[go: up one dir, main page]

JPS58100679A - Split target for sputtering - Google Patents

Split target for sputtering

Info

Publication number
JPS58100679A
JPS58100679A JP19772281A JP19772281A JPS58100679A JP S58100679 A JPS58100679 A JP S58100679A JP 19772281 A JP19772281 A JP 19772281A JP 19772281 A JP19772281 A JP 19772281A JP S58100679 A JPS58100679 A JP S58100679A
Authority
JP
Japan
Prior art keywords
divided
pieces
target according
backing plate
small pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19772281A
Other languages
Japanese (ja)
Other versions
JPS6134509B2 (en
Inventor
Toshiaki Fujioka
藤岡 俊昭
Katsuya Okumura
勝弥 奥村
Yoshito Fukube
福辺 義人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Vacuum Metallurgical Co Ltd
Ulvac Inc
Original Assignee
Toshiba Corp
Vacuum Metallurgical Co Ltd
Ulvac Inc
Nihon Shinku Gijutsu KK
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Vacuum Metallurgical Co Ltd, Ulvac Inc, Nihon Shinku Gijutsu KK, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP19772281A priority Critical patent/JPS58100679A/en
Publication of JPS58100679A publication Critical patent/JPS58100679A/en
Publication of JPS6134509B2 publication Critical patent/JPS6134509B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To facilitate manufacture and assembly of targets and to improve the quality of vapor deposited films by disposing the small segmental pieces of dissimilar kinds of target materials alternately, and setting the central angles of the small segmental pieces at the angles meeting those of the alloys to be vapor deposited. CONSTITUTION:Small segmental pieces 11 of dissimilar sputtering materials disposed alternately are mechanically fastened to a backing plate 15 by using retainers 13, 14. Thereafter, the central angles of the pieces 11, 12 are set at the angles meeting those of the alloys or intermetallic compds. to be vapor deposited to determine the compsn. ratios of films. The fayed surfaces in the transverse direction of the pieces 11, 12 are made inclined or stepped. The above-mentioned split targets are easy to manufacture and assemble and the quality of the vapor- deposited films is improved.

Description

【発明の詳細な説明】 本発明は合金又は金属間化合物スパッタ用ター〆ットに
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a target for sputtering alloys or intermetallic compounds.

ICの高機能化、高集積化に伴ないチップ寸法が大きく
なり内部パターン寸法が小さくなっていく丸め、チップ
内での電気信号の伝達手段である配線が長くなる傾向が
顕著である。ところがこの配線材料として現在のところ
は多結晶金属ケイ素薄膜が用いられている。多結晶全域
ケイ素薄膜では不純物を固溶限界までドープしたとして
も、そのシート抵抗を20−10Ω/elll”以下に
することけできないことはよく知られているところであ
る。
As ICs become more sophisticated and highly integrated, there is a noticeable tendency for chip dimensions to increase, internal pattern dimensions to become smaller, rounding, and wiring, which is a means of transmitting electrical signals within the chip, to become longer. However, polycrystalline metal silicon thin films are currently used as the wiring material. It is well known that in a polycrystalline silicon thin film, even if impurities are doped to the solid solution limit, the sheet resistance cannot be reduced to less than 20-10 Ω/ell''.

一方このシート抵抗値では高機能デバイスを想定し九場
合、信号遅鷺が無視できなくなる。このため多結晶金属
ケイ素薄膜にとってかわる材料の研究・開発が盛んに行
なわれている。
On the other hand, if a high-performance device is assumed to have this sheet resistance value, signal delay cannot be ignored. For this reason, research and development of materials that can replace polycrystalline metal silicon thin films are being actively conducted.

その中で一番有望と考えられている本のがM。Among them, the book considered to be the most promising is M.

やWのシリサイド薄膜である。(以下MoS i 21
罰12と略Fすル) 、  Mo81z 、 WSh 
 膜を用いると現在使われて多結晶金属ケイ素の製造プ
四セスをほとんど変更させないで、そのシート抵抗をほ
ぼ1桁、即ち2〜507cm” K減少させることがで
きる。
or W silicide thin film. (hereinafter referred to as MoS i 21
Punishment 12 (F), Mo81z, WSh
The membrane can be used to reduce the sheet resistance of polycrystalline silicon metal by almost an order of magnitude, i.e., 2-507 cm"K, with little change in the currently used manufacturing process for polycrystalline metal silicon.

