[go: up one dir, main page]

JPH1190485A - Biological denitrification method - Google Patents

Biological denitrification method

Info

Publication number
JPH1190485A
JPH1190485A JP27523097A JP27523097A JPH1190485A JP H1190485 A JPH1190485 A JP H1190485A JP 27523097 A JP27523097 A JP 27523097A JP 27523097 A JP27523097 A JP 27523097A JP H1190485 A JPH1190485 A JP H1190485A
Authority
JP
Japan
Prior art keywords
salt concentration
wastewater
denitrification
hydrogen donor
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27523097A
Other languages
Japanese (ja)
Other versions
JP3697037B2 (en
Inventor
Hideto Watanabe
英人 渡邊
Takayuki Kitamura
孝幸 北村
Nobuo Shinohara
伸夫 篠原
Hiroshi Nakamura
宏 中村
Masayuki Tabata
雅之 田畑
Masatoshi Tamai
正俊 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP27523097A priority Critical patent/JP3697037B2/en
Publication of JPH1190485A publication Critical patent/JPH1190485A/en
Application granted granted Critical
Publication of JP3697037B2 publication Critical patent/JP3697037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

(57)【要約】 【課題】 塩濃度の変化する排水、及び高塩濃度排水の
生物脱窒方法を提供する。 【解決手段】 排水又はし尿の処理中に、海水の塩分濃
度以上の高塩濃度を有する排水を生物により脱窒する脱
窒工程で、有機酸類、メタノール以外のアルコール類、
糖類を脱窒工程の水素供与体に用いた。
(57) [Summary] [PROBLEMS] To provide a method for biologically denitrifying wastewater having a variable salt concentration and wastewater with a high salt concentration. SOLUTION: During the treatment of wastewater or night soil, in a denitrification step of denitrifying wastewater having a high salt concentration higher than the salt concentration of seawater by living organisms, organic acids, alcohols other than methanol,
Sugars were used as the hydrogen donor in the denitrification step.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は排水・し尿処理及び
発電所で発生する排水の処理等、塩濃度の変化する排
水、及び高塩濃度排水の生物脱窒方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for biologically denitrifying wastewater with a variable salt concentration and wastewater with a high salt concentration, such as wastewater and night soil treatment and treatment of wastewater generated in a power plant.

【0002】[0002]

【従来の技術】従来の排水処理設備、し尿処理設備、又
は発電所から発生するアンモニアを含有する排水の処理
施設等では、生物を利用した硝化脱窒方法が広く適用さ
れている。このような従来の生物硝化脱窒装置を図5に
示す。硝化槽51の排水中のアンモニアは硝化菌の働き
により、式(1)、式(2)の反応で硝酸にまで酸化さ
れる。 NH4 + +1.5O2 ─→ NO2 - +H2 O+2H+ ……式(1) NO2 - +0.5O2 ─→NO3 - ……式(2) そして、硝化菌の働きによって生成した硝酸は、脱窒槽
52において、脱窒菌の働きにより式(3)の反応で窒
素ガスに還元され、排水中から除去される。 2NO3 - +10H+ ─→N2 +4H2 O+2OH- ……式(3) この時、式(3)の水素は排水中に添加した有機化合物
(水素供与体タンク57からのもの)の分解反応から供
与される。このことから、これらの有機化合物は水素供
与体と呼ばれる。工業的には安価で取扱いの容易なメタ
ノールが水素供与に用いられることが多い。その後、排
水は再曝気槽53から沈澱槽54を経て、処理水として
後の工程に送られる。なお、沈澱槽54に沈澱した汚泥
は、循環ポンプ60によって硝化槽51に返送される。
2. Description of the Related Art In a conventional wastewater treatment facility, human waste treatment facility, or a facility for treating wastewater containing ammonia generated from a power plant, a nitrification and denitrification method using living organisms is widely applied. FIG. 5 shows such a conventional biological nitrification denitrification apparatus. Ammonia in the waste water of the nitrification tank 51 is oxidized to nitric acid by the reaction of the formulas (1) and (2) by the action of nitrifying bacteria. NH 4 + + 1.5O 2 ─ → NO 2 - + H 2 O + 2H + ...... formula (1) NO 2 - + 0.5O 2 ─ → NO 3 - ...... formula (2) Then, nitric acid was produced by the action of nitrifying bacteria Is reduced to nitrogen gas by the reaction of the formula (3) by the action of the denitrifying bacteria in the denitrification tank 52, and is removed from the wastewater. 2NO 3 - + 10H + ─ → N 2 + 4H 2 O + 2OH - ...... formula (3) at this time, the decomposition reaction of hydrogen organic compound added to the waste water of the formula (3) (from the hydrogen donor tank 57) Provided. For this reason, these organic compounds are called hydrogen donors. Industrially, methanol that is inexpensive and easy to handle is often used for hydrogen donation. After that, the waste water is sent from the re-aeration tank 53 to the sedimentation tank 54 as treated water, and is sent to the subsequent process. The sludge settled in the settling tank 54 is returned to the nitrification tank 51 by the circulation pump 60.

