JPH1192132A - 層間支柱を有する粘土の有機複合体の製造方法 - Google Patents
層間支柱を有する粘土の有機複合体の製造方法Info
- Publication number
- JPH1192132A JPH1192132A JP9275108A JP27510897A JPH1192132A JP H1192132 A JPH1192132 A JP H1192132A JP 9275108 A JP9275108 A JP 9275108A JP 27510897 A JP27510897 A JP 27510897A JP H1192132 A JPH1192132 A JP H1192132A
- Authority
- JP
- Japan
- Prior art keywords
- organic
- compd
- clay
- guest
- interlaminar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
Landscapes
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
(57)【要約】
【課題】 無機層状化合物と有機ゲスト化合物との複合
体において、有機ゲスト化合物の含有割合を増大させた
ものを製造する。 【解決手段】 無機層状化合物として層間支柱を有する
粘土を用い、超臨界状態にある二酸化炭素を媒質とし
て、有機ゲスト化合物を導入する。
体において、有機ゲスト化合物の含有割合を増大させた
ものを製造する。 【解決手段】 無機層状化合物として層間支柱を有する
粘土を用い、超臨界状態にある二酸化炭素を媒質とし
て、有機ゲスト化合物を導入する。
Description
【0001】
【発明の属する技術分野】本発明は、特定の機能をもつ
有機化合物を層間支柱を有する粘土、いわゆるピラード
クレー(pillard clay)と複合化して、そ
の機能を保持したまま安定な複合体とする方法に関する
ものである。
有機化合物を層間支柱を有する粘土、いわゆるピラード
クレー(pillard clay)と複合化して、そ
の機能を保持したまま安定な複合体とする方法に関する
ものである。
【0002】
【従来の技術】有機化合物は、その本来有する機能に基
づき、光機能材料をはじめとして各種材料に広く利用さ
れているが、一般に、耐熱性が低く、また大気中の酸素
により変質されやすいという欠点を有している。このた
め、ゼオライトのような多孔質無機物質中に吸着させた
り、ガラスやプラスチックに封入して安定化することが
行われている。しかし多孔質無機物質に吸着させるに
は、有機化合物を適当な溶媒に溶かし、この溶液を多孔
質無機物質に含浸させ、溶媒を蒸発させるという煩雑な
操作を必要とする。また、溶媒の表面張力のため、微細
な空隙に浸透させて均一に複合化することがむずかしい
上に、必ずしも満足しうる安定化が得られないという欠
点がある。一方、ガラスやプラスチックに封入する場合
は、加熱により変質するのを免れないという欠点があ
り、これまで、実用上十分に満足しうる方法は知られて
いなかった。
づき、光機能材料をはじめとして各種材料に広く利用さ
れているが、一般に、耐熱性が低く、また大気中の酸素
により変質されやすいという欠点を有している。このた
め、ゼオライトのような多孔質無機物質中に吸着させた
り、ガラスやプラスチックに封入して安定化することが
行われている。しかし多孔質無機物質に吸着させるに
は、有機化合物を適当な溶媒に溶かし、この溶液を多孔
質無機物質に含浸させ、溶媒を蒸発させるという煩雑な
操作を必要とする。また、溶媒の表面張力のため、微細
な空隙に浸透させて均一に複合化することがむずかしい
上に、必ずしも満足しうる安定化が得られないという欠
点がある。一方、ガラスやプラスチックに封入する場合
は、加熱により変質するのを免れないという欠点があ
り、これまで、実用上十分に満足しうる方法は知られて
いなかった。
【0003】
【発明が解決しようとする課題】本発明は、有機化合物
の本来の機能をそこなうことなく、簡単な処理でしかも
十分に安定化された有機化合物の含有割合の高い複合体
を製造する方法を提供することを目的としてなされたも
のである。
の本来の機能をそこなうことなく、簡単な処理でしかも
十分に安定化された有機化合物の含有割合の高い複合体