このM□Si2やWSi 2 膜を形成する方法として
は檀^の方法が検討されているが、直流マグネトaンス
パッタリング技術(以下単にスパッタ法という)を利用
したものが膜質的に安定であり、生産性4高く、生産技
術的忙屯保持具を用いる方式が採用しやすい等の長所が
あるため最も検討が進んでいる。
As a method for forming this M□Si2 or WSi 2 film, the method of Dan^ is being considered, but the method using direct current magneton sputtering technology (hereinafter simply referred to as sputtering method) is stable in terms of film quality. This method is being studied the most because it has advantages such as high productivity and easy adoption of a method using a busy holding tool in terms of production technology.

以下MoSi2膜のスパッタリングを例にとり詳細に説
明する。
The sputtering of a MoSi2 film will be described in detail below as an example.

スパッタ法でMoSi2膜を形成するのに最も多く採用
されている方法け、Mo及びs1粉末をMo812組成
となるように配合あるいはMoSi2粉末をあらかじめ
形成後、第1図に示すような円板形状にホットプレス法
でターゲット1を製作し、このターゲットの裏面(スパ
ッタリングされる面に対向した面)K適当な金属材料で
メタライズを行ない、バッキングプレート2&CIn−
8n合金仝輯でボンディングして使用するのが通例であ
る。
The most commonly used method for forming MoSi2 films by sputtering is to mix Mo and s1 powders to have a composition of Mo812, or to form MoSi2 powders in advance into a disk shape as shown in Figure 1. A target 1 is manufactured using a hot press method, and the back surface of this target (the surface opposite to the surface to be sputtered) is metalized with a suitable metal material, and a backing plate 2 & CIn-
It is customary to use it by bonding with 8N alloy material.

しかし、このホットプレスターゲットを用いて膜形成を
〈抄返し行なってみたところ次のような次点があること
が判明し走。
However, when we attempted to form a film using this hot press target, we discovered that there was a runner-up as shown below.

(a)  ホットプレス法でターゲットを形成するため
か、ターゲット中に多くの気孔が見られ、どの気孔中に
残留しているガスによってスパッタ膜の膜質が低下する
(a) Many pores are observed in the target, probably because the target is formed by a hot press method, and the film quality of the sputtered film deteriorates depending on the gas remaining in which pores.

伽) ホットプレス法で製作され九−ターゲットでは高
純度にすることが困難であり、このため取扱い時に付着
されるNa −’p K  といった拡散し易いイオン
が蒸着されたMo812膜中にとりこまれやすくゲート
金属材料として不適当である。
佽) It is difficult to achieve high purity with a nine-target manufactured by the hot press method, and for this reason, easily diffusible ions such as Na −'p K attached during handling are easily incorporated into the deposited Mo812 film. It is unsuitable as a gate metal material.

またU、Th岬の放射性元素も検出されており、膜とし
て使用した場合ソフトエラーが発生するなどの問題があ
る。
Radioactive elements in U and Th capes have also been detected, and there are problems such as soft errors occurring when used as a film.

(c)  ホットプレス法では大きなターゲットを作る
ことが困難であり、かつこのターゲットは硬くて龜ろい
ため急激にスパッタ電力を投入しえり、投入電力が大き
すぎるとターゲットにクラックが入抄破損してしまうこ
とがある。このため蒸着速度が小さく生産性上4大きな
問題である。
(c) It is difficult to make a large target using the hot press method, and since this target is hard and dull, sputtering power must be applied suddenly, and if the input power is too large, the target will crack and break. Sometimes I put it away. For this reason, the deposition rate is low, which is a major problem in terms of productivity.

本発明Fi続述の如き諸欠点を除き、安定した高品質M
o812膜等が形成できるターゲットを提供する本ので
ある。
The present invention is of stable high quality, excluding the drawbacks as described below.
This is a book that provides targets on which o812 films and the like can be formed.

以下本発明の一寮施例にっhて詳述する。An example of a dormitory according to the present invention will be explained in detail below.

ターゲット形状は円形の4のが最も一般的であるため、
円形ターゲットを例にとシ説明していく。
The most common target shape is circular 4, so
I will explain this using a circular target as an example.

まず高純度の81とMo板材から第2図に示すような扇
状の小片を作り、このSi小片11.11’ −−−及
びMo小片12.12’、−m−を第3図に示すように
交互に並べ、モザイク状のターゲットを作るにの時、S
lとMoの小片がしめる面秩比を変化させる(扇状ビー
ムであるから第2図の−なる中心角を変化させる)こと
によ抄、スパッタされた膜のMOと81の組成比を変え
ることができる。
First, fan-shaped small pieces as shown in Fig. 2 are made from high-purity 81 and Mo plate materials, and these Si pieces 11.11' --- and Mo pieces 12.12', -m- are made as shown in Fig. 3. To create a mosaic target by arranging the S
The composition ratio of MO and 81 in the sputtered film is changed by changing the plane angle ratio between the small pieces of Mo and 1 (since it is a fan-shaped beam, the central angle of - in Figure 2 is changed). I can do it.

Mo81zなる組成比をもったシリサイド膜を得る九め
に、次のような計算を行ないsiとMOの面務比を決定
した。
In order to obtain a silicide film having a composition ratio of Mo81z, the following calculations were performed to determine the surface ratio between Si and MO.

SlとMoの通常のスパッタ電界(500〜?00V)
でのスパyp−イールドはY81 W O,55、YI
Ja=0.93と報告されている。SlとMoの夫々の
9面積を811゜gM・とすゐと、Sl及びMoがスパ
ッタされる量けStがYU x Sst 、 MoがY
Mo x SMo と表わされる。
Normal sputtering electric field for Sl and Mo (500~?00V)
Spyp-yield at Y81 W O, 55, YI
It is reported that Ja=0.93. When the respective 9 areas of Sl and Mo are 811°gM, the amount St of sputtering of Sl and Mo is YU x Sst, and the amount of Mo is Y
It is expressed as Mo x SMo.

Mo8i2なる組成比をもったシリサイド膜を得るため
Kは””’ ” ¥’:m sニー = 2であるから
88殉励0.93 一2x0.55  中3.5と求めることができる。即
ち、脂状小片の中心角(θ)の比を3.5に選べばよい
ととKなる。あまり大きな角度を持った分割小片にする
と蒸着される基板面内で不均一になる恐れがある九め、
MOの小片で8’、81の小片で2811として、直径
200龍の分割ターゲットが製作できるようKMo、8
1夫々のビームを各10本作った。
In order to obtain a silicide film with a composition ratio of Mo8i2, K can be determined as 3.5 in 88 martyrdom 0.93 - 2 x 0.55 since K = 2. , the ratio of the central angle (θ) of the greasy particles should be chosen to be 3.5. If the divided pieces have too large an angle, there is a risk of non-uniformity within the surface of the substrate to be deposited. eye,
A small piece of MO is 8', a small piece of 81 is 2811, and KMo, 8 is used to make a split target with a diameter of 200 dragons.
10 beams of each type were made.

この時のターゲットの厚みは7濶1にした。これらのM
OとSiの分割小片を単にバッキングプレート上に並べ
ただけでスパッタを行なうと、Sl小片の表面が無くな
勢、蒸着された膜を分析してみると81か嫌とんど蒸着
していなかった。そこでMo T 8i夫々の小片の表
面とバッキングプレートとの間の抵抗を測定したところ
、MO小片では0.1Ω以下1 Sl 小片では押え治
具による押圧力の強さKより変わり100〜数百にΩに
まで変化した。これは8t  小片とバッキングプレー
トとの接触抵抗の、(ラッ會によるものと考えられた。
The thickness of the target at this time was 7.1 mm. These M
When sputtering is performed by simply arranging O and Si divided pieces on a backing plate, the surface of the Sl pieces disappears, but when the deposited film is analyzed, it is found that 81% of the film has not been deposited at all. Ta. Therefore, when we measured the resistance between the surface of each small piece of Mo T 8i and the backing plate, we found that for the small MO piece it was less than 0.1 Ω, and for the small piece of 1 Sl it was 100 to several hundred Ω, which was different from the strength of the pressing force K by the presser jig. It changed to Ω. This was thought to be due to the contact resistance between the 8t small piece and the backing plate.

直流スパッタの場合は放電インピーダンスそのものが数
10〜数百にΩ以上と高いため、ターゲット表面での抵
抗値はあまり問題にならないが、磁界と電界を交叉させ
た、いわゆるマグネトロン型のスパッタの場合、放電イ
ンピーダンスは100以下と非常に小さいため、前述の
ようにターゲット抵抗にアンバランスが生じ走時に1抵
抗が低い方ばか#)Kイオンが流れMoのみがスパッタ
されたものと考えられる。
In the case of DC sputtering, the discharge impedance itself is high, ranging from several tens to hundreds of Ω or more, so the resistance value on the target surface is not much of a problem, but in the case of so-called magnetron type sputtering, in which a magnetic field and an electric field intersect, Since the discharge impedance is very small, less than 100, it is considered that the target resistance becomes unbalanced as described above, and K ions flow to the one with the lower resistance during running, and only Mo is sputtered.

とれを改善するため本発明者尋は次のような改良を行な
った。
In order to improve the peeling, the inventor Hiromu made the following improvements.

まず81小片はリン(P)や砒素(ムS)、場合によっ
てはアンチモン(sb)を充分にドープして比抵抗を下
げた金属ケイ素(大略1〜0.10・α)材料を用いた
0次に1ターゲツトのエロージョン領域(スパッタされ
る領域)は一般KFi第4図に示されるようKなってお
り、ターゲットの中央及び周辺はエロージョンされない
ことを利用して、このエロージ四ンされない領域で適当
な固定治具を用いてバッキングプレートにt!45.6
図に示すような構造で固着した。即ち第5図KSi分割
小片11の固着方法を示しである。該分割小片の外周部
を不銹鋼製外周固定治具13で同じく不銹鋼又は銅製バ
ッキングプレート15に不銹鋼製ボルト16を用いて固
着している。この時、ボルト16と外周固定治具15は
アルばす製絶縁碍子17で絶縁が保たれている。tた分
割lj4の内周部も不銹鋼製中央固定治具14で同様に
バッキングプレート15に固着されている。この固着時
に分割小片とバッキングプレートの関K)d勢の金属箔
1Bを挿入するとクツシロン性が得られ接触抵抗を減少
させることができ望ましい。
First, the 81 piece is made of metallic silicon (approximately 1 to 0.10・α) material that is sufficiently doped with phosphorus (P), arsenic (S), and in some cases antimony (SB) to lower the resistivity. Next, the erosion area (area to be sputtered) of one target is K as shown in Figure 4 of the general KFi, and by taking advantage of the fact that the center and periphery of the target are not eroded, the area that is not eroded can be set appropriately. T! to the backing plate using a suitable fixture. 45.6
It was fixed with the structure shown in the figure. That is, FIG. 5 shows a method of fixing the KSi divided pieces 11. The outer periphery of the divided small pieces is fixed to a backing plate 15 also made of stainless steel or copper using an outer periphery fixing jig 13 made of stainless steel using bolts 16 made of stainless steel. At this time, the bolt 16 and the outer peripheral fixing jig 15 are kept insulated by an insulator 17 made of Albus. The inner periphery of the divided lj4 is also fixed to the backing plate 15 using a central fixing jig 14 made of stainless steel. It is desirable to insert a metal foil 1B between the divided pieces and the backing plate at the time of this fixation, as this will provide tightness and reduce contact resistance.

軌6図にはMo分割小片12の固着方法の一例が示しで
ある。この場合、固定治具・バッキングプレートが直接
MOビームと接触すると極端にターゲット表面抵抗を減
少させてしまうため、これらの間に金属ケイ素薄板19
.20.21  をそれぞれ挿入しえ、その他の構成は
81分割小片と同様にした。なお、王妃の固着手段で外
周固定治具13#iリング状であり、中央固定治具14
は円板状であZ。
Figure 6 shows an example of a method for fixing the Mo divided small pieces 12. In this case, if the fixing jig/backing plate comes into direct contact with the MO beam, the target surface resistance will be extremely reduced, so a metal silicon thin plate 19 is placed between them.
.. 20 and 21 could be inserted respectively, and the other configuration was the same as that of the 81 divided pieces. In addition, the fixing means for the queen is the outer circumferential fixing jig 13 #i ring shape, and the central fixing jig 14
is disc-shaped and Z.

仁のようKして組立てた分割ターゲットでけ81 + 
Mo夫々の分割小片の表面抵抗はめずれも数10Ω以下
になり、とのターピットを用いて1x10  トールの
ムr圧下でスパッタを行なったところ、1.000〜5
.QOOA/分の高速蒸着が可能であった。
Split target made by Jinyo K and assembled 81 +
The surface resistance of each divided piece of Mo was less than a few tens of ohms, and when sputtering was performed using a tarpit under a pressure of 1 x 10 torr, it was 1.000 to 5.
.. High-speed deposition of QOOA/min was possible.

本発明の分割ターゲットではSl及びMoの分割小片を
夫々高純度にすることは比較的容易であるため前述した
ような拡散し易いイオン岬の不純物の混入はほとんど無
視でき、かつU、Th%の放射性元素も原材料時点で数
pPbオーダーまで精製することが可能で分割小片の所
望純度についてもほとんど問題がなくなった。
In the divided target of the present invention, it is relatively easy to make the divided small pieces of Sl and Mo highly pure, so that the contamination of the impurities of the ion cape, which is easy to diffuse as described above, can be almost ignored, and the U and Th% Radioactive elements can also be purified to the order of several pPb at the time of raw materials, and there is almost no problem with the desired purity of the divided pieces.

また、もともと小さく分割しであるため熱ショックに対
して4強く急激にスパッタ電力を投入してもターゲット
にクラックが入って破損するというようなこともなくな
った。
Furthermore, since the target was originally divided into small pieces, there was no possibility that the target would crack and be damaged even if the sputtering power was suddenly applied with high resistance to thermal shock.

本発明の分割ターゲットを用いて、くり返し蒸着を行な
ったところ、再現性よく満足できる膜質のMO8i、膜
が得られた。
When repeated vapor deposition was performed using the divided target of the present invention, a MO8i film with satisfactory film quality was obtained with good reproducibility.

他の実施例として、分割小片の裏面KA!を5〜50μ
m蒸着してバッキングプレートとの接゛触抵抗を減少さ
せた。このようにすることによ#)81分割小片の表面
抵抗は数Ωにまでさがり放電が一段と安定した。
As another example, the back side KA of the divided small piece! 5~50μ
The contact resistance with the backing plate was reduced by depositing m. By doing this, the surface resistance of the 81 piece was reduced to several ohms, and the discharge became more stable.

以上、放射状に分割小片を交互に配設した例について詳
述したが、前記分割小片を縦、横及び斜方向に1異種の
ターゲツト材の面積が蒸着膜において所望の比率となる
ように適宜配列した分割ターゲットにおいても、前述の
例と同様の作用効果を奏し得るものである。
Above, an example in which divided pieces are arranged alternately in a radial manner has been described in detail, but the divided pieces are appropriately arranged vertically, horizontally and diagonally so that the area of one different type of target material becomes a desired ratio in the vapor deposited film. The same effects as in the above-mentioned example can also be achieved with the divided target.

さらに他の実施例としては、バッキングプレートからの
汚染がプラズマ中に拡散(マイグレー上)してくるのを
防ぐために、第7図に図示する如く分割小片11’、1
2の横方向接合面を傾斜させて組み合せ、又は縞S図に
示す如く横方向接合面を段階状に組み合せるか、更に、
第9図に示す如く、隣接する同種の分割小片11と12
との間に設けた溝部に異種の分割小片を嵌合、係止する
構成とするのが好ましい。
In yet another embodiment, in order to prevent contamination from the backing plate from diffusing into the plasma (on the migration surface), the divided pieces 11', 1 as shown in FIG.
The two lateral joining surfaces are combined at an angle, or the lateral joining surfaces are combined in a stepwise manner as shown in the striped S diagram, or further,
As shown in FIG. 9, adjacent divided pieces 11 and 12 of the same type
It is preferable to have a structure in which different types of divided pieces are fitted and locked into grooves provided between the two.

以上、MoSi2蒸着膜の例について説明したが、本発
明はこの実施例に限定するものでなく、前述した他の高
融点金属についても略同様Ω作用、効果を達成し得るも
のである。
Although the example of the MoSi2 vapor deposited film has been described above, the present invention is not limited to this example, and substantially the same Ω action and effect can be achieved with other high melting point metals as described above.

本発明は以上のような構成からなっているので、か\る
構成によって達成しうる主たる作用効果を列配すれば次
の通りである。
Since the present invention has the above-mentioned configuration, the main effects that can be achieved by the configuration are as follows.

ill  ホットプレス法によらないのでターゲット中
に残留ガスを包含することはない。
ill Since the hot press method is not used, residual gas is not contained in the target.

(2)高純度ターゲツト材が容易に組立てできる。(2) High purity target material can be easily assembled.

131  大型ターゲットの製作が容易であり、作動中
電力の変動による破損の恐れがない。
131 It is easy to manufacture large targets, and there is no risk of damage due to power fluctuations during operation.

(4)安定した高品質の蒸着膜が形成しうる。(4) A stable and high quality deposited film can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のスパッタ法のターゲットの断面図、第2
図は本発明の扇形分割小片の斜視図、第5図は該扇形分
割小片を円形に組立てたターゲットの平面図、第4図は
扇形分割小片の一エロージョン領埴を示す斜視図、11
45図及び第6図は分割小片のバッキングプレートへの
固着手段を例示する断面図、第7図乃至第9図は分割小
片の組立態様を例示する断面図であり、図中: 11.11’・・・ケイ素分割小片、   12 、1
2’・・・モリブデン分割小片。 15−・・外周固定治具、  14・・・中央固定治具
。 15・・・バッキングプレート、 16・・・ボルト。 17・・・絶縁碍子、    18・・・金属箔。 19 、20 、21・・・金部ケイ素薄板。 第7囮 第8図 第9図
Figure 1 is a cross-sectional view of a conventional sputtering target;
11 is a perspective view of a fan-shaped divided small piece of the present invention, FIG. 5 is a plan view of a target obtained by assembling the fan-shaped divided small piece into a circle, and FIG. 4 is a perspective view showing one erosion area of the fan-shaped divided small piece.
45 and 6 are cross-sectional views illustrating means for fixing the divided small pieces to the backing plate, and FIGS. 7 to 9 are cross-sectional views illustrating the manner in which the divided small pieces are assembled. In the figure: 11.11' ...Silicone divided pieces, 12, 1
2'...Molybdenum divided small pieces. 15-...Outer fixing jig, 14...Central fixing jig. 15... Backing plate, 16... Bolt. 17...Insulator, 18...Metal foil. 19, 20, 21...Kanabe silicon thin plate. Figure 7 Decoy Figure 8 Figure 9

Claims (1)

【特許請求の範囲】 111 Paなる材質のスパッタ材料の分割小片を交互
罠配設し、該分割小片を押え治具によりバッキングプレ
ートに機械的に固着したことを特徴とする合金又は金属
間化合物スパッタ用分割ターゲット。 (2)  異なる材質のスパッタ材料の扇形分割小片の
中心角が蒸着される合金又は金属間化合物に対応した角
度である特許請求の範囲第1項記載の分割ターゲット。 (3)分割小片の横方向接合面が傾斜面又は段階状であ
る特許請求の範囲第1項記載の分割ターゲット。 (4)隣接する同種の分割小片間に設けた溝部に異種の
分割小片を嵌合、係止した特許請求の範囲第1項記載の
分割ターゲット。 (5)高融点金属の分割小片のバッキングプレート及び
押え治具への接触面に金属ケイ岑薄板を介在せしめて固
着する特許請求の範囲第1項記載の分割ターゲット。 (6)  金属ケイ素と高融点全編とからなる分割小片
を金属アルミニウム薄膜又はアルミニウム箔を介してバ
ッキングプレートに固着する特許請求の範囲第1項記載
の分割ターゲット。 (7)高融点金属がモリブデン、タングステン。 タンタル、チタニウム、白金、ジルコニウム、/(ナジ
ウム、ハフニウム、ニオブの1種である特許請求の範囲
第1項記載の分割ターゲット。 (8)  前記金属ケイ素に予じめ燐、砒素、アンチモ
ンをドープした特許請求の範囲第1項記載の分割ターゲ
ット。
[Claims] An alloy or intermetallic compound sputter, characterized in that divided small pieces of a sputtering material made of a material of 111 Pa are arranged in alternating traps, and the divided small pieces are mechanically fixed to a backing plate by a holding jig. split target. (2) The divided target according to claim 1, wherein the central angle of the fan-shaped divided small pieces of sputtered materials of different materials is an angle corresponding to the alloy or intermetallic compound to be deposited. (3) The divided target according to claim 1, wherein the lateral joint surfaces of the divided small pieces are inclined surfaces or stepped surfaces. (4) The divided target according to claim 1, wherein different kinds of divided pieces are fitted and locked in grooves provided between adjacent divided pieces of the same type. (5) The divided target according to claim 1, wherein the divided small pieces of high-melting point metal are fixed to the backing plate and the holding jig by interposing thin metal silicon plates on the contact surfaces thereof. (6) The divided target according to claim 1, wherein the divided pieces made of metallic silicon and high melting point whole are fixed to a backing plate via a metallic aluminum thin film or aluminum foil. (7) High melting point metals are molybdenum and tungsten. The split target according to claim 1, which is one of tantalum, titanium, platinum, zirconium, /(nadium, hafnium, and niobium). (8) The metal silicon is doped with phosphorus, arsenic, and antimony in advance. A divided target according to claim 1.
JP19772281A 1981-12-10 1981-12-10 Split target for sputtering Granted JPS58100679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19772281A JPS58100679A (en) 1981-12-10 1981-12-10 Split target for sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19772281A JPS58100679A (en) 1981-12-10 1981-12-10 Split target for sputtering

Publications (2)

Publication Number Publication Date
JPS58100679A true JPS58100679A (en) 1983-06-15
JPS6134509B2 JPS6134509B2 (en) 1986-08-08

Family

ID=16379256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19772281A Granted JPS58100679A (en) 1981-12-10 1981-12-10 Split target for sputtering

Country Status (1)

Country Link
JP (1) JPS58100679A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166964A (en) * 1985-01-18 1986-07-28 Tokuda Seisakusho Ltd Target for sputtering
JPS6475673A (en) * 1987-09-17 1989-03-22 Fujitsu Ltd Composite sputter target
EP0489396A1 (en) * 1990-12-06 1992-06-10 Multi-Arc Oberflächentechnik GmbH Segmented cathode for arc-discharge coating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166964A (en) * 1985-01-18 1986-07-28 Tokuda Seisakusho Ltd Target for sputtering
JPS6475673A (en) * 1987-09-17 1989-03-22 Fujitsu Ltd Composite sputter target
EP0489396A1 (en) * 1990-12-06 1992-06-10 Multi-Arc Oberflächentechnik GmbH Segmented cathode for arc-discharge coating

Also Published As

Publication number Publication date
JPS6134509B2 (en) 1986-08-08

Similar Documents

Publication Publication Date Title
EP0618306B1 (en) Sputtering target with plural target elements
US7721939B2 (en) Sputter target and backing plate assembly
US4468313A (en) Sputtering target
EP0148470B1 (en) Planar magnetron sputtering with modified field configuration
JP2962912B2 (en) Sputter cathode for coating substrates with cathode sputtering equipment
JPH0371510B2 (en)
US20050061857A1 (en) Method for bonding a sputter target to a backing plate and the assembly thereof
US20060124634A1 (en) Coil constructions configured for utilization in physical vapor deposition chambers, and methods of forming coil constructions
JP2898515B2 (en) Mosaic target
JPS58100679A (en) Split target for sputtering
JP2001140063A (en) Sputtering target having prolonged life
JPH03162573A (en) Sputtering target for producing integrated circuit device
JPH0762528A (en) Sputtering target
US20220415631A1 (en) Modular sputtering target with precious metal insert and skirt
JPS59179783A (en) Sputtering target
JPH02254164A (en) Divided sputtering target
US20020121437A1 (en) Titanium target assembly for sputtering and method for preparing the same
JP2588241B2 (en) Sputtering target
JPH0867972A (en) Mosaic nickel silicide target material
WO2004065046A2 (en) Brittle material sputtering target assembly and method of making same
US20190080890A1 (en) Vacuum deposition composite target
US10435330B2 (en) Method for producing a connection between two ceramic parts—in particular, of parts of a pressure sensor
JPS61111525A (en) Forming method for electrode of semiconductor element
JPH07316801A (en) Mosaic target and manufacturing method thereof
JP2001295038A (en) Mosaic sputtering target