【0003】メタノールを水素供与体に用いた従来の技
術において、高塩濃度排水を対象とした硝化脱窒に関し
ては、土木学会第46回年次学術講演会要旨集(199
1)306 頁に記載されたような海水の1/2相当の塩濃
度の排水を対象とした方法や、海水同等の塩濃度の排水
を対象とした方法が散見される程度であった。しかし、
処理対象の排水が海水の塩分濃度以上の高塩濃度になっ
た場合、塩濃度の影響により脱窒速度が低下し、処理水
中に硝酸、亜硝酸が流出する現象が見られる。
In the conventional technology using methanol as a hydrogen donor, nitrification denitrification for wastewater with high salt concentration is described in the abstract of the 46th Annual Meeting of the Japan Society of Civil Engineers (1992).
1) The method for drainage with a salt concentration equivalent to 1/2 of seawater as described on page 306 and the method for drainage with a salt concentration equivalent to seawater were occasionally seen. But,
When the wastewater to be treated has a high salt concentration equal to or higher than the salt concentration of seawater, a denitrification rate is reduced due to the effect of the salt concentration, and a phenomenon in which nitric acid and nitrous acid flow out into the treated water is observed.

【0004】[0004]

【発明が解決しようとする課題】本発明はこのような現
状に鑑み、塩濃度の変化する排水、及び高塩濃度排水の
生物脱窒方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of such circumstances, an object of the present invention is to provide a wastewater with a variable salt concentration and a method for biologically denitrifying wastewater with a high salt concentration.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載された発明は、排水又はし尿の処理
中に、塩濃度が変化する排水を生物により硝化脱窒する
硝化脱窒装置で用いられる生物脱窒方法において、海水
の塩分濃度未満の低塩濃度の時にはメタノールを脱窒工
程の水素供与体に用い、海水の塩分濃度以上の高塩濃度
の時には、有機酸類、メタノール以外のアルコール類、
糖類を脱窒工程の水素供与体に用いることを特徴とす
る。請求項2に記載された発明は、排水又はし尿の処理
中に、海水の塩分濃度以上の高塩濃度を有する排水を生
物により硝化脱窒する硝化脱窒装置で用いられる生物脱
窒方法において、有機酸類、メタノール以外のアルコー
ル類、糖類を脱窒工程の水素供与体に用いることを特徴
とする。
Means for Solving the Problems To achieve the above object, an invention according to claim 1 is a method for nitrifying and denitrifying wastewater whose salt concentration changes during treatment of wastewater or night soil by living organisms. In the biological denitrification method used in the apparatus, methanol is used as a hydrogen donor in the denitrification step when the salt concentration is lower than the salt concentration of seawater, and when the salt concentration is higher than the salt concentration of seawater, other than organic acids and methanol. Alcohols,
A saccharide is used as a hydrogen donor in the denitrification step. The invention described in claim 2 is a biological denitrification method used in a nitrification denitrification apparatus for nitrifying and denitrifying wastewater having a high salt concentration higher than the salt concentration of seawater during treatment of wastewater or night soil, Organic acids, alcohols other than methanol, and saccharides are used as the hydrogen donor in the denitrification step.

【0006】[0006]

【発明の実施の形態】本発明は、脱窒工程の水素供与体
として、高塩分排水を処理するにあたり、有機酸類、メ
タノール以外のアルコール類、糖類を用いることによ
り、硝化脱窒装置を高塩分排水に対して、高性能かつ安
定に運転するものである。上記式(3)においては、脱
窒菌が硝酸を窒素ガスに還元するために、水素供与体と
なる有機物の分解により生成する水素を必要とする。し
たがって、脱窒工程が順調に行われるためには、第一に
有機化合物の分解反応が安定して行われることが必要で
ある。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention uses a nitrification denitrification apparatus for treating high-salt wastewater by using alcohols other than methanol and alcohols and sugars as a hydrogen donor in the denitrification step. It operates stably with high performance for drainage. In the above formula (3), in order for the denitrifying bacterium to reduce nitric acid to nitrogen gas, hydrogen generated by decomposition of an organic substance serving as a hydrogen donor is required. Therefore, in order for the denitrification step to be performed smoothly, it is first necessary to stably perform the decomposition reaction of the organic compound.

