
また、振り子の上下おもりを等しい形状の円板で構成し
、おもりの間隔なhとすると、lが小さいと表わすこと
ができる。そのため、動揺センサの振り子のおもりの位
置をネジ23.24で調整して適・切なり、loを選べ
ば、アンテナと無線機から成る一体構造と等しい固有振
動数を持ち、前記一体構造よりはるかに小形の振り子を
構成できる。この際この振り子の動揺は、第4図に示す
非制動時の動揺モードと同じになり、制動機の動作点(
4)は、振り子の支点にもうけた回転角検出器nで検出
可能となる。回転角検出器は、振り子のユニバーサルジ
ヨイント部の互いに独立に回転する2つの回転軸にそれ
ぞれもうけており、船舶の動揺に対して、振り子が支柱
となす角(第4図の08)を検出するものである。Furthermore, if the upper and lower weights of the pendulum are composed of disks of the same shape, and the interval between the weights is h, then l can be expressed as small. Therefore, if you adjust the position of the pendulum weight of the vibration sensor with screws 23 and 24 and select the appropriate lo, it will have a natural frequency equal to that of the integrated structure consisting of the antenna and radio, and will be far greater than the integrated structure. A small pendulum can be constructed. At this time, the oscillation of this pendulum is the same as the oscillation mode during non-braking shown in Fig. 4, and the operating point of the brake (
4) can be detected by a rotation angle detector n installed at the fulcrum of the pendulum. Rotation angle detectors are installed on each of the two rotating shafts of the pendulum's universal joint that rotate independently of each other, and detect the angle that the pendulum makes with the support (08 in Figure 4) with respect to the movement of the ship. It is something to do.
以上説明したように、本動揺センナは、振り子と支柱の
成す角を得るだけで良く、従来のバーチカルジャイロに
おける様な鉛直軸を出す必要がなくなり、構成が簡易に
なり安価にできる利点がある。また、従来の振り子形の
傾斜計のように、振り子のおもりに加わる加速度の影響
をな(すために傾斜計を船舶の重心位置付近に設置する
必要がなくなり、取扱いも容易になる゛利点がある。As explained above, the present oscillation sensor only needs to obtain the angle formed by the pendulum and the support, and there is no need to provide a vertical axis like in a conventional vertical gyro, which has the advantage of simplifying the configuration and making it inexpensive. Another advantage is that unlike conventional pendulum-type inclinometers, there is no need to install the inclinometer near the center of gravity of the ship to account for the effects of acceleration applied to the pendulum weight, making it easier to handle. be.
なお、上記説明はアンテナの動揺補償を例に説明したが
、本発明はアンテナ以外の一般装置の動揺補償への応用
が可能で、例えば、水面に浮かぶブイ、海洋中継器、海
洋油田通信に適用できる他、ジャイロへの適用も可能で
ある。In addition, although the above explanation has been made using antenna oscillation compensation as an example, the present invention can be applied to oscillation compensation of general devices other than antennas, such as buoys floating on the water surface, marine repeaters, and offshore oil field communications. In addition to this, it is also possible to apply it to a gyro.
(発明の効果)
以上説明したように、本発明の動揺補償装置は、アンテ
ナと無線機から成る振り子で構成し、船舶の動揺に対し
て自由に回転するユニバーサルジヨイントの2つの回転
軸に、各々制動機をもうけてその動作タイミングを適切
に調整することによりアンテナの揺れを抑圧する方式で
あるから、受動形の持つ、簡易な構造で小形化できかつ
低廉化できる特長を維持しつつ、アンテナの揺れ角を充
分小さくできる利点がある。このため、小形で経済的な
装置が要求される数10トンの小形船舶において、衛星
通信用アンテナを設備する際に、本装置は有効である。(Effects of the Invention) As explained above, the motion compensating device of the present invention is composed of a pendulum consisting of an antenna and a radio device, and has two rotating shafts of a universal joint that rotate freely in response to the motion of the ship. Since this method suppresses the swing of the antenna by providing a brake for each brake and appropriately adjusting its operating timing, it maintains the features of the passive type, which allow it to be made compact and inexpensive, while maintaining the antenna's This has the advantage that the swing angle can be made sufficiently small. Therefore, this device is effective when installing a satellite communication antenna in a small ship weighing several tens of tons, which requires a small and economical device.
第1図は受動形動揺補償装置の構成図、第2図は振り子
の重心と支点間の距離と振り子の振幅の関係を示す図、
第3図(a)及び(b)は本発明装置の一実施例の構成
図、第4図は非制動時の振り子の動揺モードの一例を示
す図、第5図(a) 、 (bl及び第6図(a) 、
(b)は制動時の振り子の動揺モードを示す図、第7
図は動揺検出センサの構成図である。
1・・・・・・レードーム、 2・・・・・・アン
テナ、3・・・・・・無線機、
4・・・・・・アンテナと無線機の連結棒、5・・・・
・・アンテナと無線機から成る一体構造(振り子)の重
心、
6・・・・・・回転枠、 7,8・・・回転軸、
9・・・・・・支持柱、 10・・・・・・取付
台、11・・・・・・船舶のマスト等、12・・・・・
・船舶、13・・・・・・船舶の重心、 14・・・
・・・鉛直軸、15・・・・・・軸受、 16
・・・・・・制動機、17・・・・・・制動機取付板、
18・・・・・・振り子の固定部、19・・・・・・
ネジ、 加・・・・・・動揺センサ筐体、2
1.22・・・おもり、 23.24・・・調整ネ
ジ、5・・・・・・動揺センサの振り子の重心、26・
・・・・・回転軸、 苔・・・・・・回転角検出
器、あ・・・・・・支柱
毛/図
/A
第、2 図
1師ケ。
幕321
ta+ <l))泉i
図
幕5 図((7)
罠ろ口(0)
Q) t4ノ Ill (3)尾乙121 (
bJFigure 1 is a configuration diagram of a passive sway compensator, Figure 2 is a diagram showing the relationship between the distance between the center of gravity of the pendulum and the fulcrum and the amplitude of the pendulum.
3(a) and (b) are block diagrams of an embodiment of the device of the present invention, FIG. 4 is a diagram showing an example of the pendulum oscillation mode when not braking, and FIG. 5(a), (bl and Figure 6(a),
(b) is a diagram showing the oscillation mode of the pendulum during braking, No. 7
The figure is a configuration diagram of an agitation detection sensor. 1...Radome, 2...Antenna, 3...Radio device, 4...Connection rod between antenna and radio device, 5...
... Center of gravity of the integrated structure (pendulum) consisting of an antenna and a radio, 6 ... Rotation frame, 7, 8 ... Rotation axis,
9... Support column, 10... Mounting base, 11... Ship mast, etc., 12...
・Ship, 13... Center of gravity of the ship, 14...
... Vertical shaft, 15 ... Bearing, 16
...Brake, 17...Brake mounting plate,
18...Fixed part of the pendulum, 19...
Screw, addition...Movement sensor housing, 2
1.22... Weight, 23.24... Adjustment screw, 5... Center of gravity of the pendulum of the vibration sensor, 26.
...rotation axis, moss...rotation angle detector, ah...prop hair/Figure/A No. 2 Fig. 1. Act 321 ta+ <l)) Izumi i
Illustration 5 Diagram ((7) Traroguchi (0) Q) t4ノ Ill (3) Ootsu 121 (
bJ
Claims (2)
交する回転軸を有するユニバーサルジヨイント部を介し
て、重錘と共に搭載される搭載装置の動揺補償装置にお
いて、ユニバーサルジヨイント部の各回転軸に制動機が
もうけられると共に、当該各回転軸の回転角を検出する
回転角検出器がもうけられ、ユニバーサルジヨイント部
の回転軸の回転角が基準状態に対し予め定められる角度
以上のときに前記制動機が作動するごとく構成されるこ
とを特徴とする移動体搭載装置用簡易動揺補償装置。(1) In a motion compensation device for a mounted device that is mounted together with a weight via a universal joint that has two orthogonal rotation axes that can rotate independently of each other, each of the universal joints A brake is provided on the rotating shaft, and a rotation angle detector is provided to detect the rotation angle of each rotating shaft, and when the rotation angle of the rotating shaft of the universal joint portion is equal to or greater than a predetermined angle with respect to the reference state. A simple vibration compensation device for a mobile body-mounted device, characterized in that the brake is configured such that the brake is actuated.
ほぼ等しい固有振動数を有し、前記重錘よりはるかに小
型の振子を有するごとき特許請求の範囲第1項記載の移
動体搭載装置用簡易動揺補償装置。(2) The mobile body mounting according to claim 1, wherein the rotation angle detector has a natural frequency substantially equal to the natural frequency of the mounted device and has a pendulum that is much smaller than the weight. Simple vibration compensation device for equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20001081A JPS58101506A (en) | 1981-12-14 | 1981-12-14 | Simple compensator for shaking for mobile body mounting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20001081A JPS58101506A (en) | 1981-12-14 | 1981-12-14 | Simple compensator for shaking for mobile body mounting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58101506A true JPS58101506A (en) | 1983-06-16 |
Family
ID=16417286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20001081A Pending JPS58101506A (en) | 1981-12-14 | 1981-12-14 | Simple compensator for shaking for mobile body mounting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58101506A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0154240A2 (en) * | 1984-02-17 | 1985-09-11 | Comsat Telesystems, Inc. | Satellite tracking antenna system |
JPS61113302A (en) * | 1984-11-08 | 1986-05-31 | Kokusai Tsushin Shisetsu Kk | Oscillation detecting and controlling device |
JPH02189003A (en) * | 1989-01-18 | 1990-07-25 | Fujitsu Ltd | High frequency planar circuit/coaxial connector connection structure |
US5410325A (en) * | 1993-08-09 | 1995-04-25 | Caterpillar Inc. | Antenna mounting apparatus |
US5523766A (en) * | 1993-11-05 | 1996-06-04 | At&T Corp. | Apparatus for maintaining antenna polarization in portable communication devices |
US5760748A (en) * | 1996-05-28 | 1998-06-02 | Trimble Navigation Limited | Pivoting support bracket to mount a GPS antenna above a theodolite or a total station mounted on a tripod |
US5864320A (en) * | 1996-08-06 | 1999-01-26 | Space Systems/Loral, Inc. | Synchronous rotation dual-axis mechanical hinge assemblies |
WO2022137441A1 (en) * | 2020-12-24 | 2022-06-30 | 日本電信電話株式会社 | Radio communication device and control method |
-
1981
- 1981-12-14 JP JP20001081A patent/JPS58101506A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0154240A2 (en) * | 1984-02-17 | 1985-09-11 | Comsat Telesystems, Inc. | Satellite tracking antenna system |
JPS61113302A (en) * | 1984-11-08 | 1986-05-31 | Kokusai Tsushin Shisetsu Kk | Oscillation detecting and controlling device |
JPH02189003A (en) * | 1989-01-18 | 1990-07-25 | Fujitsu Ltd | High frequency planar circuit/coaxial connector connection structure |
US5410325A (en) * | 1993-08-09 | 1995-04-25 | Caterpillar Inc. | Antenna mounting apparatus |
US5523766A (en) * | 1993-11-05 | 1996-06-04 | At&T Corp. | Apparatus for maintaining antenna polarization in portable communication devices |
US5760748A (en) * | 1996-05-28 | 1998-06-02 | Trimble Navigation Limited | Pivoting support bracket to mount a GPS antenna above a theodolite or a total station mounted on a tripod |
US5864320A (en) * | 1996-08-06 | 1999-01-26 | Space Systems/Loral, Inc. | Synchronous rotation dual-axis mechanical hinge assemblies |
WO2022137441A1 (en) * | 2020-12-24 | 2022-06-30 | 日本電信電話株式会社 | Radio communication device and control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4621266A (en) | Device for stabilizing and aiming an antenna, more particularly on a ship | |
US4920350A (en) | Satellite tracking antenna system | |
NO840395L (en) | STABILIZED PLATFORM | |
US3576134A (en) | Gyroscopic stabilizer having an adjustable spring | |
EP3542414B1 (en) | A stabilization arrangement for stabilization of an antenna mast | |
JPS6128244B2 (en) | ||
US4920349A (en) | Antenna mounting with passive stabilization | |
JPS58101506A (en) | Simple compensator for shaking for mobile body mounting device | |
CA1247234A (en) | Satellite tracking antenna system with a two-degree freedom gimballed mount | |
US6772978B2 (en) | Dynamic unbalance compensation system and method | |
JPH0653519B2 (en) | Dual spin satellite nutation suppression device | |
US3563335A (en) | Tuned mechanical stabilizer | |
EP3919364A1 (en) | Gyroscopic stabiliser | |
KR100350715B1 (en) | The level maintainable apparatus of a satellite antenna | |
JP3915038B2 (en) | Structure with antenna reflector and transceiver horn combined to form a compact antenna unit | |
EP0209216A1 (en) | Stabilised platform arrangement | |
JPS59105702A (en) | Rate sensor | |
JPS62184376A (en) | Antenna directing device | |
JP2532879Y2 (en) | Ship cabin swing reduction device | |
JPS61245603A (en) | Stabilizing system | |
JPH0886657A (en) | Method for damping vibration by using gyro mechanism | |
JPH06132716A (en) | Antenna posture controller | |
JPS6111773Y2 (en) | ||
JPS59163508A (en) | North directing and statically determining method of gyrocompass for vessel, and its control device | |
JPH0518281B2 (en) |