[go: up one dir, main page]

JPH1197002A - Hydrogen storage alloy electrode for alkaline storage battery - Google Patents

Hydrogen storage alloy electrode for alkaline storage battery

Info

Publication number
JPH1197002A
JPH1197002A JP9251611A JP25161197A JPH1197002A JP H1197002 A JPH1197002 A JP H1197002A JP 9251611 A JP9251611 A JP 9251611A JP 25161197 A JP25161197 A JP 25161197A JP H1197002 A JPH1197002 A JP H1197002A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
spherical
alloy powder
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9251611A
Other languages
Japanese (ja)
Inventor
Yohei Hirota
洋平 廣田
Nobuyuki Higashiyama
信幸 東山
Mamoru Kimoto
衛 木本
Kikuko Katou
菊子 加藤
Teruhiko Imoto
輝彦 井本
Yasushi Kuroda
黒田  靖
Shin Fujitani
伸 藤谷
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9251611A priority Critical patent/JPH1197002A/en
Publication of JPH1197002A publication Critical patent/JPH1197002A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy electrode for an alkaline storage battery, which can accomplish objects for making its conductivity high and its capacity higher by enhancing the filling density of particles made of hydrogen storage alloys, and concurrently securing electrical contact between each hydrogen storage alloy particle and a current collector, and among the respective hydrogen particle them selves. SOLUTION: Thirty % to 80% hydrogen storage alloy powder 10 by volume is composed of hydrogen storage alloy particles 14 and 16 in a spherical or non-spherical shape each less than 30 μm in grain size, and the remaining part is composed of hydrogen storage alloy particles in a non-spherical shape each equal to or more than 30 μm but less than 100 μm in grain size. The hydrogen storage alloy particles 18 less than 30 μm in grain size are formed out of at least 3% the whole of the hydrogen storage alloy powder 10 by volume, which is composed of the hydrogen storage alloy particles 14, so as to be combined with a current collector 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池の
負極として用いられる水素吸蔵合金電極に関するもので
ある。
The present invention relates to a hydrogen storage alloy electrode used as a negative electrode of an alkaline storage battery.

【0002】[0002]

【従来の技術】水素吸蔵合金を負極として利用したアル
カリ蓄電池として、ニッケル−水素化物蓄電池などの金
属−水素化物蓄電池が知られている。水素吸蔵合金電極
は、単位体積及び単位重量当たりのエネルギー密度が高
く、高容量化が可能であるという優れた特性を有してい
る。水素吸蔵合金電極(30)は、図2に示すように、水素
吸蔵合金の粉末(32)と集電体(34)を接合して形成され
る。水素吸蔵合金は、水素吸蔵合金鋳塊を機械的に粉砕
して粉末状にしたり、ガスアトマイズ法などにより予め
粉末状に調製される。集電体(34)は、板状のNi基体が
用いられており、一般に、水素吸蔵合金粉末(32)を結着
剤と混合してNi基体上に塗布したり、焼結を行なうこ
とによって電極が作製される。
2. Description of the Related Art As alkaline storage batteries using a hydrogen storage alloy as a negative electrode, metal-hydride storage batteries such as nickel-hydride storage batteries are known. The hydrogen storage alloy electrode has excellent characteristics such that the energy density per unit volume and unit weight is high and the capacity can be increased. As shown in FIG. 2, the hydrogen storage alloy electrode (30) is formed by bonding a hydrogen storage alloy powder (32) and a current collector (34). The hydrogen storage alloy is prepared by mechanically pulverizing an ingot of the hydrogen storage alloy into a powder or preparing the powder in advance by a gas atomizing method or the like. As the current collector (34), a plate-shaped Ni base is used. Generally, the hydrogen storage alloy powder (32) is mixed with a binder and applied to the Ni base, or by sintering. An electrode is made.

【0003】[0003]

【発明が解決しようとする課題】従来、水素吸蔵合金電
極には、比較的粒径の揃った水素吸蔵合金粉末が使用さ
れているため、図2に示すように、水素吸蔵合金粒子ど
うしの間に大きな空隙(36)が存在してしまう問題があっ
た。その結果、水素吸蔵合金の充填密度の低下を招き、
また、水素吸蔵合金と集電体及び水素吸蔵合金どうしの
電気的な接触を十分に図ることができなかった。
Conventionally, a hydrogen storage alloy powder having a relatively uniform particle size has been used for a hydrogen storage alloy electrode. Therefore, as shown in FIG. There is a problem that a large gap (36) is present in the device. As a result, the packing density of the hydrogen storage alloy is reduced,
Further, sufficient electrical contact between the hydrogen storage alloy, the current collector and the hydrogen storage alloy could not be achieved.

【0004】本発明の目的は、水素吸蔵合金粒子の充填
密度を向上させると共に、水素吸蔵合金粒子と集電体及
び水素吸蔵合金粒子どうしの電気的な接触を確保して、
導電性を高め、高容量化を達成できるアルカリ蓄電池用
水素吸蔵合金電極を提供することである。
[0004] It is an object of the present invention to improve the packing density of the hydrogen storage alloy particles and to secure electrical contact between the hydrogen storage alloy particles, the current collector, and the hydrogen storage alloy particles.
An object of the present invention is to provide a hydrogen storage alloy electrode for an alkaline storage battery, which can enhance conductivity and achieve high capacity.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明のアルカリ蓄電池用水素吸蔵合金電極(25)
は、水素吸蔵合金粉末(10)の30体積%〜80体積%
が、球状又は非球状で粒径30μm以下の水素吸蔵合金
粒子(14)(16)からなり、残部は、非球状で粒径30μm
を越えて100μm以下である水素吸蔵合金粒子(18)か
らなり、粒径が30μm以下の水素吸蔵合金粒子は、水
素吸蔵合金粉末(10)の全体の少なくとも3体積%以上
を、球状の水素吸蔵合金粒子(14)とする水素吸蔵合金粉
末(10)を集電体(20)と接合して形成される。集電体(20)
として、発泡ニッケル、金属繊維焼結体などの多孔質体
(22)を用い、該多孔質体(22)に水素吸蔵合金粉末(10)を
充填して水素吸蔵合金電極を構成することが望ましい。
According to the present invention, there is provided a hydrogen storage alloy electrode for an alkaline storage battery according to the present invention.
Is 30% to 80% by volume of the hydrogen storage alloy powder (10)
Consists of spherical or non-spherical hydrogen storage alloy particles (14) (16) having a particle size of 30 μm or less, and the rest is non-spherical and has a particle size of 30 μm.
The hydrogen storage alloy particles (18) having a particle diameter of 30 μm or less are formed of hydrogen storage alloy particles (18) having a particle diameter of at least 3% by volume or more. It is formed by joining a hydrogen storage alloy powder (10) as an alloy particle (14) to a current collector (20). Current collector (20)
As a porous body such as foamed nickel, metal fiber sintered body, etc.
It is desirable to use (22) and fill the porous body (22) with the hydrogen storage alloy powder (10) to form a hydrogen storage alloy electrode.

【0006】なお、本発明において、「球状」とは、外
側に凸状の曲面を有する丸みをもった粒子の形状を意味
し、球体、楕円体のみならず、それに類似する形態の粒
子をも含むものとする。球状の水素吸蔵合金粒子は、ア
トマイズ法によって調製することができる。球状である
水素吸蔵合金粒子(14)の短径に対する長径の比率(長径
/短径)は、後述する実施例3に示すとおり、1.2以下
とすることが望ましい。
[0006] In the present invention, the term "spherical" means a shape of a round particle having an outwardly convex curved surface, and includes not only a sphere and an ellipsoid but also particles having a similar form. Shall be included. Spherical hydrogen storage alloy particles can be prepared by an atomizing method. The ratio of the major axis to the minor axis (major axis / minor axis) of the spherical hydrogen storage alloy particles (14) is desirably 1.2 or less as shown in Example 3 described later.

【0007】また、本発明において、「非球状」とは、
球状でない粒子を意味し、典型的には角張った部分を有
する粒子の形状を意味する。非球状の水素吸蔵合金粒子
は、水素吸蔵合金鋳塊を機械的に粉砕したり、水素化粉
砕したりすることによって調製することができる。
In the present invention, “non-spherical” means
It refers to particles that are not spherical, and typically refers to the shape of particles that have angular portions. Non-spherical hydrogen storage alloy particles can be prepared by mechanically pulverizing or hydrogenating a hydrogen storage alloy ingot.

【0008】球状である水素吸蔵合金粒子(14)は、組成
中に少なくともNiを含有し、粒子の表面から50nm
の厚さを越える中央部分におけるNi残存量に対して、
粒子の表面から50nm以内の厚さ部分のNi残存量の
割合が、1.5以上となるようにすることが望ましい。
粒子表面のNi残存比率を高めるには、粒子に酸処理な
どを施せばよい。
[0008] The spherical hydrogen storage alloy particles (14) contain at least Ni in the composition and are 50 nm from the surface of the particles.
The amount of Ni remaining in the central portion exceeding the thickness of
It is desirable that the ratio of the residual amount of Ni in the thickness portion within 50 nm from the surface of the particle is 1.5 or more.
In order to increase the residual ratio of Ni on the particle surface, the particles may be subjected to an acid treatment or the like.

【0009】[0009]

【作用及び効果】粒径30μm以下である球状水素吸蔵
合金粒子(14)を含有させることにより、水素吸蔵合金の
電極への充填度を高めることができる。また、充放電サ
イクルに伴って非球状水素吸蔵合金粒子が微粉化して
も、球状水素吸蔵合金粒子は、機械的強度が高く、微粉
化され難いため、粒子どうしの電気的な接続状態を良好
な状態に維持することができる。また、球状水素吸蔵合
金粒子をアトマイズ法を用いて調製した場合、粒子が急
激に冷却されて、組織的に均一な粒子を得ることがで
き、微粉化の進行を抑制することができる。
[Function and Effect] By incorporating spherical hydrogen storage alloy particles (14) having a particle diameter of 30 μm or less, the degree of filling of the electrode with the hydrogen storage alloy can be increased. In addition, even if the non-spherical hydrogen storage alloy particles are finely pulverized with the charge / discharge cycle, the spherical hydrogen storage alloy particles have high mechanical strength and are hardly pulverized. State can be maintained. Further, when the spherical hydrogen storage alloy particles are prepared by the atomizing method, the particles are rapidly cooled, so that systematically uniform particles can be obtained, and the progress of pulverization can be suppressed.

【0010】また、Niを含有する球状水素吸蔵合金粒
子(14)に、酸処理などを施すことによって、粒子表面の
Ni残存比率を高めると、合金粒子どうしの導電性をさ
らに高めることができる。
[0010] When the Ni-containing spherical hydrogen storage alloy particles (14) are subjected to an acid treatment or the like to increase the residual ratio of Ni on the particle surfaces, the conductivity between the alloy particles can be further increased.

【0011】本発明の水素吸蔵合金粉末を集電体と接合
して得られる電極をアルカリ蓄電池の負極として用いる
と、水素吸蔵合金粉末の電極への充填度が高いから、高
容量化を達成でき、また、非球状の水素吸蔵合金粉末が
微粉化しても、微粉化し難い球状水素吸蔵合金粉末によ
り導電性は保持され、高率放電特性の向上が図れ、さら
に低温放電特性の向上も達成できる。
When an electrode obtained by bonding the hydrogen storage alloy powder of the present invention to a current collector is used as a negative electrode of an alkaline storage battery, the degree of filling of the electrode with the hydrogen storage alloy powder is high, so that a high capacity can be achieved. Further, even if the non-spherical hydrogen storage alloy powder is pulverized, the conductivity is maintained by the spherical hydrogen storage alloy powder which is hard to be pulverized, whereby the high-rate discharge characteristics can be improved, and the low-temperature discharge characteristics can be further improved.

【0012】集電体(20)として、発泡ニッケルなどの多
孔質体(22)を用いると、水素吸蔵合金粉末と集電体との
導電性をさらに高めることができる。
If a porous body (22) such as foamed nickel is used as the current collector (20), the conductivity between the hydrogen storage alloy powder and the current collector can be further increased.

【0013】[0013]

【発明の実施の形態】本発明が適用される水素吸蔵合金
の組成は、特に限定されない。なお、以下の実施例に示
すように、酸処理を実施する場合には、ニッケルを組成
中に含んでいることが望ましい。球状水素吸蔵合金粉末
は、アトマイズ法によって作製することができる。非球
状水素吸蔵合金粉末は、鋳造法、ロール急冷法など種々
の方法により作製することができる。水素吸蔵合金がイ
ンゴットの状態で作製される場合には、該インゴットを
機械的に粉砕して粉末を調製すればよい。なお、得られ
た水素吸蔵合金粉末は、篩いなどを用いて篩い分けを行
なうことにより、所望の粒径ごとに分別することができ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The composition of a hydrogen storage alloy to which the present invention is applied is not particularly limited. In addition, as shown in the following Examples, when performing an acid treatment, it is desirable that nickel is included in the composition. The spherical hydrogen storage alloy powder can be produced by an atomizing method. The non-spherical hydrogen storage alloy powder can be produced by various methods such as a casting method and a roll quenching method. When the hydrogen storage alloy is manufactured in an ingot state, the ingot may be mechanically pulverized to prepare a powder. In addition, the obtained hydrogen storage alloy powder can be separated for each desired particle size by sieving using a sieve or the like.

【0014】[0014]

【実施例】実施例1 <粉末の調製>組成がMmNi3.2Co1.0Mn0.6Al
0.2となるように原料を混合して、アーク溶解炉にて溶
解し、以下の条件で、球状の水素吸蔵合金粉末と非球状
の水素吸蔵合金粉末を調製した。球状の水素吸蔵合金粉
末は、ガスアトマイズ法により作製した。非球状の水素
吸蔵合金粉末は、鋳造により得られた鋳塊を機械的に粉
砕することにより作製した。
Example 1 <Preparation of powder> The composition was MmNi 3.2 Co 1.0 Mn 0.6 Al
The raw materials were mixed so as to be 0.2 and melted in an arc melting furnace, and spherical hydrogen storage alloy powder and non-spherical hydrogen storage alloy powder were prepared under the following conditions. The spherical hydrogen storage alloy powder was produced by a gas atomizing method. The non-spherical hydrogen storage alloy powder was produced by mechanically pulverizing an ingot obtained by casting.

【0015】<粉末の篩い分け>得られた各水素吸蔵合
金粉末に対して、篩い分けを行なった。なお、「最大粒
径」とは、所定の粗さの篩いを用いて篩い分けを行なっ
たときに、篩いを通過した最大の粒子直径を意味し、
「最小粒径」とは、所定の粗さの篩いを通過しなかった
最小の粒子直径を意味するものとする。球状水素吸蔵合
金粉末について、最大粒径が10μm〜50μmになる
ように篩い分けを実施し、最大粒径が10μm、20μ
m、30μmである水素吸蔵合金粉末を発明例、最大粒
径が40μm、50μmである水素吸蔵合金粉末を比較
例とし、球状水素吸蔵合金粉末の最大粒径に合わせて、
非球状水素吸蔵合金粉末についても篩い分けを実施し
た。
<Sieving of Powder> Each of the obtained hydrogen storage alloy powders was sieved. Incidentally, the "maximum particle size", when sieving using a sieve of a predetermined roughness, means the largest particle diameter passed through the sieve,
"Minimum particle size" shall mean the smallest particle diameter that has not passed through a sieve of predetermined roughness. The spherical hydrogen storage alloy powder was sieved so that the maximum particle size became 10 μm to 50 μm, and the maximum particle size was 10 μm and 20 μm.
m, a hydrogen storage alloy powder of 30 μm as an invention example, a maximum particle size of 40 μm, a hydrogen storage alloy powder of 50 μm as a comparative example, according to the maximum particle size of the spherical hydrogen storage alloy powder,
The non-spherical hydrogen storage alloy powder was also sieved.

【0016】<試験電極作製>篩い分けされた球状水素
吸蔵合金粉末と非球状水素吸蔵合金粉末を、表1に示す
体積%で混合し、試験電極を作製した。
<Preparation of Test Electrode> The sieved spherical hydrogen storage alloy powder and the non-spherical hydrogen storage alloy powder were mixed at a volume percentage shown in Table 1 to prepare a test electrode.

【0017】[0017]

【表1】 [Table 1]

【0018】試験電極は、混合粉末800gに対して、
ポリエチレンオキサイド5%水溶液160gを添加し
て、Niメッキを施した厚さ0.8mmのパンチングメ
タルの両面に塗布して作製した。各試験電極の電極充填
密度を夫々測定したところ、表1に示すように、発明例
1〜3は、比較例101、102よりも高い値であった。これ
は、粒径の小さい球状及び非球状の水素吸蔵合金粒子
が、粒径の大きい非球状水素吸蔵合金粒子の間に形成さ
れる空隙を埋めたためである。
The test electrode was used for 800 g of the mixed powder.
160 g of a 5% aqueous solution of polyethylene oxide was added and applied to both sides of a Ni-plated 0.8 mm thick punching metal. When the electrode packing density of each test electrode was measured, as shown in Table 1, the values of Invention Examples 1 to 3 were higher than Comparative Examples 101 and 102. This is because the spherical and non-spherical hydrogen storage alloy particles having a small particle size filled the voids formed between the non-spherical hydrogen storage alloy particles having a large particle size.

【0019】<試験電池の作製>作製された各試験電極
を、油圧プレスを用いて圧延し、耐アルカリ性のセパレ
ータを介して、公知の焼結式ニッケル極と共に巻き付け
て、渦巻き状の電極体を作製した。電極体を夫々電池缶
内に挿入し、6Mの水酸化カリウム水溶液の電解液に対
して、正極活物質の利用率の向上を図るために1Mの水
酸化リチウムを添加したアルカリ水溶液を、電池缶内に
注入して試験電池を作製した。
<Preparation of Test Battery> Each of the prepared test electrodes is rolled using a hydraulic press and wound together with a known sintered nickel electrode through an alkali-resistant separator to form a spiral electrode body. Produced. Each of the electrode bodies was inserted into a battery can, and an alkaline aqueous solution to which 1 M lithium hydroxide was added with respect to a 6 M aqueous solution of potassium hydroxide to improve the utilization rate of the positive electrode active material was added to the battery can. A test battery was prepared by injecting the solution into the sample.

【0020】<充放電サイクル試験>作製された試験電
池に対して、充電:1000mA×1.2時間、放電:
1000mA(カット電圧=1.0V)の条件で、充放電
サイクルを繰り返し、初期活性化までの充放電サイクル
数(放電容量安定サイクル数)と、充放電サイクル寿命を
測定した。なお、「放電容量安定サイクル数」は、電池
の1A充放電サイクル時の放電容量が安定状態に到達す
るまでに必要なサイクル数、「充放電サイクル寿命」
は、放電容量が500mAhを下回った時点のサイクル
数によって評価した。結果を表1に示す。
<Charge / Discharge Cycle Test> The prepared test battery was charged at 1000 mA × 1.2 hours and discharged at:
The charge / discharge cycle was repeated under the conditions of 1000 mA (cut voltage = 1.0 V), and the number of charge / discharge cycles until the initial activation (discharge capacity stabilization cycle number) and the charge / discharge cycle life were measured. The “number of stable discharge capacity cycles” is the number of cycles required until the discharge capacity at the time of the 1A charge / discharge cycle of the battery reaches a stable state, and the “charge / discharge cycle life”
Was evaluated by the number of cycles when the discharge capacity was lower than 500 mAh. Table 1 shows the results.

【0021】表1を参照すると、発明例1〜3を負極と
して用いた電池は、比較例101及び102を用いた電池に比
べて、サイクル寿命が10%以上向上しており、また、
活性化に必要なサイクル数も少なくなっていることがわ
かる。これは、水素吸蔵合金粉末の最大粒径が大きくな
るにしたがって、水素吸蔵合金粒子どうしの接触が点接
触となりやすく、導電性が低下するためである。なお、
球状水素吸蔵合金粒子の最大粒径が10μmである発明
例1は、発明例2に比べてサイクル寿命が低下している
ことから、球状水素吸蔵合金粒子の最大粒径を10μm
よりも小さくしても、サイクル寿命の向上効果は得難い
ことがわかる。従って、球状水素吸蔵合金粒子の粒径
は、10μm以上とすることが望ましい。
Referring to Table 1, the batteries using Inventive Examples 1 to 3 as the negative electrodes have a cycle life improved by 10% or more as compared with the batteries using Comparative Examples 101 and 102.
It can be seen that the number of cycles required for activation is also reduced. This is because, as the maximum particle size of the hydrogen storage alloy powder increases, the contact between the hydrogen storage alloy particles tends to be point contact, and the conductivity decreases. In addition,
Inventive Example 1, in which the maximum particle size of the spherical hydrogen storage alloy particles is 10 μm, has a shorter cycle life than Inventive Example 2, so that the maximum particle size of the spherical hydrogen storage alloy particles is 10 μm.
It can be seen that the effect of improving the cycle life is difficult to obtain even if it is smaller. Therefore, it is desirable that the spherical hydrogen storage alloy particles have a particle size of 10 μm or more.

【0022】実施例2 つぎに、粒径が30μm以下である水素吸蔵合金粉末に
含まれる球状水素吸蔵合金粉末の割合を変化させて、実
施例1と同様に電極充填密度とサイクル寿命を測定し
た。結果を表2に示す。
Example 2 Next, the electrode packing density and the cycle life were measured in the same manner as in Example 1 except that the ratio of the spherical hydrogen storage alloy powder contained in the hydrogen storage alloy powder having a particle size of 30 μm or less was changed. . Table 2 shows the results.

【0023】[0023]

【表2】 [Table 2]

【0024】表2を参照すると、粒径が30μm以下の
水素吸蔵合金粉末中に球状水素吸蔵合金粉末を多く含有
する方が、電極の充填密度が高く、また、サイクル寿命
も向上している。これは、粒径の小さい球状水素吸蔵合
金粒子は、アトマイズ法により調製されているため、粒
子調製時の冷却速度が速く、組織的に均質であるのに対
し、一方、鋳造は冷却速度が遅く、組織的に均質となり
難いためである。加えて、アトマイズ法により調製され
た水素吸蔵合金粒子は、粒径が小さくても十分な機械的
強度を有しているのに対し、鋳造により作製された水素
吸蔵合金粉末は、機械的粉砕により調製されるため、粒
径を小さくすると十分な機械的強度を得ることができな
いためである。実施例2より、粒径が30μm以下の水
素吸蔵合金粉末中に、より多くの球状水素吸蔵合金粉末
が含まれるようにすると、作製された電極の充填密度を
高めることができ、また、電池寿命の向上を達成できる
ことがわかる。
Referring to Table 2, the more the spherical hydrogen storage alloy powder is contained in the hydrogen storage alloy powder having a particle diameter of 30 μm or less, the higher the packing density of the electrode and the longer the cycle life. This is because the spherical hydrogen storage alloy particles having a small particle diameter are prepared by the atomizing method, so that the cooling rate at the time of particle preparation is high and the structure is homogeneous, while the casting has a low cooling rate. This is because it is difficult to be homogeneously organized. In addition, the hydrogen storage alloy particles prepared by the atomization method have sufficient mechanical strength even if the particle size is small, while the hydrogen storage alloy powder produced by casting is mechanically pulverized. This is because sufficient mechanical strength cannot be obtained if the particle size is reduced because of the preparation. According to Example 2, when a larger amount of the spherical hydrogen storage alloy powder is included in the hydrogen storage alloy powder having a particle size of 30 μm or less, the packing density of the manufactured electrode can be increased, and the battery life can be improved. It can be seen that the improvement of the above can be achieved.

【0025】実施例3 球状水素吸蔵合金粒子の短径に対する長径の比率(長径
/短径)の異なる粒子を作製し、得られた粒子を含有す
る水素吸蔵合金粉末から試験電極を作製した。なお、水
素吸蔵合金粉末は、長径/短径比率の異なる粒径30μ
m以下の球状水素吸蔵合金粉末を25体積%、粒径30
μm以下の非球状水素吸蔵合金粉末25体積%、粒径3
0〜100μmの非球状水素吸蔵合金粉末50体積%を
混合して使用した。試験電極を用いて試験電池を作製
し、実施例1と同様に、電極充填密度と充放電サイクル
寿命を測定した。結果を表3に示す。
Example 3 Particles having different ratios of the major axis to the minor axis (major axis / minor axis) of the spherical hydrogen-absorbing alloy particles were produced, and a test electrode was produced from the hydrogen-absorbing alloy powder containing the obtained particles. Note that the hydrogen storage alloy powder has a particle diameter of 30 μm having a different major axis / minor axis ratio.
m of spherical hydrogen storage alloy powder having a particle size of 25% by volume or less.
Non-spherical hydrogen storage alloy powder of 25 μm or less, 25% by volume, particle size 3
50% by volume of a non-spherical hydrogen storage alloy powder of 0 to 100 μm was mixed and used. A test battery was prepared using the test electrode, and the electrode packing density and the charge / discharge cycle life were measured in the same manner as in Example 1. Table 3 shows the results.

【0026】[0026]

【表3】 [Table 3]

【0027】表3を参照すると、球状水素吸蔵合金粒子
として、長径/短径比が1.2以下、つまり真球に近い
形状である水素吸蔵合金粒子を用いるほど、電極充填密
度を高めることができ、また、充放電サイクル寿命を向
上できることがわかった。
Referring to Table 3, the more the hydrogen-absorbing alloy particles having a ratio of major axis / minor axis of 1.2 or less, that is, the shape closer to a true sphere, are used as the spherical hydrogen-absorbing alloy particles, the higher the packing density of the electrode is. It was found that the charge and discharge cycle life could be improved.

【0028】実施例4 上記発明例3で用いた水素吸蔵合金粉末について、球状
水素吸蔵合金粉末のみに対して、pHの異なる酸性水溶
液で表面処理を実施した。なお、表面処理以外の条件
は、発明例3と同じ条件であり、実施例1と同様の方法
で試験電極を作製して、同様に試験電池を組み立てた。
表面処理は酸処理であり、酸性水溶液として塩酸を使用
し、塩酸に球状水素吸蔵合金粉末を浸漬することにより
実施した。酸処理を施した球状水素吸蔵合金粒子につい
て、粒子表面から50nm以内の厚さ部分におけるニッ
ケルの存在量と、粒子表面から50nmの厚さを越える
中央部分におけるニッケルの残存量を、夫々XPS(X
線光電子分光分析器)を用いて分析し、ニッケルの存在
量の比(表面の存在量/内部の存在量)を求めたところ、
表4に示すような結果が得られた。なお、酸処理を施し
ていない発明例3を参考例として表4に合わせて示す。
Example 4 With respect to the hydrogen-absorbing alloy powder used in Invention Example 3, only the spherical hydrogen-absorbing alloy powder was subjected to a surface treatment with an acidic aqueous solution having a different pH. The conditions other than the surface treatment were the same as those of Inventive Example 3, a test electrode was prepared in the same manner as in Example 1, and a test battery was assembled in the same manner.
The surface treatment was an acid treatment, which was performed by using hydrochloric acid as an acidic aqueous solution and immersing the spherical hydrogen storage alloy powder in hydrochloric acid. Regarding the spherical hydrogen-absorbing alloy particles subjected to the acid treatment, the amount of nickel present in the portion within 50 nm from the particle surface and the amount of nickel remaining in the central portion exceeding 50 nm from the particle surface were respectively determined by XPS (XP
Line photoelectron spectroscopy analyzer) to determine the ratio of nickel abundance (surface abundance / internal abundance)
The results as shown in Table 4 were obtained. It should be noted that Inventive Example 3 not subjected to the acid treatment is shown in Table 4 as a reference example.

【0029】[0029]

【表4】 [Table 4]

【0030】表4を参照すると、酸処理を施すことによ
って、粒子表面の希土類酸化物が溶出し、粒子表面がニ
ッケル富化の状態にあることがわかる。なお、酸性度の
強い酸性水溶液を用いて酸処理を実施した方が、粒子表
面のニッケル存在比率は高くなっている。
Referring to Table 4, it can be seen that by performing the acid treatment, the rare-earth oxide on the particle surface is eluted, and the particle surface is in a nickel-rich state. In addition, when the acid treatment was performed using an acidic aqueous solution having a strong acidity, the nickel content ratio on the particle surface was higher.

【0031】つぎに、作製された試験電極について、夫
々電極充填密度を測定したところ、すべて4.8g/cm3
であった。作製された試験電池について、実施例1と同
様の方法で、充放電サイクル試験を実施し、サイクル寿
命と放電容量安定サイクル数を測定した。結果を表4に
示す。また、各電池の高率放電特性を測定するために、
4A放電時の放電容量を測定した。結果を表4に合わせ
て示す。表4を参照すると、酸処理を施した球状水素吸
蔵合金粉末を混合することによって、充放電サイクル寿
命及び放電安定サイクル数は殆んど変化していないが、
4A放電時の放電容量は酸処理を施すことによって高め
られ、高率放電特性が向上しているすることがわかる。
高率放電特性が向上したのは、酸処理によって導電性の
高められた球状水素吸蔵合金粒子が、粒径の大きな非球
状水素吸蔵合金粒子間で導電パスとなって、粒子どうし
の導電性を高めたためである。
Next, the packing densities of the fabricated test electrodes were measured, and all were 4.8 g / cm 3.
Met. A charge / discharge cycle test was performed on the fabricated test battery in the same manner as in Example 1, and the cycle life and the number of cycles of stable discharge capacity were measured. Table 4 shows the results. Also, to measure the high rate discharge characteristics of each battery,
The discharge capacity at the time of 4A discharge was measured. The results are shown in Table 4. Referring to Table 4, although the charge-discharge cycle life and the number of discharge stable cycles are hardly changed by mixing the acid-treated spherical hydrogen storage alloy powder,
It can be seen that the discharge capacity at the time of 4A discharge is increased by performing the acid treatment, and that the high-rate discharge characteristics are improved.
The high-rate discharge characteristics have been improved because the spherical hydrogen storage alloy particles, whose conductivity has been increased by the acid treatment, serve as a conductive path between the non-spherical hydrogen storage alloy particles having a large particle size to improve the conductivity between the particles. It is because it raised.

【0032】実施例5 本実施例は、焼結により電極を作製した実施例(発明例
14及び15)である。発明例14及び15には、粒径
30μm以下の球状水素吸蔵合金粉末を25体積%、粒
径30μm以下の非球状水素吸蔵合金粉末を25体積
%、残部粒径30μmを越えて100μm以下の非球状
水素吸蔵合金粉末を使用した。発明例14の球状水素吸
蔵合金粉末には、実施例4に示すpH1の酸処理を実施
している。比較のため、鋳造法により作製された水素吸
蔵合金を機械的に粉砕した最大粒径100μmの水素吸
蔵合金粉末(非球状)を焼結した試験電極(比較例108)を
作製した。また、アトマイズ法により調製された最大粒
径100μmの水素吸蔵合金粉末(球状)を焼結した試験
電極(比較例109)を作製した。
Embodiment 5 This embodiment is an embodiment (invention examples 14 and 15) in which an electrode is manufactured by sintering. Inventive Examples 14 and 15 include 25% by volume of a spherical hydrogen storage alloy powder having a particle size of 30 μm or less, 25% by volume of a non-spherical hydrogen storage alloy powder having a particle size of 30 μm or less, and a non-spherical hydrogen storage alloy powder having a remaining particle size of 30 μm or less and 100 μm or less. Spherical hydrogen storage alloy powder was used. The spherical hydrogen storage alloy powder of Inventive Example 14 was subjected to the acid treatment at pH 1 shown in Example 4. For comparison, a test electrode (Comparative Example 108) was manufactured by sintering a hydrogen storage alloy powder (non-spherical) having a maximum particle size of 100 μm obtained by mechanically pulverizing a hydrogen storage alloy prepared by a casting method. Further, a test electrode (Comparative Example 109) was prepared by sintering a hydrogen storage alloy powder (spherical) having a maximum particle size of 100 μm prepared by an atomizing method.

【0033】各水素吸蔵合金粉末の焼結温度は、電極が
所定の強度を得るために必要な温度に設定した。焼結温
度を表5に示す。
The sintering temperature of each hydrogen storage alloy powder was set to a temperature necessary for the electrode to obtain a predetermined strength. Table 5 shows the sintering temperatures.

【0034】[0034]

【表5】 [Table 5]

【0035】表5を参照すると、発明例14及び15の
試験電極の焼結温度は、比較例108及び比較例109に比べ
て低くできたことがわかる。発明例14及び15の焼結
温度が比較例109よりも低く設定できたのは、アトマイ
ズ法により作製された球状水素吸蔵合金粒子を含んでい
るためであり、この球状水素吸蔵合金粒子は、粒子を作
製する際に粒子の外側から急激な冷却を受けて、比較的
融点の高いニッケルの存在比率が鋳造合金よりも高いた
め、焼結に要する温度を低くできるのである。また、発
明例14及び15が、比較例108よりも焼結温度を低く
設定できたのは、すべてが球状粉末である比較例108
は、水素吸蔵合金粒子どうしの接触が点接触となってお
り、所定の強度を得るには、焼結温度を高くする必要が
あるためである。
Referring to Table 5, it can be seen that the sintering temperatures of the test electrodes of Invention Examples 14 and 15 were lower than those of Comparative Examples 108 and 109. The sintering temperatures of Invention Examples 14 and 15 could be set lower than that of Comparative Example 109 because spherical hydrogen storage alloy particles produced by the atomization method were included. During the production of the alloy, it is subjected to rapid cooling from the outside of the particles, and since the proportion of nickel having a relatively high melting point is higher than that of the cast alloy, the temperature required for sintering can be lowered. In addition, the sintering temperature of Invention Examples 14 and 15 could be set lower than that of Comparative Example 108 because Comparative Example 108 in which all were spherical powders.
This is because the hydrogen storage alloy particles are in point contact with each other, and the sintering temperature must be increased to obtain a predetermined strength.

【0036】作製された試験電極に対して、充放電サイ
クル寿命と4A放電時の放電容量を測定した。結果を表
5に示す。なお、参考のため、結着剤を用いて作製され
た試験電極(発明例3、発明例12)の測定結果を合わせ
て表5に示す。発明例14及び15と、発明参考例3及
び12を比較すると、焼結によって電極を作製した方が
4A放電時の放電容量を高めることができ、電池の高率
放電特性の向上を図れることがわかる。これは、結着剤
を用いた場合よりも焼結を行なった方が、水素吸蔵合金
粒子どうしの電気的な接合を十分に図れるためである。
また、発明例14及び15と、比較例108及び109を比較
すると、充放電サイクル寿命及び4A放電時の放電容量
が共に向上している。これは、発明例の水素吸蔵合金電
極の焼結温度を、比較例よりも低く設定できたためであ
り、焼結の温度が高温になると、合金組織が再偏析し、
充放電サイクルの低下を招くためである。なお、発明例
14と発明例15を比較すると、発明例14は、酸処理
によって表面がニッケル富化となった球状水素吸蔵合金
粉末を含んでいるため、実施例4に示すとおり、高率放
電特性を向上していることがわかる。
The charge / discharge cycle life and the discharge capacity at the time of 4A discharge were measured for the produced test electrodes. Table 5 shows the results. For reference, Table 5 also shows the measurement results of the test electrodes (Invention Example 3 and Invention Example 12) manufactured using the binder. Comparing Inventive Examples 14 and 15, and Inventive Reference Examples 3 and 12, the electrode produced by sintering can increase the discharge capacity at the time of 4A discharge, and can improve the high rate discharge characteristics of the battery. Recognize. The reason for this is that sintering can sufficiently achieve electrical bonding between the hydrogen-absorbing alloy particles as compared with the case where a binder is used.
In addition, comparing Inventive Examples 14 and 15 with Comparative Examples 108 and 109, both the charge / discharge cycle life and the discharge capacity at the time of 4A discharge are improved. This is because the sintering temperature of the hydrogen storage alloy electrode of the invention example could be set lower than that of the comparative example, and when the sintering temperature was high, the alloy structure was re-segregated,
This is to cause a decrease in the charge / discharge cycle. In addition, comparing Inventive Example 14 and Inventive Example 15, since Inventive Example 14 includes a spherical hydrogen-absorbing alloy powder whose surface was enriched with nickel by acid treatment, as shown in Example 4, the high-rate discharge was performed. It can be seen that the characteristics have been improved.

【0037】実施例6 集電体に、発泡ニッケルを用いた実施例である。水素吸
蔵合金粉末として、粒径30μm以下の球状水素吸蔵合
金粉末を25体積%、粒径30μm以下の非球状水素吸
蔵合金粉末を25体積%、残部粒径30μmを越えて1
00μm以下の非球状水素吸蔵合金粉末を使用した。な
お、発明例16の球状水素吸蔵合金粉末に対して、pH
1の酸処理を実施している。
Embodiment 6 This is an embodiment using foamed nickel as the current collector. As the hydrogen storage alloy powder, 25% by volume of a spherical hydrogen storage alloy powder having a particle size of 30 μm or less, 25% by volume of a non-spherical hydrogen storage alloy powder having a particle size of 30 μm or less, and 1% of the remaining particle size exceeding 30 μm.
A non-spherical hydrogen storage alloy powder having a size of 00 μm or less was used. The spherical hydrogen storage alloy powder of Inventive Example 16 had a pH
1 is being treated with acid.

【0038】試験電極は、混合粉末800gに対して、
ポリエチレンオキサイド5%水溶液160gを添加し
て、発泡メタルに塗布することにより作製した。作製さ
れた試験電極に対して、充放電サイクル寿命と4A放電
時の放電容量を測定した。結果を表6に示す。なお、参
考のため、上記発明例12及び発明例3を表6に合わせ
て示す。
The test electrode was used for 800 g of the mixed powder.
It was prepared by adding 160 g of a 5% aqueous solution of polyethylene oxide and applying the foamed metal. The charge / discharge cycle life and the discharge capacity at the time of 4A discharge were measured for the produced test electrode. Table 6 shows the results. In addition, the said invention example 12 and invention example 3 are shown together with Table 6 for reference.

【0039】[0039]

【表6】 [Table 6]

【0040】表6を参照すると、発泡ニッケルを用いた
電極は、パンチングメタルを用いた電極よりも放電容量
が高くなっていることがわかる。これは、発泡ニッケル
の多孔質部分にも水素吸蔵合金粒子が充填され、導電性
が向上するためである。なお、発明例16と発明例17
を比較すると、酸処理によって表面のニッケルを富化さ
せた球状水素吸蔵合金粉末を用いることにより、水素吸
蔵合金粉末と発泡ニッケルとの導電性がさらに高めら
れ、高率放電特性の向上を達成できたことがわかる。
Referring to Table 6, it can be seen that the electrode using nickel foam has a higher discharge capacity than the electrode using punching metal. This is because the porous portion of the foamed nickel is also filled with the hydrogen storage alloy particles, and the conductivity is improved. Inventive Example 16 and Inventive Example 17
Compared with the above, by using the spherical hydrogen storage alloy powder enriched with nickel on the surface by acid treatment, the conductivity between the hydrogen storage alloy powder and the foamed nickel is further increased, and the high rate discharge characteristics can be improved. You can see that

【0041】実施例7 つぎに、使用する水素吸蔵合金粉末に含まれる粒径30
μm以下の水素吸蔵合金粉末の割合を変化させて、電極
充填密度と、充放電サイクル寿命及び1C放電時の放電
容量を測定し、粒径30μm以下の水素吸蔵合金粉末の
望ましい含有量を求めた。なお、粒径30μm以下の水
素吸蔵合金粉末の1/2の量を球状水素吸蔵合金粉末と
している。各水素吸蔵合金粉末の含有量を及び測定結果
を表7に示す。
Example 7 Next, the hydrogen storage alloy powder used had a particle size of 30%.
The electrode filling density, charge / discharge cycle life, and discharge capacity at the time of 1C discharge were measured by changing the ratio of the hydrogen storage alloy powder having a particle diameter of 30 μm or less, and the desirable content of the hydrogen storage alloy powder having a particle diameter of 30 μm or less was determined. . In addition, 1/2 of the amount of the hydrogen storage alloy powder having a particle diameter of 30 μm or less is defined as a spherical hydrogen storage alloy powder. Table 7 shows the content of each hydrogen storage alloy powder and the measurement results.

【0042】[0042]

【表7】 [Table 7]

【0043】表7を参照すると、粒径30μm以下の水
素吸蔵合金粉末が30体積%よりも低くなると、電極充
填密度が低下し、その結果、放電容量が低下してしまう
ことがわかる。また、粒径30μm以下の水素吸蔵合金
粉末が80体積%を越えると、サイクル寿命が低下する
ことがわかる。これは、粒径30μm以下の水素吸蔵合
金粉末の含有量を多くすることにより、反応に関わる合
金粒子の表面積が増大し、これに伴って粒子が酸化され
やすくなったためであると考えられる。上記結果より、
電極充填密度、サイクル寿命及び放電容量の高い電極を
得るためには、粒径30μm以下の水素吸蔵合金粉末の
割合は、全体の30体積%以上80体積%以下とするこ
とが望ましい。
Referring to Table 7, it can be seen that when the hydrogen storage alloy powder having a particle size of 30 μm or less falls below 30% by volume, the electrode packing density decreases, and as a result, the discharge capacity decreases. Also, when the hydrogen storage alloy powder having a particle diameter of 30 μm or less exceeds 80% by volume, the cycle life is reduced. This is considered to be because the surface area of the alloy particles involved in the reaction was increased by increasing the content of the hydrogen storage alloy powder having a particle size of 30 μm or less, and the particles were easily oxidized accordingly. From the above results,
In order to obtain an electrode having a high electrode packing density, a high cycle life and a high discharge capacity, the proportion of the hydrogen storage alloy powder having a particle size of 30 μm or less is desirably 30% by volume or more and 80% by volume or less.

【0044】上述の各実施例からわかるとおり、本発明
の水素吸蔵合金電極は、従来の水素吸蔵合金電極に比べ
て、水素吸蔵合金粉末の充填密度を高くでき、これに伴
って高容量化を達成でき、さらに、サイクル寿命も長
く、加えて活性化に必要なサイクル数を減らすことがで
きる。
As can be seen from the above-described embodiments, the hydrogen storage alloy electrode of the present invention can increase the packing density of the hydrogen storage alloy powder as compared with the conventional hydrogen storage alloy electrode, thereby achieving a higher capacity. Can be achieved, and the cycle life is longer, and additionally the number of cycles required for activation can be reduced.

【0045】とくに、球状水素吸蔵合金粒子に酸処理を
施したり、水素吸蔵合金粉末を焼結することにより電極
を作製したり、さらには、集電体として発泡ニッケルな
どの多孔質体を用いることにより、さらなるサイクル寿
命の向上、放電容量の向上を達成することができる。
In particular, the spherical hydrogen storage alloy particles are subjected to an acid treatment, the electrodes are produced by sintering the hydrogen storage alloy powder, and a porous material such as foamed nickel is used as a current collector. Thereby, the cycle life and the discharge capacity can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水素吸蔵合金電極を示す説明図であ
る。
FIG. 1 is an explanatory view showing a hydrogen storage alloy electrode of the present invention.

【図2】従来の水素吸蔵合金電極を示す説明図である。FIG. 2 is an explanatory view showing a conventional hydrogen storage alloy electrode.

【符号の説明】[Explanation of symbols]

(10) 水素吸蔵合金粉末 (14) 粒径30μm以下の球状水素吸蔵合金粒子 (16) 粒径30μm以下の非球状水素吸蔵合金粒子 (18) 粒径30μmを越えて100μm以下の非球状水
素吸蔵合金粒子 (20) 集電体 (25) 水素吸蔵合金電極
(10) Hydrogen storage alloy powder (14) Spherical hydrogen storage alloy particles with a particle size of 30 μm or less (16) Non-spherical hydrogen storage alloy particles with a particle size of 30 μm or less (18) Non-spherical hydrogen storage with a particle size of more than 30 μm and 100 μm or less Alloy particles (20) Current collector (25) Hydrogen storage alloy electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 菊子 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 井本 輝彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 黒田 靖 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 藤谷 伸 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Kikuko Kato 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Teruhiko Imoto 2-5-5 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Yasushi Kuroda 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Pref. Sanyo Electric Co., Ltd. (72) Shin Fujitani 2 5-5-5 Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金粉末(10)と集電体(20)を接
合してなるアルカリ蓄電池用の水素吸蔵合金電極におい
て、 水素吸蔵合金粉末(10)は、30体積%〜80体積%が、
球状又は非球状で粒径30μm以下の水素吸蔵合金粒子
(14)(16)からなり、残部が、非球状で粒径30μmを越
えて100μm以下の水素吸蔵合金粒子(18)からなり、 粒径30μm以下の水素吸蔵合金粒子は、水素吸蔵合金
粉末(10)の全体の少なくとも3体積%以上を、球状の水
素吸蔵合金粒子(14)とすることを特徴とするアルカリ蓄
電池用水素吸蔵合金電極。
1. A hydrogen storage alloy electrode for an alkaline storage battery formed by joining a hydrogen storage alloy powder (10) and a current collector (20), wherein the hydrogen storage alloy powder (30) is 30% by volume to 80% by volume. But,
Hydrogen storage alloy particles having a spherical or non-spherical particle size of 30 μm or less
(14) (16), the remainder being non-spherical hydrogen storage alloy particles (18) having a particle size of more than 30 μm and not more than 100 μm, wherein the hydrogen storage alloy particles having a particle size of 30 μm or less are hydrogen storage alloy powder ( A hydrogen-absorbing alloy electrode for an alkaline storage battery, characterized in that at least 3% by volume or more of the entirety of (10) is spherical hydrogen-absorbing alloy particles (14).
【請求項2】 球状の水素吸蔵合金粒子(14)は、アトマ
イズ法により調製された粒子である請求項1に記載のア
ルカリ蓄電池用水素吸蔵合金電極。
2. The hydrogen storage alloy electrode for an alkaline storage battery according to claim 1, wherein the spherical hydrogen storage alloy particles (14) are particles prepared by an atomizing method.
【請求項3】 球状の水素吸蔵合金粒子(14)は、短径に
対する長径の比率が1.2以下である請求項1又は請求
項2に記載のアルカリ蓄電池用水素吸蔵合金電極。
3. The hydrogen storage alloy electrode for an alkaline storage battery according to claim 1, wherein the ratio of the major axis to the minor axis of the spherical hydrogen storage alloy particles (14) is 1.2 or less.
【請求項4】 球状の水素吸蔵合金粒子(14)は、組成中
に少なくともNiを含有し、粒子の表面から50nmの
厚さを越える中央部分におけるNi残存量に対して、粒
子の表面から50nm以内の厚さ部分のNi残存量の割
合が、1.5以上である請求項1乃至請求項3の何れか
に記載のアルカリ蓄電池用水素吸蔵合金電極。
4. The spherical hydrogen-absorbing alloy particles (14) contain at least Ni in the composition and have a thickness of 50 nm from the particle surface with respect to the amount of Ni remaining in a central portion exceeding a thickness of 50 nm from the particle surface. The hydrogen storage alloy electrode for an alkaline storage battery according to any one of claims 1 to 3, wherein the ratio of the remaining amount of Ni in a thickness portion within the range is 1.5 or more.
【請求項5】 集電体(20)は多孔質体(22)であり、該多
孔質体(22)に水素吸蔵合金粉末(10)を充填してなる請求
項1乃至請求項4の何れかに記載のアルカリ蓄電池用水
素吸蔵合金電極。
5. The current collector (20) is a porous body (22), and the porous body (22) is filled with a hydrogen storage alloy powder (10). A hydrogen storage alloy electrode for an alkaline storage battery according to any one of the above.
JP9251611A 1997-09-17 1997-09-17 Hydrogen storage alloy electrode for alkaline storage battery Withdrawn JPH1197002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9251611A JPH1197002A (en) 1997-09-17 1997-09-17 Hydrogen storage alloy electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9251611A JPH1197002A (en) 1997-09-17 1997-09-17 Hydrogen storage alloy electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH1197002A true JPH1197002A (en) 1999-04-09

Family

ID=17225401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9251611A Withdrawn JPH1197002A (en) 1997-09-17 1997-09-17 Hydrogen storage alloy electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH1197002A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002017415A1 (en) * 2000-08-22 2002-02-28 Matsushita Electric Industrial Co., Ltd. Alkali storage battery and hydrogen absorbing alloy electrode for use therein
JP2002294373A (en) * 2001-04-03 2002-10-09 Santoku Corp Hydrogen storage alloy, production method therefor and negative electrode for nickel-hydrogen secondary battery
WO2016051688A1 (en) * 2014-09-30 2016-04-07 パナソニックIpマネジメント株式会社 Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries using same, and nickel-metal hydride storage battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002017415A1 (en) * 2000-08-22 2002-02-28 Matsushita Electric Industrial Co., Ltd. Alkali storage battery and hydrogen absorbing alloy electrode for use therein
US7247409B2 (en) 2000-08-22 2007-07-24 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery and hydrogen storage alloy electrode used therefor
JP2002294373A (en) * 2001-04-03 2002-10-09 Santoku Corp Hydrogen storage alloy, production method therefor and negative electrode for nickel-hydrogen secondary battery
WO2002081763A1 (en) * 2001-04-03 2002-10-17 Santoku Corporation Hydrogen storage alloy, production method therefor and ickel-hydrogen secondary battery-use cathode
US7935305B2 (en) 2001-04-03 2011-05-03 Santoku Corporation Hydrogen storage alloy, production method therefor and nickel-hydrogen secondary battery-use cathode
WO2016051688A1 (en) * 2014-09-30 2016-04-07 パナソニックIpマネジメント株式会社 Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries using same, and nickel-metal hydride storage battery

Similar Documents

Publication Publication Date Title
JPH1197002A (en) Hydrogen storage alloy electrode for alkaline storage battery
JPH0837004A (en) Hydrogen storage alloy electrode for metal-hydride alkaline storage battery
JP3114402B2 (en) Manufacturing method of alkaline storage battery
JP4698291B2 (en) Alkaline storage battery
JP2645889B2 (en) Method for producing hydrogen storage alloy electrode for alkaline storage battery
JPS6215769A (en) Nickel-hydrogen alkaline battery
JP3370071B2 (en) Hydrogen storage alloy electrode and nickel-metal hydride storage battery using this electrode
JPH0799055A (en) Hydrogen secondary battery
JP3653412B2 (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery using this electrode
JP3685643B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery using the electrode
JP2003317796A (en) Storage battery
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JP3198896B2 (en) Nickel-metal hydride battery
JP2840336B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2004011004A (en) Hydrogen storage alloy powder, method for producing the same, and nickel-metal hydride storage battery using the same
JP3583837B2 (en) Method for producing hydrogen storage alloy electrode
JP3695979B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JPH10172550A (en) Alkaline battery with nickel positive electrode and its activating method
JP2957745B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPS61124054A (en) Manufacture of hydrogen occlusion electrode
JPH07105943A (en) Hydrogen storage alloy electrode
JPH11260358A (en) Hydrogen storing alloy electrode and manufacture thereof
JPH0845505A (en) Hydrogen storage alloy electrode for metal-hydride alkaline storage battery
JPS61176067A (en) Hydrogen occlusion electrode
JPH04179054A (en) Manufacture of storage battery with metal hydride

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207