【0007】本発明においては、高い塩濃度の排水を処
理するときに、脱窒工程の水素供与体として微生物が利
用・分解しやすい、有機酸類、メタノール以外のアルコ
ール類、糖類を利用する。これにより、排水処理施設で
の脱窒反応を高性能かつ安定化できる。なお、低塩濃度
では、コスト等の観点から従来通り、メタノールを使用
するが、好適な効果を奏する場合には、高い塩濃度の排
水を処理するときに用いるのと同じ、有機酸類、メタノ
ール以外のアルコール類、糖類を用いることもできる。
有機酸類とは、具体的には、酢酸、蟻酸、プロピオン
酸、コハク酸等を挙げることができ、これらの有機酸の
金属塩例えば酢酸ナトリウム等も含まれる。メタノール
以外のアルコール類としては、グリセロール、エタノー
ル、プロピルアルコール等を挙げることができる。糖類
としては、グルコース、サッカロース、ラクトース、フ
ルクトース等を挙げることができる。以上に例示したも
のに限らず、本発明の目的を達成することができるもの
であれば、他の有機酸類、メタノール以外のアルコール
類、糖類を用いることができる。また、これらのもの
は、一種又は二種以上のものを用いても良い。
In the present invention, when treating wastewater having a high salt concentration, organic acids, alcohols other than methanol, and saccharides, which are easily used and decomposed by microorganisms, are used as hydrogen donors in the denitrification step. Accordingly, the denitrification reaction in the wastewater treatment facility can be performed with high performance and stabilized. In addition, in the case of low salt concentration, methanol is used as usual from the viewpoint of cost and the like. However, when a suitable effect is obtained, the same organic acids and methanol as those used in treating wastewater with a high salt concentration are used. Alcohols and saccharides can also be used.
Specific examples of the organic acids include acetic acid, formic acid, propionic acid, succinic acid and the like, and also include metal salts of these organic acids such as sodium acetate. Examples of alcohols other than methanol include glycerol, ethanol, propyl alcohol and the like. Examples of the saccharide include glucose, saccharose, lactose, fructose and the like. Not limited to those exemplified above, other organic acids, alcohols other than methanol, and saccharides can be used as long as the object of the present invention can be achieved. These may be used alone or in combination of two or more.

【0008】本発明にいう高い塩濃度とは、各種の塩分
の総量が海水の塩分濃度以上であることを意味し、具体
的にはいわゆる標準海水(海水1kg中に35.0gの
塩類を含むもの)の塩濃度以上の濃度をいう。低塩濃度
とは、この標準海水の塩濃度未満の濃度をいう。
[0008] The high salt concentration in the present invention means that the total amount of various kinds of salt is equal to or higher than the salt concentration of seawater, and specifically, so-called standard seawater (including 35.0 g of salts per kg of seawater). ) Above the salt concentration. The low salt concentration refers to a concentration lower than the salt concentration of the standard seawater.

【0009】図1は本発明に係る生物脱窒方法を実施す
るための装置の一実施の形態を概念的を示すものであ
る。この装置は、図5に示した装置の脱窒槽52及び水
素供与体タンク57及びポンプ等と置き代わって、図5
のような装置に組み込むことができる。この装置は、処
理対象水を含む原水槽1、脱窒汚泥を付着させた担体1
リットルが充填してあるリアクタ2、処理対象水を送液
する送液ポンプ3、水素供与体(メタノール又は酢酸ナ
トリウム)を含む水素供与体貯槽4、及び水素供与体を
注入する注入ポンプ5より構成されている。運転開始時
の原水槽1には処理対象水が保持される。原水槽1内の
処理対象水は送液ポンプ3によってリアクタ2に送ら
れ、硝酸の処理が行われた後、処理水として排出され
る。
FIG. 1 schematically shows an embodiment of an apparatus for carrying out the biological denitrification method according to the present invention. This apparatus replaces the denitrification tank 52, the hydrogen donor tank 57, the pump, and the like of the apparatus shown in FIG.
Can be incorporated into such a device. This apparatus comprises a raw water tank 1 containing water to be treated, a carrier 1 to which denitrification sludge is attached.
It comprises a reactor 2 filled with liters, a liquid sending pump 3 for sending water to be treated, a hydrogen donor storage tank 4 containing a hydrogen donor (methanol or sodium acetate), and an injection pump 5 for injecting the hydrogen donor. Have been. The water to be treated is held in the raw water tank 1 at the start of operation. The water to be treated in the raw water tank 1 is sent to the reactor 2 by the liquid sending pump 3, and after being treated with nitric acid, is discharged as treated water.

【0010】この時、同時に水素供与体貯槽4内の水素
供与体が注入ポンプ5によってリアクタ2内に注入され
る。水素供与体の注入量は硝酸の窒素ガスへの還元に必
要な水素の理論量と水素供与体が供しうる水素の理論量
から算出し、これに水素供与体が細胞合成などに利用さ
れる量を加味した値を用いる。具体的には、メタノール
の場合CH3 OH/NO3 −N比が3.0、酢酸ナトリ
ウムの場合CH3 COO- /NO3 −N比が4.0等と
なるようにリアクタ2に注入する。このような装置を用
いることによって、前記式(3)による脱窒工程が施さ
れる。
At this time, the hydrogen donor in the hydrogen donor storage tank 4 is simultaneously injected into the reactor 2 by the injection pump 5. The injection amount of the hydrogen donor is calculated from the theoretical amount of hydrogen required to reduce nitric acid to nitrogen gas and the theoretical amount of hydrogen that the hydrogen donor can provide, and the amount of hydrogen donor used for cell synthesis, etc. Is used. Specifically, the methanol is injected into the reactor 2 so that the CH 3 OH / NO 3 -N ratio becomes 3.0 and the sodium acetate becomes CH 3 COO / NO 3 -N ratio of 4.0. . By using such an apparatus, the denitrification step according to the formula (3) is performed.

【0011】[0011]

【実施例】以下に本発明の実施例を挙げる。 実施例1 (回分試験)中部電力株式会社碧南火力発電所の排水処
理設備に設けられた生物窒素除去装置の脱窒槽より採取
した脱窒汚泥を濾過により回収し、表1の低塩濃度模擬
排水(10,000mg−Cl/リットル)に懸濁し
た。この脱窒汚泥には種類は特定していないが、脱硝菌
や脱窒菌が混合して含まれている。この試験液100m
l(汚泥濃度:2,000mg/リットル)に基質(最
終濃度:50mg−N/リットル)、及び水素供与体
(最終濃度:500mg/リットル)を添加し、25℃
で12〜18時間反応させた。基質には亜硝酸ナトリウ
ムを用い、水素供与体には、メタノール、酢酸メタノー
ル、酢酸ナトリウム(有機酸類の一種)、グリセロール
(アルコール類の一種)、又はグルコース(糖類の一
種)を用いた。
Examples of the present invention will be described below. Example 1 (Batch test) The denitrification sludge collected from the denitrification tank of the biological nitrogen removal device provided in the wastewater treatment facility of the Hekinan Thermal Power Station of Chubu Electric Power Co., Inc. was collected by filtration, and the low salt concentration simulated wastewater shown in Table 1 was collected. (10,000 mg-Cl / liter). The type of the denitrification sludge is not specified, but it contains a mixture of denitrification bacteria and denitrification bacteria. This test liquid 100m
1 (sludge concentration: 2,000 mg / l), a substrate (final concentration: 50 mg-N / l) and a hydrogen donor (final concentration: 500 mg / l) were added, and the mixture was added at 25 ° C.
For 12 to 18 hours. Sodium nitrite was used as the substrate, and methanol, methanol acetate, sodium acetate (a kind of organic acids), glycerol (a kind of alcohols), or glucose (a kind of sugar) was used as a hydrogen donor.

【0012】反応後、試験液中の亜硝酸濃度を測定し、
亜硝酸濃度の減少量から、脱窒速度を求め、それぞれの
水素供与体を用いたときの脱窒速度を比較した。濾過に
より試験液から脱窒汚泥を回収し、同様の操作を表1の
低塩濃度模擬排水で1回、表2の高塩濃度模擬排水(4
0,000mg−Cl/リットル)で更に2回繰り返し
た。
After the reaction, the concentration of nitrite in the test solution is measured,
The denitrification rate was determined from the decrease in the nitrous acid concentration, and the denitrification rates when the respective hydrogen donors were used were compared. The denitrification sludge was collected from the test solution by filtration, and the same operation was performed once with the low salt concentration simulated wastewater in Table 1 and in the high salt concentration simulated wastewater (4
(000 mg-Cl / liter) two more times.

【0013】この結果、図2に示すように水素供与体に
メタノールを用いた場合には、高塩濃度排水において脱
窒速度が低塩濃度模擬排水の時の50%程度に低下する
ことが確認できた。これに対して、水素供与体に酢酸ナ
トリウム(グラフA)、グルコース(グラフB)又はグ
リセロール(グラフC)を用いた場合、低塩濃度模擬排
水においてはメタノールを用いた時と同等、又はそれ以
上の脱窒速度が得られ、さらに高塩濃度模擬排水におい
ても脱窒速度が大きく低下することがなく、低塩濃度模
擬排水を用いたときと同等又はそれ以上の脱窒速度を維
持できることが確認できた。
As a result, as shown in FIG. 2, when methanol was used as the hydrogen donor, it was confirmed that the denitrification rate in the high salt concentration wastewater was reduced to about 50% of that in the low salt concentration simulated wastewater. did it. On the other hand, when sodium acetate (Graph A), glucose (Graph B) or glycerol (Graph C) is used as the hydrogen donor, the simulated wastewater with a low salt concentration is equivalent to or more than when methanol is used. Denitrification rate was obtained, and it was confirmed that the denitrification rate was not significantly reduced even in the high salt concentration simulated wastewater, and the denitrification rate could be maintained at the same level or higher than when using the low salt concentration simulated wastewater. did it.