を製造する方法を提供することを目的としてなされたも
のである。
【0004】
【課題を解決するための手段】本発明者らは、有機化合
物をゲスト分子とした無機層状化合物との複合体につい
て種々研究を重ねた結果、先に二酸化炭素の超臨界状態
を利用して、有機ゲスト分子を無機層状化合物と複合化
することにより、有機化合物の機能性と無機化合物の安
定性を併有する複合体を製造した。
物をゲスト分子とした無機層状化合物との複合体につい
て種々研究を重ねた結果、先に二酸化炭素の超臨界状態
を利用して、有機ゲスト分子を無機層状化合物と複合化
することにより、有機化合物の機能性と無機化合物の安
定性を併有する複合体を製造した。
【0005】しかしながら、このような方法により得ら
れる複合体は、有機ゲスト化合物の含有割合が低く、そ
の利用分野が制限されるのを免れない。このため、本発
明者らは、有機ゲスト化合物の含有割合の高い有機無機
複合体を得る方法について、さらに研究を重ねた結果、
有機ゲスト化合物の導入用媒体として超臨界状態にある
二酸化炭素を用いるとともに、無機層状化合物として、
層間支柱を有する粘土、いわゆるピラードクレーを用い
ることにより、その有機ゲスト化合物の含有量を著しく
増大しうることを見出し、この知見に基づいて本発明を
なすに至った。
れる複合体は、有機ゲスト化合物の含有割合が低く、そ
の利用分野が制限されるのを免れない。このため、本発
明者らは、有機ゲスト化合物の含有割合の高い有機無機
複合体を得る方法について、さらに研究を重ねた結果、
有機ゲスト化合物の導入用媒体として超臨界状態にある
二酸化炭素を用いるとともに、無機層状化合物として、
層間支柱を有する粘土、いわゆるピラードクレーを用い
ることにより、その有機ゲスト化合物の含有量を著しく
増大しうることを見出し、この知見に基づいて本発明を
なすに至った。
【0006】すなわち、本発明は、無機層状化合物の層
間空隙中に有機ゲスト化合物を導入し、有機無機複合体
を形成させるに当り、無機層状化合物として層間支柱を
有する粘土を用い、かつ超臨界状態の二酸化炭素を媒質
として有機ゲスト化合物を導入することを特徴とする有
機無機複合体の製造方法を提供するものである。ここ
で、有機ゲスト化合物とは、無機層状化合物の層間空隙
中に導入される、所定の機能をもった有機化合物のこと
をいう。また、超臨界状態の二酸化炭素とは臨界温度T
c(31.7℃)及び臨界圧力Pc(7.13MPa)
以上にある二酸化炭素をいい、これは液体と気体の中間
の性質、すなわち液体に近い密度と溶解性及び気体に近
い粘性、表面張力、拡散性を有している。
間空隙中に有機ゲスト化合物を導入し、有機無機複合体
を形成させるに当り、無機層状化合物として層間支柱を
有する粘土を用い、かつ超臨界状態の二酸化炭素を媒質
として有機ゲスト化合物を導入することを特徴とする有
機無機複合体の製造方法を提供するものである。ここ
で、有機ゲスト化合物とは、無機層状化合物の層間空隙
中に導入される、所定の機能をもった有機化合物のこと
をいう。また、超臨界状態の二酸化炭素とは臨界温度T
c(31.7℃)及び臨界圧力Pc(7.13MPa)
以上にある二酸化炭素をいい、これは液体と気体の中間
の性質、すなわち液体に近い密度と溶解性及び気体に近
い粘性、表面張力、拡散性を有している。
【0007】
【発明の実施の形態】本発明においては、無機層状化合
物として層間支柱を有する粘土を用いることが必要であ
る。このものは、例えばモンモリロナイト、スメクタイ
ト、ヘクトライト、サポナイト、バーミキュライト、タ
ルク、パイロフィライト、ハイデライト、雲母などの層
状粘土の層間陽イオンを支柱となる第四級アンモニウム
イオンやセラミックス酸化物と交換することにより得る
ことができる。
物として層間支柱を有する粘土を用いることが必要であ
る。このものは、例えばモンモリロナイト、スメクタイ
ト、ヘクトライト、サポナイト、バーミキュライト、タ
ルク、パイロフィライト、ハイデライト、雲母などの層
状粘土の層間陽イオンを支柱となる第四級アンモニウム
イオンやセラミックス酸化物と交換することにより得る
ことができる。
【0008】この中で支柱として第四級アンモニウムイ
オンを含むものは、例えばテトラアルキルアンモニウム
塩の水溶液に所定の粘土を浸せきし、必要に応じ50〜
90℃の温度に加温しながら1〜10時間かきまぜたの
ち、十分に水洗し乾燥することにより調製される。
オンを含むものは、例えばテトラアルキルアンモニウム
塩の水溶液に所定の粘土を浸せきし、必要に応じ50〜
90℃の温度に加温しながら1〜10時間かきまぜたの
ち、十分に水洗し乾燥することにより調製される。
【0009】一方、支柱としてセラミックス酸化物を含
むものは、先ず粘土層間中の陽イオンを多核金属水酸化
イオンでイオン交換し、水洗後層間に取り込まれたイオ
ンを加熱脱水して酸化物を形成させることにより調製さ
れる。このようにして、Al2O3、Ga2O3、ZrO2、
Fe2O3、Gr2O3、TiO2、ZrO2−Al2O3、B
i2O3、V2O5、Al2O3−SiO2、SiO2などを支
柱として含む層状粘土が得られる。
むものは、先ず粘土層間中の陽イオンを多核金属水酸化
イオンでイオン交換し、水洗後層間に取り込まれたイオ
ンを加熱脱水して酸化物を形成させることにより調製さ
れる。このようにして、Al2O3、Ga2O3、ZrO2、
Fe2O3、Gr2O3、TiO2、ZrO2−Al2O3、B
i2O3、V2O5、Al2O3−SiO2、SiO2などを支
柱として含む層状粘土が得られる。
【0010】次に、この層状粘土の層間に取り入れられ
る有機ゲスト化合物としては、炭化水素類、アミン類、
アルコール類、ケトン類、アルデヒド類、カルボン酸
類、エーテル類、ニトリル類など広範囲のものが用いら
れるが、特定の機能をもつ有機化合物、例えば4‐フェ
ニルアゾアニリン、ローダミン、スピロピラン、アゾベ
ンゼンのような色素を用いると、その色相を変えること
なく安定性を向上しうるので好ましい。
る有機ゲスト化合物としては、炭化水素類、アミン類、
アルコール類、ケトン類、アルデヒド類、カルボン酸
類、エーテル類、ニトリル類など広範囲のものが用いら
れるが、特定の機能をもつ有機化合物、例えば4‐フェ
ニルアゾアニリン、ローダミン、スピロピラン、アゾベ
ンゼンのような色素を用いると、その色相を変えること
なく安定性を向上しうるので好ましい。
【0011】本発明方法においては、前記の無機層状化
合物と有機ゲスト化合物分子とを、超臨界状態にある二
酸化炭素の存在下で接触させることが必要である。この
二酸化炭素の超臨界状態は、二酸化炭素を温度35〜5
0℃、圧力10〜20MPa、好ましくは温度40〜4
5℃、圧力13〜17MPaに維持することによりもた
らされる。例えば耐圧密閉容器中に二酸化炭素を導入
し、いったん冷却して二酸化炭素を液化したのち、温度
を徐々に上げて温度40℃、圧力14.5MPaに維持
すると超臨界状態になる。このようにして得られる超臨
界状態の二酸化炭素は気体のような流動性と液体に近い
密度、溶解性を有している。
合物と有機ゲスト化合物分子とを、超臨界状態にある二
酸化炭素の存在下で接触させることが必要である。この
二酸化炭素の超臨界状態は、二酸化炭素を温度35〜5
0℃、圧力10〜20MPa、好ましくは温度40〜4
5℃、圧力13〜17MPaに維持することによりもた
らされる。例えば耐圧密閉容器中に二酸化炭素を導入
し、いったん冷却して二酸化炭素を液化したのち、温度
を徐々に上げて温度40℃、圧力14.5MPaに維持
すると超臨界状態になる。このようにして得られる超臨
界状態の二酸化炭素は気体のような流動性と液体に近い
密度、溶解性を有している。
【0012】超臨界状態の二酸化炭素が有機ゲスト化合
物分子と接触すると、有機ゲスト化合物分子は、超臨界
二酸化炭素に溶解する。そして、超臨界二酸化炭素が、
その低い粘性、小さい表面張力、高い拡散性により、無
機層状化合物の層間支柱を有する微細な空隙のすみずみ
まで浸透するに伴い、これらの有機ゲスト化合物分子も
それらの空隙に運ばれる。有機ゲスト化合物分子が空隙
のすみずみにまで行き渡った後に、圧力を低下させる
と、超臨界二酸化炭素の密度が低下し、それに伴い有機
ゲスト化合物分子の溶解度が低下し、有機ゲスト化合物
分子は空隙の各部に一様に析出し、吸着される。このよ
うにして吸着された有機ゲスト化合物分子は空隙表面に
強く保持される。
物分子と接触すると、有機ゲスト化合物分子は、超臨界
二酸化炭素に溶解する。そして、超臨界二酸化炭素が、
その低い粘性、小さい表面張力、高い拡散性により、無
機層状化合物の層間支柱を有する微細な空隙のすみずみ
まで浸透するに伴い、これらの有機ゲスト化合物分子も
それらの空隙に運ばれる。有機ゲスト化合物分子が空隙
のすみずみにまで行き渡った後に、圧力を低下させる
と、超臨界二酸化炭素の密度が低下し、それに伴い有機
ゲスト化合物分子の溶解度が低下し、有機ゲスト化合物
分子は空隙の各部に一様に析出し、吸着される。このよ
うにして吸着された有機ゲスト化合物分子は空隙表面に
強く保持される。
【0013】本発明方法における無機層状化合物と有機
ゲスト化合物分子との使用割合は、無機層状化合物の種
類やそれに取り入れられる有機ゲスト化合物分子の種類
に左右されるが、通常は無機層状化合物100重量部当
り、有機ゲスト化合物分子1〜5重量部の範囲内であ
る。また、無機層状化合物と有機ゲスト化合物分子との
接触時間は少なくとも1時間、通常6〜24時間の範囲
内である。
ゲスト化合物分子との使用割合は、無機層状化合物の種
類やそれに取り入れられる有機ゲスト化合物分子の種類
に左右されるが、通常は無機層状化合物100重量部当
り、有機ゲスト化合物分子1〜5重量部の範囲内であ
る。また、無機層状化合物と有機ゲスト化合物分子との
接触時間は少なくとも1時間、通常6〜24時間の範囲
内である。
【0014】
【発明の効果】本発明方法によると、従来の有機溶媒に
有機ゲスト化合物を溶解し、無機担体に含浸させたの
ち、有機溶媒を除去して複合体を製造する場合に比べ、
有機ゲスト化合物がより均一に分散し、強固に結合し、
安定性の良好な複合体を、しかも機能の低下を伴うこと
なく短時間で製造することができる。また、層間支柱を
有する粘土を用いるため、非常に多量の有機ゲスト化合
物を含有した複合体を得ることができる。
有機ゲスト化合物を溶解し、無機担体に含浸させたの
ち、有機溶媒を除去して複合体を製造する場合に比べ、
有機ゲスト化合物がより均一に分散し、強固に結合し、
安定性の良好な複合体を、しかも機能の低下を伴うこと
なく短時間で製造することができる。また、層間支柱を
有する粘土を用いるため、非常に多量の有機ゲスト化合
物を含有した複合体を得ることができる。
【0015】
【実施例】次に実施例により本発明をさらに詳細に説明
する。
する。
【0016】実施例 モンモリロナイト500mgを濃度5mg/mlの塩化
テトラメチルアンモニウム溶液100mlに懸濁させ、
70℃で3時間撹拌した。ろ過後、硝酸銀試験で塩化物
イオンが検出されなくなるまで純水で繰り返し洗浄し、
次いで1日室温で真空乾燥して、モンモリロナイトの層
間に支柱を導入した。
テトラメチルアンモニウム溶液100mlに懸濁させ、
70℃で3時間撹拌した。ろ過後、硝酸銀試験で塩化物
イオンが検出されなくなるまで純水で繰り返し洗浄し、
次いで1日室温で真空乾燥して、モンモリロナイトの層
間に支柱を導入した。
【0017】この層間支柱を有するモンモリロナイトと
4‐フェニルアゾアニリン粉末を高圧容器中に分離して
置き、この容器を冷却しながら二酸化炭素ガスを導入し
いったん二酸化炭素を液化させた。次に温度を徐々に上
昇させて、二酸化炭素を温度40℃、圧力14.5MP
aの超臨界状態とした。この状態を1、6、12時間保
った後、圧力を徐々に下げて、二酸化酸素を揮発・除去
した。残った層間支柱を有するモンモリロナイトをn‐
ヘキサンで数回洗浄して試料を得た。この試料中の窒素
量、有機炭素量をTN−TOC分析装置で求めた。これ
より計算した超臨界二酸化炭素処理による窒素の増加量
(ΔN)及び有機炭素の増加量(ΔC)を表1に示す。
表1にはそれらの比(ΔN/ΔC)も合わせ示した。超
臨界二酸化炭素処理による窒素の増加量は1時間では少
ないが、6時間以降では明らかな増大が認められる。Δ
N/ΔC比は各処理時間で0.25、0.23、0.2
0と、4‐フェニルアゾアニリン中のN/C比(0.2
5)とほぼ等しい。すなわち超臨界二酸化炭素で処理す
ることにより、4‐フェニルアゾアニリンが化学変化す
ることなく、モンモリロナイトに吸収されたことが分か
る。これに対応して、試料の色が灰色から赤褐色に変化
した。
4‐フェニルアゾアニリン粉末を高圧容器中に分離して
置き、この容器を冷却しながら二酸化炭素ガスを導入し
いったん二酸化炭素を液化させた。次に温度を徐々に上
昇させて、二酸化炭素を温度40℃、圧力14.5MP
aの超臨界状態とした。この状態を1、6、12時間保
った後、圧力を徐々に下げて、二酸化酸素を揮発・除去
した。残った層間支柱を有するモンモリロナイトをn‐
ヘキサンで数回洗浄して試料を得た。この試料中の窒素
量、有機炭素量をTN−TOC分析装置で求めた。これ
より計算した超臨界二酸化炭素処理による窒素の増加量
(ΔN)及び有機炭素の増加量(ΔC)を表1に示す。
表1にはそれらの比(ΔN/ΔC)も合わせ示した。超
臨界二酸化炭素処理による窒素の増加量は1時間では少
ないが、6時間以降では明らかな増大が認められる。Δ
N/ΔC比は各処理時間で0.25、0.23、0.2
0と、4‐フェニルアゾアニリン中のN/C比(0.2
5)とほぼ等しい。すなわち超臨界二酸化炭素で処理す
ることにより、4‐フェニルアゾアニリンが化学変化す
ることなく、モンモリロナイトに吸収されたことが分か
る。これに対応して、試料の色が灰色から赤褐色に変化
した。
【0018】また、図1に得られた試料のX線回折パタ
ーンを示した。2θ=6.3°付近の回折線は、層状構
造を持つ粘土鉱物であるモンモリロナイトの層間距離に
対応する。図1から超臨界二酸化炭素による処理の時間
が1時間では2θ=6.3°付近の回折線が処理前とあ
まり変わらないのに対して、6、12時間処理したもの
は、この回折線が明らかに低角側にシフトしていること
がわかる。すなわち、超臨界二酸化炭素処理によりモン
モリロナイトの層間距離が増大している。また図2には
超臨界二酸化炭素処理の前後における、モンモリロナイ
トの窒素吸着等温線を示す。処理前の試料は50〜70
ml/g程度の細孔容積を持っているのに対して、処理
後の試料の細孔容積は10ml/g以下である。X線回
折で層間距離が増大しているにもかかわらず、層間の空
隙を示す細孔容積が大きく減少していることは、4‐フ
ェニルアゾアニリンが層間支柱を有するモンモリロナイ
トの層間に挿入されたことを示している。すなわち、超
臨界二酸化炭素を用いた処理により、4‐フェニルアゾ
アニリンとモンモリロナイトからなる有機無機複合体が
得られたことが分かる。
ーンを示した。2θ=6.3°付近の回折線は、層状構
造を持つ粘土鉱物であるモンモリロナイトの層間距離に
対応する。図1から超臨界二酸化炭素による処理の時間
が1時間では2θ=6.3°付近の回折線が処理前とあ
まり変わらないのに対して、6、12時間処理したもの
は、この回折線が明らかに低角側にシフトしていること
がわかる。すなわち、超臨界二酸化炭素処理によりモン
モリロナイトの層間距離が増大している。また図2には
超臨界二酸化炭素処理の前後における、モンモリロナイ
トの窒素吸着等温線を示す。処理前の試料は50〜70
ml/g程度の細孔容積を持っているのに対して、処理
後の試料の細孔容積は10ml/g以下である。X線回
折で層間距離が増大しているにもかかわらず、層間の空
隙を示す細孔容積が大きく減少していることは、4‐フ
ェニルアゾアニリンが層間支柱を有するモンモリロナイ
トの層間に挿入されたことを示している。すなわち、超
臨界二酸化炭素を用いた処理により、4‐フェニルアゾ
アニリンとモンモリロナイトからなる有機無機複合体が
得られたことが分かる。
【0019】なお、反応時間12時間の超臨界二酸化炭
素処理における媒質中の4‐フェニルアゾアニリン濃度
を、処理前後の4‐フェニルアゾアニリンの重量減少と
反応容器の容積から求めたところ、0.33mg/ml
であった。これは、反応容器中の4‐フェニルアゾアニ
リン濃度の上限値であると考えられる。
素処理における媒質中の4‐フェニルアゾアニリン濃度
を、処理前後の4‐フェニルアゾアニリンの重量減少と
反応容器の容積から求めたところ、0.33mg/ml
であった。これは、反応容器中の4‐フェニルアゾアニ
リン濃度の上限値であると考えられる。
【0020】比較例1 4‐フェニルアゾアニリンをエタノール又はアセトンに
濃度が1mg/mlとなるように懸濁し、溶解したもの
50mlに、実施例で用いた層間支柱を有するモンモリ
ロナイト100mgを加え、40℃で12時間撹拌し、
ろ過後、n‐ヘキサンで数回洗浄した。この溶液処理に
よる窒素及び有機炭素の増大量をTN−TOC分析装置
で求めた結果を表1に示す。
濃度が1mg/mlとなるように懸濁し、溶解したもの
50mlに、実施例で用いた層間支柱を有するモンモリ
ロナイト100mgを加え、40℃で12時間撹拌し、
ろ過後、n‐ヘキサンで数回洗浄した。この溶液処理に
よる窒素及び有機炭素の増大量をTN−TOC分析装置
で求めた結果を表1に示す。
【0021】表1よりメタノールやアセトンを使用した
場合には、処理による窒素や有機炭素の増加量はごくわ
ずかである。そして、この表1の結果は、媒質中の4‐
フェニルアゾアニリンの濃度が超臨界二酸化炭素処理の
場合よりも高いことを考えると、溶液処理による有機ゲ
スト化合物分子のモンモリロナイトへの挿入反応が遅い
か、又は一部しか進行しないことを示している。
場合には、処理による窒素や有機炭素の増加量はごくわ
ずかである。そして、この表1の結果は、媒質中の4‐
フェニルアゾアニリンの濃度が超臨界二酸化炭素処理の
場合よりも高いことを考えると、溶液処理による有機ゲ
スト化合物分子のモンモリロナイトへの挿入反応が遅い
か、又は一部しか進行しないことを示している。
【0022】
【表1】
【0023】比較例2 層間支柱を有するモンモリロナイトの代りに、単に熱処
理したモンモリロナイトを用いて、実施例1と同様に、
超臨界二酸化炭素による処理を1時間行った。得られた
処理試料中の窒素濃度をTN−TOCで分析した結果、
0.04mg/g(0.29×10-4mol/g)であ
った。このことより、層間支柱を有するモンモリロナイ
トを用いることにより、4‐フェニルアゾアニリンの吸
収量は4倍以上増大することが分かる。
理したモンモリロナイトを用いて、実施例1と同様に、
超臨界二酸化炭素による処理を1時間行った。得られた
処理試料中の窒素濃度をTN−TOCで分析した結果、
0.04mg/g(0.29×10-4mol/g)であ
った。このことより、層間支柱を有するモンモリロナイ
トを用いることにより、4‐フェニルアゾアニリンの吸
収量は4倍以上増大することが分かる。
【図1】 実施例で得た超臨界処理したモンモリロナイ
トのX線回折パターン。
トのX線回折パターン。
【図2】 超臨界二酸化炭素処理の前後における窒素吸
着等温線。
着等温線。
Claims (2)
- 【請求項1】 無機層状化合物の層間空隙中に有機ゲス
ト化合物を導入し、有機無機複合体を形成させるに当
り、無機層状化合物として層間支柱を有する粘土を用
い、かつ超臨界状態の二酸化炭素を媒質として有機ゲス
ト化合物を導入することを特徴とする有機無機複合体の
製造方法。 - 【請求項2】 層間支柱を有する粘土が、第四級アンモ
ニウムイオンが支柱として層間に導入されたものである
請求項1記載の有機無機複合体の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27510897A JP3393362B2 (ja) | 1997-09-22 | 1997-09-22 | 有機化合物−粘土複合体の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27510897A JP3393362B2 (ja) | 1997-09-22 | 1997-09-22 | 有機化合物−粘土複合体の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1192132A true JPH1192132A (ja) | 1999-04-06 |
JP3393362B2 JP3393362B2 (ja) | 2003-04-07 |
Family
ID=17550859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27510897A Expired - Lifetime JP3393362B2 (ja) | 1997-09-22 | 1997-09-22 | 有機化合物−粘土複合体の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3393362B2 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100428635B1 (ko) * | 2000-05-09 | 2004-04-30 | 주식회사 엘지화학 | 초임계 유체를 이용한 나노 복합체의 연속 제조방법 |
EP1484357A1 (fr) * | 2003-06-06 | 2004-12-08 | Université de Liège | Procédé de préparation de mousses de polyester biodégradables, mousses de polyester telles qu'ainsi obtenues et leur utilisation, et procédé de modification de nanocharges |
JP2014111531A (ja) * | 2007-11-13 | 2014-06-19 | Tomoegawa Paper Co Ltd | 粘土薄膜及びその製造方法 |
-
1997
- 1997-09-22 JP JP27510897A patent/JP3393362B2/ja not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100428635B1 (ko) * | 2000-05-09 | 2004-04-30 | 주식회사 엘지화학 | 초임계 유체를 이용한 나노 복합체의 연속 제조방법 |
EP1484357A1 (fr) * | 2003-06-06 | 2004-12-08 | Université de Liège | Procédé de préparation de mousses de polyester biodégradables, mousses de polyester telles qu'ainsi obtenues et leur utilisation, et procédé de modification de nanocharges |
WO2004108805A1 (fr) * | 2003-06-06 | 2004-12-16 | Universite De Liege | Procede de modification de nanocharges et ses applications |
JP2014111531A (ja) * | 2007-11-13 | 2014-06-19 | Tomoegawa Paper Co Ltd | 粘土薄膜及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP3393362B2 (ja) | 2003-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | Study of the dye adsorption kinetics of metal–organic frameworks in aqueous media | |
Li et al. | Fluorescence enhancement of a metal‐organic framework for ultra‐efficient detection of trace benzene vapor | |
Cloos et al. | Adsorption and oxidation of aniline and p-chloroaniline by montmorillonite | |
Zhao et al. | Solvent-triggered relaxative spin state switching of [Fe (HB (pz) 3) 2] in a closed nano-confinement of NH 2-MIL-101 (Al) | |
Khan et al. | Accelerated syntheses of porous isostructural lanthanide–benzenetricarboxylates (Ln–BTC) under ultrasound at room temperature | |
CN112371159B (zh) | 氮氧化物材料SmTiO2N的氮化合成及其在光催化领域中的应用 | |
Payra et al. | Development of a dissolved oxygen sensor using tris (bipyridyl) ruthenium (II) complexes entrapped in highly siliceous zeolites | |
JPH0741374A (ja) | 無機系多孔質体の製造方法 | |
Ren et al. | CO 2 adsorption performance of CuBTC/graphene aerogel composites | |
CN107759801A (zh) | 利用晶体缺陷法合成中微双孔mof‑74材料的方法 | |
Baker et al. | Laser-induced fluorescence, far-infrared spectroscopy, and luminescence quenching of europium zeolite Y: Site-selective probes of extraframework cations | |
Jankowski et al. | Guest‐Dependent Pressure‐Induced Spin Crossover in FeII4 [MIV (CN) 8] 2 (M= Mo, W) Cluster‐Based Material Showing Persistent Solvent‐Driven Structural Transformations | |
JPH1192132A (ja) | 層間支柱を有する粘土の有機複合体の製造方法 | |
Monteagudo‐Olivan et al. | Solvent‐Free Encapsulation at High Pressure with Carboxylate‐Based MOFs | |
Roth et al. | Pasteur's quasiracemates in 2D: chiral conflict between structurally different enantiomers induces single-handed enantiomorphism | |
Clavier et al. | A method for the preparation of transparent mesoporous silica sol–gel monoliths containing grafted organic functional groups | |
Decyk | States of transition metal ions in modified mesoporous MCM-41 and in microporous ZSM-5 studied by ESR spectroscopy | |
Jiang et al. | Electrochemical characterization of the host-guest nanocomposite material MCM-41-based iron and ruthenium complexes with bipyridine and phenanthroline | |
Attia et al. | Covalent binding of a nickel macrocyclic complex to a silica support: towards an electron exchange column | |
Wang et al. | Effects of different porous fillers on interfacial properties of poly (vinyl alcohol) hybrid films | |
CN115501732B (zh) | 具有吸附小分子气体功能的多孔液体及其制备方法和利用其去除小分子气体的方法和应用 | |
Ishii et al. | A comparison of supercritical carbon dioxide and organic solvents for the intercalation of 4-phenylazoaniline into a pillared clay mineral | |
Martynov et al. | New hybrid materials based on nanostructured aluminum oxyhydroxide and terbium (III) bis (tetra-15-crown-5-phthalocyaninate) | |
Ghosh et al. | Synthesis of Hierarchically Porous HKUST‐1 MOF: Use of C14‐6‐14, a Cationic Gemini Surfactant, as Soft‐Template | |
Mohammadkhani et al. | Effects of pore size and surface area on CH 4 and CO 2 capture in mesostructured MIL-101 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |