[go: up one dir, main page]

JPH1198790A - Brushless dc motor - Google Patents

Brushless dc motor

Info

Publication number
JPH1198790A
JPH1198790A JP9250787A JP25078797A JPH1198790A JP H1198790 A JPH1198790 A JP H1198790A JP 9250787 A JP9250787 A JP 9250787A JP 25078797 A JP25078797 A JP 25078797A JP H1198790 A JPH1198790 A JP H1198790A
Authority
JP
Japan
Prior art keywords
motor
winding
poles
slots
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9250787A
Other languages
Japanese (ja)
Inventor
Masahiro Hirano
雅弘 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9250787A priority Critical patent/JPH1198790A/en
Publication of JPH1198790A publication Critical patent/JPH1198790A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Brushless Motors (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain high output without changing the current-carrying capacity of a drive amplifier due to making multiple poles and reducing the size and cost, thereby increasing workability in manufacturing. SOLUTION: In a brushless DC motor, wherein a rotor iron core 21 having permanent magnets 29 placed on its surface is rotatably located in the axial direction inside a cylindrical stator iron core 20, the number of poles for the permanent magnet 29 of the rotor iron core 21 is 14, and the number of slots formed in the stator iron core 20 is 21 which allows concentrated winding of three-phase armature windings U, V, W, U', V', W'.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば産業用ロボ
ットや工作機械などのFA(工場自動化)製品の可動部
動力源に適用されるブラシレスDC(直流)モータに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a brushless DC (direct current) motor applied to a power source of a movable part of an FA (factory automation) product such as an industrial robot or a machine tool.

【0002】[0002]

【従来の技術】かかるブラシレスDCモータを小形・高
出力でかつ低コストに製造するためには、出力に対する
モータ体積比であるエネルギー密度Edcを大きくとるこ
とと、モータ構造を簡易にするために電機子巻線を配置
するスロット数を極力減らし、作業性の高い巻線方式を
採用することとが必要である。
2. Description of the Related Art In order to manufacture such a brushless DC motor with small size, high output and low cost, it is necessary to increase the energy density Edc , which is the volume ratio of the motor to the output, and to simplify the motor structure. It is necessary to reduce the number of slots for arranging the armature windings as much as possible and to adopt a winding method with high workability.

【0003】このうちエネルギー密度Edcを見てみる
と、図5はロータ外径、巻線方式を同一とし、ステータ
鉄心の磁束密度、電機子巻線の電流密度、他の電気磁気
特性をほぼ同一とした場合に、ステータ鉄心に設けられ
る永久磁石の極数を変化させたときのエネルギー密度E
dcの値を示している。この図から分かるようにエネルギ
ー密度Edcを大きくするためには、モータの極数を多く
する必要がある。
[0003] Looking at the energy density Edc , FIG. 5 shows that the rotor outer diameter and the winding method are the same, and the magnetic flux density of the stator core, the current density of the armature winding, and other electromagnetic characteristics are almost the same. Energy density E when the number of poles of the permanent magnet provided on the stator core is changed,
Shows the value of dc . As can be seen from this figure, it is necessary to increase the number of poles of the motor in order to increase the energy density Edc .

【0004】このような要求のある6極18スロットの
ブラシレスDCモータの断面構成図を図6に示す。ステ
ータ鉄心1内には、ロータ鉄心2が回転自在に配置され
ている。このうちステータ鉄心1にはスロット数18と
するスロット3が形成され、これらスロット3に3相電
機子巻線U、V、W、U´、V´、W´が施されてい
る。
FIG. 6 shows a cross-sectional view of a 6-pole, 18-slot brushless DC motor which has such a demand. A rotor core 2 is rotatably arranged in the stator core 1. Of these, slots 3 having 18 slots are formed in the stator core 1, and these slots 3 are provided with three-phase armature windings U, V, W, U ', V', W '.

【0005】なお、3相電機子巻線U´は、3相電機子
巻線Uに対して電流の流れる方向が逆であることを示
し、3相電機子巻線V´、W´についても同様に3相電
機子巻線V、Wに対して電流の流れる方向が逆であるこ
とを示し、U相帯巻線4、V相帯巻線5、W相帯巻線
6、U´相帯巻線7、V´相帯巻線8、W´相帯巻線9
としている。
The three-phase armature winding U 'indicates that the direction of current flow is opposite to that of the three-phase armature winding U, and the three-phase armature windings V' and W 'are also shown. Similarly, the direction in which the current flows in the three-phase armature windings V and W is opposite, and the U-phase band winding 4, the V-phase band winding 5, the W-phase band winding 6, and the U'-phase Band winding 7, V'-phase band winding 8, W'-phase band winding 9
And

【0006】又、ロータ鉄心2には、極数6とする永久
磁石10が設けられている。このようなモータの巻線方
式は、毎極毎相のスロット数qが1.0(=18スット
/3相/6極)の整数スロット重ね巻きであり、ロータ
外径を制限した条件下で最もエネルギー密度が高くとれ
る方式であり、他極数へも適用される。
Further, a permanent magnet 10 having six poles is provided on the rotor core 2. The winding method of such a motor is an integral slot lap winding in which the number of slots q for each pole is 1.0 (= 18 slots / 3 phases / 6 poles), and under the condition that the outer diameter of the rotor is limited. This method has the highest energy density and can be applied to other poles.

【0007】又、毎極毎相のスロット数qが1.0>q
>0.5超の範囲については、例えば特公平7−999
23号公報に記載されている巻線方式が用いられてお
り、その8極15スロットのブラシレスDCモータの断
面図を図7に示す。このモータは、一般に最も用いられ
ている極数8、スロット数15の例である。
Further, the number of slots q per pole and phase is 1.0> q
For the range of> 0.5, for example, Japanese Patent Publication No. 7-999
FIG. 7 shows a cross-sectional view of a brushless DC motor having eight poles and fifteen slots, which employs the winding method described in Japanese Patent Publication No. 23. This motor is an example of eight poles and fifteen slots that are generally used most.

【0008】[0008]

【発明が解決しようとする課題】ところで、上記図5に
示すエネルギー密度Edcと極数との関係からモータを小
形・高出力化するためには、上記の如く多極化が必要で
あるが、定格回転速度N[rpm] を一定に、多極化すると
電気的な周波数は極数Pに比例するので、駆動アンプが
モータへ供給可能な電圧(電源電圧に比例した値)Vin
[V]に占める電機子インダクタンスLa [H]による
電圧降下分2πN/60P/2La ・I[V]が大きくな
り、ある極数以上から主磁束量Φg [Wb]を下げた
分、電流I[A]を上げることで出力トルクτ[Nm]
を維持するような設計となる。このため、駆動アンプの
電流容量が大きくなり、システムコストが割高になる。
なお、駆動アンプがモータへ供給可能な電圧Vinは、
By the way, in order to reduce the size and increase the output of the motor from the relationship between the energy density Edc and the number of poles shown in FIG. 5, it is necessary to increase the number of poles as described above. a constant rotational speed N [rpm], since electrical frequencies when multi-polar is proportional to number of poles P, (a value proportional to the supply voltage) driving amplifier can be supplied voltage to the motor V in
[V] to the voltage drop due to the armature inductance L a [H] occupied 2πN / 60P / 2L a · I [V] is increased, minute was lowered a certain main magnetic flux from the above pole Φ g [Wb], Output torque τ [Nm] by increasing current I [A]
Is designed to maintain For this reason, the current capacity of the drive amplifier increases, and the system cost increases.
It should be noted that the voltage V in capable of supplying the drive amplifier to the motor,

【0009】[0009]

【数1】 であり、出力トルクτは、 τ=K2 ・Φg ・I …(2) という関係式が成り立つ。ここで、Ra は電機子巻線抵
抗[Ω]、K1 は誘起電圧に関する係数[V/Wb/rp
m ]、K2 はトルクに関する係数[Nm/Wb/A]で
ある。
(Equation 1) And the output torque τ satisfies the following relational expression: τ = K 2 · Φ g · I (2) Here, Ra is an armature winding resistance [Ω], and K 1 is a coefficient [V / Wb / rp regarding an induced voltage.
m] and K 2 are torque-related coefficients [Nm / Wb / A].

【0010】このときのスロット数としては、毎極毎相
スロット数q>1.0の分数スロット巻線や1.0>q
>0.5の重ね巻きを採用すれば、良好な誘起電圧波形
を得られ、トルクリップルなどモータ特性は良好なもの
となる。
At this time, the number of slots may be a fractional slot winding where the number of slots per pole is q> 1.0 or 1.0> q
If a lap winding of> 0.5 is adopted, a good induced voltage waveform can be obtained, and motor characteristics such as torque ripple can be improved.

【0011】しかしながら、多極化による多スロット
化、電機子巻線の複雑化の影響から生産性が低下し、モ
ータのコスト高を招く問題がある。又、毎極毎相スロッ
ト数q=1.0では、良好な誘起電圧波形を得るために
ステータ鉄心1又は永久磁石10のスキューや、永久磁
石10の縁を薄くするなどの対策が別途必要となり、さ
らにコスト高となる問題がある。
However, there is a problem that productivity is reduced due to the effect of increasing the number of slots by increasing the number of poles and complicating the armature winding, resulting in an increase in the cost of the motor. When the number of slots per phase is q = 1.0, it is necessary to take additional measures such as skew of the stator core 1 or the permanent magnet 10 and thinning of the edge of the permanent magnet 10 in order to obtain a good induced voltage waveform. However, there is a problem that the cost is further increased.

【0012】毎極毎相スロット数q<0.5では、電機
子巻線に流れる電流により生じる起磁力磁束による影響
から主磁束に大きな歪みすなわち電機子反作用が生じ、
ロータ鉄心2の部分に大きな鉄損が発生するため、効率
低下及び新たに冷却手段を講じる必要性の発生などの問
題がある。
When the number of slots per phase per phase q <0.5, a large distortion, that is, an armature reaction occurs in the main magnetic flux due to the effect of the magnetomotive force generated by the current flowing through the armature winding.
Since a large iron loss occurs in the portion of the rotor core 2, there are problems such as a reduction in efficiency and the necessity of providing a new cooling means.

【0013】そこで本発明は、多極化による駆動アンプ
電流容量を変化させることなく高出力を実現し、かつ小
形化、低コスト化を図って製造の作業性を向上させたブ
ラシレスDCモータを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention provides a brushless DC motor which achieves high output without changing the drive amplifier current capacity due to multipolarization, and which is reduced in size and cost to improve manufacturing workability. With the goal.

【0014】[0014]

【課題を解決するための手段】請求項1によれば、ステ
ータ鉄心内に永久磁石を表面に配置したロータ鉄心を回
転自在に配置したブラシレスDCモータにおいて、永久
磁石の極数を14にし、かつステータ鉄心に形成される
3相電機子巻線を集中巻配置可能とするスロット数を2
1にするブラシレスDCモータである。
According to the first aspect of the present invention, in a brushless DC motor in which a rotor core having a permanent magnet disposed on a surface thereof in a stator core is rotatably disposed, the number of poles of the permanent magnet is set to 14, and The number of slots which allows the concentrated winding arrangement of the three-phase armature winding formed on the stator core is 2
1 is a brushless DC motor.

【0015】[0015]

【発明の実施の形態】以下、本発明の一実施の形態につ
いて図面を参照して説明する。図1はブラシレスDCモ
ータの断面構成図である。円筒状のステータ鉄心20内
の軸方向には、ロータ鉄心21が回転自在に配置されて
いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional configuration diagram of a brushless DC motor. A rotor core 21 is rotatably arranged in the axial direction inside the cylindrical stator core 20.

【0016】このうちロータ鉄心21の外周表面には、
極数14とする永久磁石29が配置されている。なお、
各永久磁石29の間すなわちN極とS極との各間は、透
過率1(一般的には空気)の隙間が形成されている。
The outer peripheral surface of the rotor core 21 includes
A permanent magnet 29 having 14 poles is arranged. In addition,
A gap having a transmittance of 1 (generally, air) is formed between the permanent magnets 29, that is, between the N pole and the S pole.

【0017】すなわち、図2は同一トルク発生時極数の
対する電流の関係図を示し、モータのエネルギー密度E
dcを上げるための多極化と駆動アンプ電流容量の増加関
係を考慮した同図の結果から、電流増加の少ない極数1
4を採用している。
FIG. 2 is a graph showing the relationship between the number of poles and the current when the same torque is generated.
Considering the relationship between multi-pole to increase dc and the increase in drive amplifier current capacity, the figure shows that
4 is adopted.

【0018】この極数14の採用により、駆動アンプ容
量を変化させることなく最もエネルギー密度Edcの高い
モータを実現できる。一方、ステータ鉄心20には、ス
ロット数21(毎極毎相スロット数q=0.5)とする
スロット22が形成されている。
By employing the number of poles 14, a motor having the highest energy density Edc can be realized without changing the drive amplifier capacity. On the other hand, the stator core 20 is formed with a slot 22 having the number of slots 21 (the number of slots per pole per phase q = 0.5).

【0019】このスロット数21の採用により、モータ
特性的にも優れ、巻線作業性上最も量産に優れた集中巻
きを採用する。これらスロット22には、電気的角度で
120°位相のずれた位置に3相電機子巻線U、V、
W、U´、V´、W´が施されている。
By adopting the number of slots of 21, the concentrated winding which is excellent in the motor characteristics and the most excellent in mass production in terms of winding workability is employed. These slots 22 have three-phase armature windings U, V,
W, U ', V', W 'are given.

【0020】ここで、3相電機子巻線U´は、上記同様
に3相電機子巻線Uに対して電流の流れる方向が逆であ
ることを示し、3相電機子巻線V´、W´についても3
相電機子巻線V、Wに対して電流の流れる方向が逆であ
ることを示し、U相帯巻線23、V相帯巻線24、W相
帯巻線25、U´相帯巻線26、V´相帯巻線27、W
´相帯巻線28としている。なお、これら巻線U、V、
Wと巻線U´、V´、W´とは、巻線U、V、W(往)
と巻線U´、V´、W´(復)とで一組のコイルを形成
している。
Here, the three-phase armature winding U 'indicates that the current flows in the opposite direction to the three-phase armature winding U, as described above. 3 for W '
This indicates that the direction of current flow is opposite to the phase armature windings V and W, and the U-phase winding 23, the V-phase winding 24, the W-phase winding 25, and the U'-phase winding 26, V 'phase band winding 27, W
′ -Phase band winding 28. Note that these windings U, V,
W and windings U ', V', W 'are windings U, V, W (forward)
And the windings U ′, V ′, W ′ (return) form a set of coils.

【0021】このようにロータ鉄心21の永久磁石29
の極数14にするとともにステータ鉄心20に形成され
る3相電機子巻線U、V、W、U´、V´、W´を集中
巻配置可能とするスロット数21にする構成であれば、
極数14への多極化によるエネルギー密度Edcの向上か
ら、従来に比較してモータ体積で10〜15%の小形か
が可能にできる。又、磁石使用量でも従来に比較して減
磁耐力同一品で30〜40%の削減が可能であり、低コ
スト化ができる。そして、多極化による駆動アンプ電流
容量の変化がなく、従来モータと同等の電力半導体素子
を用いることができる。
As described above, the permanent magnet 29 of the rotor core 21
And three-phase armature windings U, V, W, U ', V', and W 'formed on the stator core 20 have a number of slots 21 enabling concentrated winding arrangement. ,
By increasing the energy density E dc by increasing the number of poles to 14 poles, it is possible to reduce the motor volume by 10 to 15% as compared with the related art. In addition, the amount of magnet used can be reduced by 30 to 40% with the same demagnetization proof strength as compared with the conventional product, and the cost can be reduced. Further, there is no change in the current capacity of the drive amplifier due to the increase in the number of poles, and a power semiconductor element equivalent to a conventional motor can be used.

【0022】又、スロット数21(毎極毎相スロット数
q=0.5)とすることで、巻線係数は、0.866若
干低いが良好なモータ特性を有した状態で小スロットで
かつ巻線作業を自動機にて行える集中巻線方式を採用で
き、製造の作業性を向上できる。
Further, by setting the number of slots to 21 (the number of slots per pole per phase q = 0.5), the winding coefficient is slightly lower by 0.866, but it is a small slot with good motor characteristics. A centralized winding system in which winding work can be performed by an automatic machine can be adopted, thereby improving workability in manufacturing.

【0023】このようにスロット数21としたのは、毎
極毎相スロット数q<0.5(スロット数20以下)と
なるモータでは、図3の8極9スロットモータのギャッ
プ主磁束密度分布図に示すように電機子巻線電流により
発生する磁束の影響から主磁束に歪みが生じ、これがモ
ータ内部で回転磁界となるため、場所によりステータ・
ロータ部分で磁束の変化が起こり、それに応じて鉄心2
0、21、永久磁石(抵抗率は鉄心とほぼ同様の特性を
有する)29に渦電流が流れ、鉄損が発生し、効率が低
下するからである。又、ロータ部分の鉄損による発熱を
冷却するためには新たに冷却手段を講じる必要が出るこ
とから製造コストの増加につながるからである。
The reason why the number of slots is set to 21 is that the main magnetic flux density distribution of the gap pole magnetic flux distribution of the 8-pole and 9-slot motor shown in FIG. As shown in the figure, the main magnetic flux is distorted due to the effect of the magnetic flux generated by the armature winding current, and this becomes a rotating magnetic field inside the motor.
A change in magnetic flux occurs in the rotor portion, and the core 2
This is because an eddy current flows through the 0, 21 and permanent magnets 29 (resistivity has substantially the same characteristics as an iron core), iron loss occurs, and efficiency is reduced. Further, in order to cool the heat generated by the iron loss of the rotor portion, it is necessary to provide a new cooling means, which leads to an increase in manufacturing cost.

【0024】これに対してスロット数21にすると、図
4の14極21スロットモータのギャップ主磁束密度分
布図に示すように電機子巻線電流により発生する磁束の
影響から主磁束に歪みが生じることはない。
On the other hand, when the number of slots is 21, the main magnetic flux is distorted due to the effect of the magnetic flux generated by the armature winding current as shown in the gap main magnetic flux density distribution diagram of the 14-pole 21-slot motor in FIG. Never.

【0025】[0025]

【発明の効果】以上詳記したように本発明の請求項1に
よれば、ステータ鉄心内に永久磁石を表面に配置したロ
ータ鉄心を回転自在に配置したブラシレスDCモータに
おいて、永久磁石の極数14にし、かつステータ鉄心に
形成される3相電機子巻線を集中巻配置可能とするスロ
ット数21にしたので、多極化による駆動アンプ電流容
量を変化させることなく高出力を実現し、かつ小形化、
低コスト化を図って製造の作業性を向上できるブラシレ
スDCモータを提供できる。
As described above in detail, according to the first aspect of the present invention, in a brushless DC motor in which a rotor core having a permanent magnet disposed on a surface thereof in a stator core is rotatably disposed, the number of poles of the permanent magnet is 14, and the number of slots is 21 so that the three-phase armature windings formed on the stator core can be concentratedly arranged. Therefore, high output can be realized without changing the drive amplifier current capacity due to multi-poles, and the size can be reduced. ,
It is possible to provide a brushless DC motor that can be manufactured at low cost and can improve the workability of manufacturing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わるブラシレスDCモータの一実施
の形態を示す断面構成図。
FIG. 1 is a cross-sectional configuration diagram showing an embodiment of a brushless DC motor according to the present invention.

【図2】同一トルク発生時極数の対する電流の関係図。FIG. 2 is a diagram showing the relationship between the number of poles when the same torque is generated and the current.

【図3】8極9スロットモータのギャップ主磁束密度分
布図。
FIG. 3 is a gap main magnetic flux density distribution diagram of an 8-pole, 9-slot motor.

【図4】14極21スロットモータのギャップ主磁束密
度分布図。
FIG. 4 is a gap main magnetic flux density distribution diagram of a 14-pole 21-slot motor.

【図5】永久磁石の極数を変化させたときのエネルギー
密度Edcの値を示す図。
FIG. 5 is a diagram showing a value of an energy density E dc when the number of poles of a permanent magnet is changed.

【図6】従来の6極18スロットのブラシレスDCモー
タの断面構成図。
FIG. 6 is a cross-sectional configuration diagram of a conventional 6-pole 18-slot brushless DC motor.

【図7】従来の8極15スロットのブラシレスDCモー
タの断面構成図。
FIG. 7 is a cross-sectional configuration diagram of a conventional 8-pole 15-slot brushless DC motor.

【符号の説明】[Explanation of symbols]

20…ステータ鉄心、 21…ロータ鉄心、 22…スロット、 23…U相帯巻線、 24…V相帯巻線、 25…W相帯巻線、 26…U´相帯巻線、 27…V´相帯巻線、 28…W´相帯巻線、 29…永久磁石。 Reference numeral 20: stator core, 21: rotor core, 22: slot, 23: U-phase band winding, 25: W-phase band winding, 25: W-phase band winding, 26: U'-phase band winding, 27: V 'Phase band winding, 28 ... W' phase band winding, 29 ... permanent magnet.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ステータ鉄心内に永久磁石を表面に配置
したロータ鉄心を回転自在に配置したブラシレスDCモ
ータにおいて、 前記永久磁石の極数を14にし、かつ前記ステータ鉄心
に形成される3相電機子巻線を集中巻配置可能とするス
ロット数を21にすることを特徴とするブラシレスDC
モータ。
1. A brushless DC motor in which a rotor core in which a permanent magnet is disposed on the surface of a stator core is rotatably disposed, wherein the number of poles of the permanent magnet is set to 14, and the three-phase electric motor is formed in the stator core. A brushless DC, wherein the number of slots for allowing a concentrated winding arrangement of slave windings is 21.
motor.
JP9250787A 1997-09-16 1997-09-16 Brushless dc motor Withdrawn JPH1198790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9250787A JPH1198790A (en) 1997-09-16 1997-09-16 Brushless dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9250787A JPH1198790A (en) 1997-09-16 1997-09-16 Brushless dc motor

Publications (1)

Publication Number Publication Date
JPH1198790A true JPH1198790A (en) 1999-04-09

Family

ID=17213048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9250787A Withdrawn JPH1198790A (en) 1997-09-16 1997-09-16 Brushless dc motor

Country Status (1)

Country Link
JP (1) JPH1198790A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000076054A1 (en) * 1999-05-25 2000-12-14 Smart Motor As Electrical machine
US7191972B2 (en) 2001-09-06 2007-03-20 Trw Automotive Electronics & Components Gmbh & Co. Kg Belt retractor
WO2012003638A1 (en) * 2010-07-06 2012-01-12 峰岹科技(深圳)有限公司 Three-phase alternating current permanent magnet motor
WO2021261121A1 (en) 2020-06-25 2021-12-30 Jfeスチール株式会社 Motor core and motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000076054A1 (en) * 1999-05-25 2000-12-14 Smart Motor As Electrical machine
JP2003532355A (en) * 1999-05-25 2003-10-28 スマート モーター アーエス Electric machine
US6664692B1 (en) * 1999-05-25 2003-12-16 Smart Motor As Electrical machine
US7191972B2 (en) 2001-09-06 2007-03-20 Trw Automotive Electronics & Components Gmbh & Co. Kg Belt retractor
WO2012003638A1 (en) * 2010-07-06 2012-01-12 峰岹科技(深圳)有限公司 Three-phase alternating current permanent magnet motor
WO2021261121A1 (en) 2020-06-25 2021-12-30 Jfeスチール株式会社 Motor core and motor
TWI779633B (en) * 2020-06-25 2022-10-01 日商杰富意鋼鐵股份有限公司 Motor core and motor
KR20230009982A (en) 2020-06-25 2023-01-17 제이에프이 스틸 가부시키가이샤 motor core and motor

Similar Documents

Publication Publication Date Title
US8102091B2 (en) Interior permanent magnet motor including rotor with unequal poles
JP3983423B2 (en) Electric motor
JP5204790B2 (en) Horizontal axis washing machine with 4-pole 36-slot motor
CN107925289B (en) Stator coils, stators equipped with stator coils, and rotating electrical machines equipped with stators
JPH1198791A (en) Brushless dc motor
JP3466591B2 (en) Rotating electric machine
JP2004304928A (en) Brushless motor
KR101826126B1 (en) Three-phase electromagnetic motor
JP2001037186A (en) Permanent magnet motor
US10361614B2 (en) AC excitation synchronous rotating electric machine
JP4576873B2 (en) Permanent magnet motor, driving method and manufacturing method thereof, compressor, blower and air conditioner
JP2000197325A (en) Reluctance motor
WO2018212828A1 (en) Dual magnetic phase material rings for ac electric machines
Zhang A compact high torque density dual rotor permanent magnet in-wheel motor with toroidal windings
US7482724B2 (en) Ipm electric rotating machine
JP3596711B2 (en) Machine tool motor winding switching device
JP7095550B2 (en) Rotating electric machine control device and rotating electric machine control method
JP2003333813A (en) Rotor of synchronous reluctance motor
JP2002238194A (en) Structure of rotor of permanent-magnet motor
JPH1198790A (en) Brushless dc motor
JP2002272067A (en) Squirrel-cage rotor and motor using the squirrel-cage rotor
JP4482918B2 (en) Permanent magnet type electric motor having ring-shaped stator coil
JP4166929B2 (en) Method for manufacturing electric motor rotor
CN114552836A (en) Rotating electrical machine
JP2008178187A (en) Polyphase induction machine

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207