【0014】これより、水素供与体に酢酸ナトリウム、
グリセロール、又はグルコースを用いることにより、海
水の塩分濃度以上の高塩濃度の排水においても、海水の
塩分濃度未満の低塩濃度の時と同等の安定した運転が可
能であることが確認できた。
Thus, sodium acetate is used as the hydrogen donor,
By using glycerol or glucose, it was confirmed that even in drainage with a high salt concentration higher than the salt concentration of seawater, stable operation equivalent to that at a low salt concentration lower than the salt concentration of seawater was possible.

【0015】実施例2 (連続通水試験1)図1の装置を用い、水素供与体とし
て、メタノール又は酢酸ナトリウムを用い、連続通水試
験を行った。運転開始時の原水槽1には処理対象水とし
て、57ppmの硝酸態様窒素が含まれた表1の低塩濃
度模擬排水を入れた。原水槽1内の処理対象水は送液ポ
ンプ3によってリアクタ2に送り、硝酸の処理を行っ
た。水素供与体の注入量は硝酸の窒素ガスへの還元に必
要な水素の理論量と水素供与体が供しうる水素の理論量
から算出し、これに水素供与体が細胞合成などに利用さ
れる量を加味した値を用いた。具体的には、メタノール
の場合CH3 OH/NO3 −N比が3.0、酢酸ナトリ
ウムの場合CH3 COO- /NO3 −N比が4.0とな
るようにリアクタ2に注入した。
Example 2 (Continuous water flow test 1) A continuous water flow test was carried out using the apparatus shown in FIG. 1 and using methanol or sodium acetate as a hydrogen donor. In the raw water tank 1 at the start of the operation, low-salt-concentration simulated wastewater of Table 1 containing 57 ppm of nitric acid-form nitrogen was placed as treatment target water. The water to be treated in the raw water tank 1 was sent to the reactor 2 by the liquid sending pump 3 and treated with nitric acid. The injection amount of the hydrogen donor is calculated from the theoretical amount of hydrogen required to reduce nitric acid to nitrogen gas and the theoretical amount of hydrogen that the hydrogen donor can provide, and the amount of hydrogen donor used for cell synthesis, etc. Was used. Specifically, methanol was injected into the reactor 2 so that the CH 3 OH / NO 3 -N ratio was 3.0, and the sodium acetate was CH 3 COO / NO 3 -N ratio was 4.0.

【0016】図3のグラフDに示すように通水を行っ
た。表1の低塩濃度模擬排水で1週間通水した後、原水
槽1内の低塩濃度模擬排水に表2に高塩濃度模擬排水を
徐々に混合し、原水槽1内の処理対象水の塩濃度を1週
間で高塩濃度模擬排水の塩濃度に上昇させた。高塩濃度
模擬排水で4週間通水した後、原水槽1内の高塩濃度模
擬排水に表1の低塩濃度模擬排水を徐々に混合し、原水
槽1内の処理対象水の塩濃度を1週間で低塩濃度模擬排
水の塩濃度に降下させた。
Water was supplied as shown in the graph D of FIG. After passing through the low salt concentration simulated wastewater in Table 1 for one week, the high salt concentration simulated wastewater in Table 2 was gradually mixed with the low salt concentration simulated wastewater in the raw water tank 1, and the water to be treated in the raw water tank 1 was mixed. The salt concentration was raised to the salt concentration of the high salt concentration simulated wastewater in one week. After passing through the high salt concentration simulated wastewater for 4 weeks, the low salt concentration simulated wastewater in Table 1 is gradually mixed with the high salt concentration simulated wastewater in the raw water tank 1, and the salt concentration of the water to be treated in the raw water tank 1 is adjusted. In one week, the salt concentration was reduced to the low salt concentration simulated wastewater.

【0017】この結果、図3のグラフEに示すように水
素供与体にメタノールを用いたときには、塩濃度変化開
始後3週間前後から処理性能が低下し、処理水中に硝酸
及び亜硝酸の流出が見られるようになった。これに対し
て、図3のグラフFに示すように水素供与体に酢酸ナト
リウムを用いた場合には、塩濃度変化開始後6週間、良
好な処理性能を維持し、処理水中に硝酸及び亜硝酸の流
出がないことが確認できた。これにより、水素供与体に
酢酸ナトリウムを用いることにより、海水の塩分濃度以
上の高塩濃度での脱窒性能を安定化できることがわか
る。
As a result, when methanol is used as the hydrogen donor as shown in the graph E of FIG. 3, the treatment performance deteriorates around three weeks after the start of the change in the salt concentration, and the outflow of nitric acid and nitrous acid into the treated water. I can see it. On the other hand, when sodium acetate was used as the hydrogen donor as shown in graph F of FIG. 3, good treatment performance was maintained for 6 weeks after the start of the salt concentration change, and nitric acid and nitrite were added to the treated water. No outflow was confirmed. This indicates that the use of sodium acetate as the hydrogen donor can stabilize the denitrification performance at a high salt concentration equal to or higher than the salt concentration of seawater.

【0018】実施例3 (連続通水試験2)実施例2と同じ装置を用いて、別の
試験を行った。水素供与体にメタノールを用いて、図4
のグラフGに示すように表1の低塩濃度模擬排水で通水
した後、原水槽1内の低塩濃度模擬排水に表2の高塩濃
度模擬排水を徐々に混合し、原水槽1内の処理対象水の
塩濃度を3週間で高塩濃度模擬排水の塩濃度に上昇させ
た。高塩濃度模擬排水で4週間通水した後、原水槽1内
の高塩濃度模擬排水に表1の低塩濃度模擬排水を徐々に
混合し、原水槽1内の処理対象水の塩濃度を3週間で低
塩濃度模擬排水の塩濃度に降下させた。
Example 3 (Continuous water flow test 2) Another test was conducted using the same apparatus as in Example 2. Using methanol as the hydrogen donor, FIG.
As shown in the graph G, the low salt concentration simulated wastewater in Table 1 was passed through, and the low salt concentration simulated wastewater in the raw water tank 1 was gradually mixed with the high salt concentration simulated wastewater in Table 2 The salt concentration of the water to be treated was increased to the salt concentration of the high salt concentration simulated wastewater in three weeks. After passing through the high-salt simulated wastewater for 4 weeks, the low-salt simulated wastewater in Table 1 was gradually mixed with the high-salt simulated wastewater in the raw water tank 1, and the salt concentration of the water to be treated in the raw-water tank 1 was adjusted. In 3 weeks, the salt concentration was lowered to the low salt concentration simulated wastewater.

【0019】表1の低塩濃度模擬排水で通水した後、原
水槽1内の低塩濃度模擬排水に表2に高塩濃度模擬排水
を徐々に混合し、原水槽1内の処理対象水の塩濃度を1
週間で高塩濃度模擬排水の塩濃度に上昇させた。高塩濃
度模擬排水で1週間通水した後、水素供与体を酢酸ナト
リウムに変更して、続けて、高塩濃度模擬排水で通水し
た。
After passing through the low salt concentration simulated wastewater in Table 1, the low salt concentration simulated wastewater in the raw water tank 1 was gradually mixed with the high salt concentration simulated wastewater in Table 2, and the water to be treated in the raw water tank 1 was treated. Salt concentration of 1
In a week, the salt concentration in the high salt concentration simulated wastewater was increased. After water was passed for one week in the high salt concentration simulated wastewater, the hydrogen donor was changed to sodium acetate, and subsequently water was passed in the high salt concentration simulated wastewater.

【表1】 [Table 1]

【表2】 ※人工海水:インスタントオーション、菱和海洋開発株
式会社
[Table 2] * Artificial seawater: Instant Ocean, Ryowa Ocean Development Co., Ltd.

【0020】この結果、図4のグラフHに示すように、
水素供与体にメタノールを用いた場合は、塩濃度が上昇
することにより、処理性能が低下し、処理水中に硝酸、
及び亜硝酸の流出が見られた。処理性能の低下は、塩濃
度を降下させても回復しなかった。再度塩濃度を上昇さ
せると、これに伴って処理性能も低下した。ここで、水
素供与体を酢酸ナトリウムに変更すると、徐々に処理性
能が回復し、処理水中に硝酸、及び亜硝酸が流出しなく
なった。これより、水素供与体をメタノールから酢酸ナ
トリウムに変更することによって、海水の塩分濃度以上
の高塩濃度での脱窒性能を安定化できることが確認でき
た。
As a result, as shown in a graph H of FIG.
When methanol is used as the hydrogen donor, the treatment performance decreases due to an increase in salt concentration, and nitric acid,
And nitrite outflow was observed. The decrease in processing performance did not recover even when the salt concentration was lowered. When the salt concentration was increased again, the processing performance was also reduced. Here, when the hydrogen donor was changed to sodium acetate, the treatment performance gradually recovered, and nitric acid and nitrous acid did not flow into the treated water. From this, it was confirmed that by changing the hydrogen donor from methanol to sodium acetate, the denitrification performance at a salt concentration higher than the salt concentration of seawater could be stabilized.

【0021】以上、実施例1〜3において、水素供与体
に酢酸ナトリウム、グリセロール、グルコースを用いる
ことにより、海水の塩分濃度以上の高塩濃度での脱窒性
能を安定化できることが確認できた。
As described above, in Examples 1 to 3, it was confirmed that the use of sodium acetate, glycerol, and glucose as the hydrogen donor can stabilize the denitrification performance at a salt concentration higher than the salt concentration of seawater.

【0022】[0022]

【発明の効果】本発明は、従来処理の困難であった高塩
濃度排水の生物による硝化脱窒を、高効率かつ安定に行
うことができるので、産業上、環境保護上非常に有利で
あり、例えば排水・し尿処理、発電所で発生する排水の
処理などに利用できる。
Industrial Applicability The present invention enables highly efficient and stable nitrification and denitrification of organisms in wastewater with a high salt concentration, which had been difficult to treat in the past, and is very advantageous in industrial and environmental protection. For example, it can be used for treatment of wastewater and human waste, treatment of wastewater generated in a power plant, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するための装置の一実施の形態を
説明する概念図である。
FIG. 1 is a conceptual diagram illustrating an embodiment of an apparatus for implementing the present invention.

【図2】実施例1の試験結果を示すグラフである。FIG. 2 is a graph showing test results of Example 1.

【図3】実施例2の試験結果を示すグラフである。FIG. 3 is a graph showing test results of Example 2.

【図4】実施例3の試験結果を示すグラフである。FIG. 4 is a graph showing test results of Example 3.

【図5】従来の生物硝化脱窒装置を説明する概念図であ
る。
FIG. 5 is a conceptual diagram illustrating a conventional biological nitrification denitrification device.

【符号の説明】[Explanation of symbols]

1 原水槽 2 リアクタ 3 送液ポンプ 4 水素供与体貯槽 5 注入ポンプ 51 硝化槽 52 脱窒槽 54 沈澱槽 55 アルカリタンク 56 燐酸タンク 57 水素供与体タンク 58 排水受槽 59 原水ポンプ 60 循環ポンプ 61 ブロワ DESCRIPTION OF SYMBOLS 1 Raw water tank 2 Reactor 3 Liquid feed pump 4 Hydrogen donor storage tank 5 Injection pump 51 Nitrification tank 52 Denitrification tank 54 Precipitation tank 55 Alkaline tank 56 Phosphoric acid tank 57 Hydrogen donor tank 58 Drainage receiving tank 59 Raw water pump 60 Circulation pump 61 Blower

───────────────────────────────────────────────────── フロントページの続き (72)発明者 篠原 伸夫 三重県三重郡川越町大字亀崎新田字朝明87 −1 中部電力株式会社川越火力発電所内 (72)発明者 中村 宏 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 田畑 雅之 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 (72)発明者 玉井 正俊 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Nobuo Shinohara 87-1 Asaaki Kamezaki Shinta, Kawagoe-cho, Mie-gun, Mie Prefecture Inside the Kawagoe Thermal Power Station of Chubu Electric Power Co., Inc. 2-1-1, Mitsubishi Heavy Industries, Ltd. Takasago Research Laboratory (72) Inventor Masayuki Tabata 1-8-1, Koura, Kanazawa-ku, Yokohama, Kanagawa Prefecture Mitsubishi Heavy Industries, Ltd. Basic Technology Research Laboratory (72) Inventor Masatoshi Tamai Kobe, Hyogo Prefecture 1-1-1 Wadazakicho, Hyogo-ku, Yokohama-shi Mitsubishi Heavy Industries, Ltd. Kobe Shipyard

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 排水又はし尿の処理中に、塩濃度が変化
する排水を生物により硝化脱窒する硝化脱窒装置で用い
られる生物脱窒方法において、海水の塩分濃度未満の低
塩濃度の時にはメタノールを脱窒工程の水素供与体に用
い、海水の塩分濃度以上の高塩濃度の時には、有機酸
類、メタノール以外のアルコール類、糖類を脱窒工程の
水素供与体に用いることを特徴とする生物脱窒方法。
1. In a biological denitrification method used in a nitrification denitrification apparatus for nitrifying and denitrifying wastewater whose salt concentration changes during treatment of wastewater or night soil, when the salt concentration is lower than the salt concentration of seawater, An organism characterized in that methanol is used as a hydrogen donor in the denitrification step, and organic acids, alcohols other than methanol, and saccharides are used as the hydrogen donor in the denitrification step when the salt concentration is higher than the salt concentration of seawater. Denitrification method.
【請求項2】 排水又はし尿の処理中に、海水の塩分濃
度以上の高塩濃度を有する排水を生物により硝化脱窒す
る硝化脱窒装置で用いられる生物脱窒方法において、有
機酸類、メタノール以外のアルコール類、糖類を脱窒工
程の水素供与体に用いることを特徴とする生物脱窒方
法。
2. A biological denitrification method used in a nitrification denitrification apparatus for nitrifying and denitrifying wastewater having a high salt concentration higher than the salt concentration of seawater during the treatment of wastewater or night soil, the method comprising the steps of: A biological denitrification method comprising using an alcohol or a saccharide as a hydrogen donor in the denitrification step.
JP27523097A 1997-09-22 1997-09-22 Biological denitrification method Expired - Fee Related JP3697037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27523097A JP3697037B2 (en) 1997-09-22 1997-09-22 Biological denitrification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27523097A JP3697037B2 (en) 1997-09-22 1997-09-22 Biological denitrification method

Publications (2)

Publication Number Publication Date
JPH1190485A true JPH1190485A (en) 1999-04-06
JP3697037B2 JP3697037B2 (en) 2005-09-21

Family

ID=17552526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27523097A Expired - Fee Related JP3697037B2 (en) 1997-09-22 1997-09-22 Biological denitrification method

Country Status (1)

Country Link
JP (1) JP3697037B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006061764A (en) * 2004-08-24 2006-03-09 Univ Waseda Waste water treating method and waste water treating apparatus
JP2009112924A (en) * 2007-11-05 2009-05-28 Kobelco Eco-Solutions Co Ltd Simulation method, simulation apparatus, biological treatment method, and biological treatment apparatus
EP2239742A1 (en) * 2008-02-08 2010-10-13 Mitsubishi Heavy Industries, Ltd. Method and apparatus for treating nitrate waste liquid
JP2010284617A (en) * 2009-06-15 2010-12-24 Eidensha:Kk Bioreactor element, method for producing the same and method for using the same
JP4608069B2 (en) * 2000-09-29 2011-01-05 オルガノ株式会社 Wastewater treatment equipment
JP2011062655A (en) * 2009-09-18 2011-03-31 Chugoku Electric Power Co Inc:The Method of operating denitrification reactor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8409438B2 (en) 2008-02-08 2013-04-02 Mitsubishi Heavy Industries, Ltd. Apparatus and method for treating radioactive nitrate waste liquid
JP4774065B2 (en) 2008-02-08 2011-09-14 三菱重工業株式会社 Radionitrate waste liquid treatment equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4608069B2 (en) * 2000-09-29 2011-01-05 オルガノ株式会社 Wastewater treatment equipment
JP2006061764A (en) * 2004-08-24 2006-03-09 Univ Waseda Waste water treating method and waste water treating apparatus
JP2009112924A (en) * 2007-11-05 2009-05-28 Kobelco Eco-Solutions Co Ltd Simulation method, simulation apparatus, biological treatment method, and biological treatment apparatus
EP2239742A1 (en) * 2008-02-08 2010-10-13 Mitsubishi Heavy Industries, Ltd. Method and apparatus for treating nitrate waste liquid
EP2239742A4 (en) * 2008-02-08 2015-04-29 Mitsubishi Heavy Ind Ltd METHOD AND DEVICE FOR PROCESSING A NITRATE WASTE FLUID
JP2010284617A (en) * 2009-06-15 2010-12-24 Eidensha:Kk Bioreactor element, method for producing the same and method for using the same
JP2011062655A (en) * 2009-09-18 2011-03-31 Chugoku Electric Power Co Inc:The Method of operating denitrification reactor

Also Published As

Publication number Publication date
JP3697037B2 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
EP0309352B1 (en) Process and installation for increasing the sludge concentration in waste-water treatment plants
WO2021203800A1 (en) Vertical high-concentration ammonia nitrogen wastewater treatment device and treatment process
CN101792244B (en) Nitrite type nitrification-reactive sludge, manufacturing method thereof, manufacturing device thereof and waste water treatment method and apparatus
KR100821659B1 (en) Membrane Immersion Wastewater Treatment System
EP0640568B1 (en) Improved process for waste water treatment by removal of sodium sulfate
JP3460745B2 (en) Biological nitrification denitrification method and apparatus
JPH1190485A (en) Biological denitrification method
JP2003285096A (en) Simultaneous denitrification and dephosphorization type treatment method for wastewater
US11820688B2 (en) Water treatment method for simultaneous abatement of carbon, nitrogen and phosphorus, implemented in a sequencing batch moving bed biofilm reactor
JP4644107B2 (en) Method for treating wastewater containing ammonia
JP4632356B2 (en) Biological nitrogen removal method and system
JP3721871B2 (en) Production method of ultra pure water
JP4867099B2 (en) Biological denitrification method
JPH08141597A (en) Apparatus for treating waste water containing nitrogen and fluorine
JPS6254075B2 (en)
JP2004305980A (en) Biological denitrification treatment method
JPS585118B2 (en) Yuukiseihaisuino
KR101149296B1 (en) Method for removing of perchlorate ion and nitrate ion in underground water
JPH02164500A (en) Water purifying treatment apparatus
KR100438323B1 (en) High intergated Biological Nutrient Removal System
Moosavi et al. Simultaneous organics and nutrients removal from municipal wastewater in an up-flow anaerobic/aerobic fixed bed reactor
EP0494836B1 (en) Process for purifying aqueous solutions polluted by nitrate ions
JPH0561992B2 (en)
JPH11156391A (en) Treating method for ethanolamine-containing waste water
JP2720096B2 (en) Method for simultaneous removal of BOD, nitrogen compounds and phosphorus compounds in wastewater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050701

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees