[go: up one dir, main page]

JPH1184022A - Automatically probing method of conductivity of ground - Google Patents

Automatically probing method of conductivity of ground

Info

Publication number
JPH1184022A
JPH1184022A JP27788297A JP27788297A JPH1184022A JP H1184022 A JPH1184022 A JP H1184022A JP 27788297 A JP27788297 A JP 27788297A JP 27788297 A JP27788297 A JP 27788297A JP H1184022 A JPH1184022 A JP H1184022A
Authority
JP
Japan
Prior art keywords
conductivity
ground
measurement
receiver
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27788297A
Other languages
Japanese (ja)
Inventor
Tetsuo Kinoshita
哲生 木下
Tokitaka Ori
隆孝 小里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KENSETSU KIKAKU CONSULTANT KK
Original Assignee
KENSETSU KIKAKU CONSULTANT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KENSETSU KIKAKU CONSULTANT KK filed Critical KENSETSU KIKAKU CONSULTANT KK
Priority to JP27788297A priority Critical patent/JPH1184022A/en
Publication of JPH1184022A publication Critical patent/JPH1184022A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the continuous display of the conductivity of ground in horizontal and vertical directions at the site of measurement by applying a high-speed signal processing circuit in automatically and continuously measuring the conductivity of ground through the use of artificial electromagnetic waves. SOLUTION: A transmitter 17 transmits electromagnetic waves of transmission frequencies divided into 14 frequency bands between a lower limit of 1.4 kHz and a upper limit of 125.44 kHz at a power of approximately 100 W. A magnetic field detecting coil 24 and an earthed electrode 23 are placed on ground at an interval of approximately 2 m at a receiving point for probing. The magnetic field detecting coil 24 guides a detection signal detected by a coil wound around a ferrite rod to a receiver 21 and transmits it to a personal computer 20 over a cable 22. The receiver 21 and the magnetic field detecting coil 24 are portable on a carriage, perform measurement while moving at a constant speed, and display the continuous conductivity distribution of ground in real time. The results of the probing of conductivity can be directly viewed on the display screen of the receiver 21 and are stored in the personal computer 20 for later geological review.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は地盤の導電率自動探査法
に関し、特に、人工電磁波を利用した地盤の導電率測定
方法であって、その導電率測定にあたり、導電率または
比抵抗を測定して、その測定方法によつて得た測定結果
により地下約5メートル乃至約100メートル程度の土
木建設分野でよく行なわれる地盤調査に適した導電率自
動探査法または比抵抗自動探査法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for automatically detecting the conductivity of a ground, and more particularly to a method for measuring the conductivity of a ground using artificial electromagnetic waves. In addition, the present invention relates to an automatic conductivity exploration method or a specific resistance automatic exploration method suitable for ground surveys often performed in the field of civil engineering construction of about 5 meters to about 100 meters underground based on measurement results obtained by the measurement method.

【0002】[0002]

【従来の技術】従来から、電磁探査法による地盤の導電
率を測定する方法は、利用する電磁波の周波数によって
分類されている。その一つは地磁気活動や雷放電による
シューマン共振現象によって生じる極めて低い周波数の
自然電磁波を利用するMT法(地磁気−地電流法もしく
はマグネトテロリック法と称する)であり、第2は本発
明の出願人の特許第1610493号にも示されている
人工的に発信した数Hz〜数KHzの電磁波を利用した
MT法(CSMT法と称される)であり、第3は、周波
数の極めて高い数10MHz〜数GHz帯の電磁波を地
盤に照射して地盤の内部にて反射してくる電磁波を測定
することから地中内部にある導電体を検出する方法であ
って、それら3つに分類されている。しかし、第3の方
法は、地下に埋設されている鉄管や空洞等を検出するこ
とを目的として考慮されたもので地下レーダー法とも呼
ばれ、本発明のように地盤.地質そのものの物性値であ
る導電率(この逆数は比抵抗とも呼ばれるが同一の物理
量である)を測定するものではない。いずれの電磁探査
法も、利用する周波数と探査できる深さは相対関係にあ
り、周波数が低くなるほど深くまで探査できるが、逆
に、探査の分解能は落ちるのが一般的である。前述の地
下レーダー法は、利用する周波数の関係上、地下約5メ
ートル未満の表層部分しか探査できない。また、MT法
やCSMT法などは地下の深いところ(MT法は数百メ
ートル以上深いところに使用し、CSMT法は約50メ
ートル乃至数km)の探査に適しているのであって、地
下レーダー法とこれら二つの方法は、地下約5メートル
乃至50メートルの範囲における導電率の探査には適さ
ない。そして、従来のこれらの方法は、いずれも自動的
かつ連続的に導電率を測定するのではなく、一地点毎の
垂直的な探査方法である。尚、電磁探査法においては、
利用する電磁波の周波数を出来る限り正確に保持する必
要があるが、温度変化や電子回路素子の誤差のため、測
定中に発信器と受信器との周波数がずれることが多々生
じて、測定結果に正確さを欠く。また、測定周波数以外
のノイズによっても測定結果に誤差を生じる。
2. Description of the Related Art Conventionally, methods for measuring the conductivity of the ground by means of an electromagnetic sounding method are classified according to the frequency of an electromagnetic wave to be used. One is an MT method (referred to as a geomagnetic-geocurrent method or a magnetotelluric method) utilizing an extremely low-frequency natural electromagnetic wave generated by the Schumann resonance phenomenon caused by geomagnetic activity or lightning discharge, and the second is an application of the present invention. The MT method (referred to as CSMT method) using an electromagnetic wave of several Hz to several KHz artificially transmitted, which is also disclosed in Japanese Patent No. 1610493, and the third is an extremely high frequency of several tens MHz. This is a method of detecting a conductor inside the ground by irradiating the ground with electromagnetic waves in the band of several to several GHz and measuring the electromagnetic waves reflected inside the ground, which are classified into these three types. . However, the third method is considered for the purpose of detecting iron pipes and cavities buried underground, and is also called an underground radar method. It does not measure the electrical conductivity, which is the physical property value of the geology itself (the reciprocal is also called resistivity, but the same physical quantity). In any of the electromagnetic exploration methods, the frequency to be used and the searchable depth are in a relative relationship, and the lower the frequency is, the deeper the search can be. However, the resolution of the search generally decreases. The above-mentioned underground radar method can detect only a surface portion less than about 5 meters below the ground due to the frequency used. In addition, the MT method and the CSMT method are suitable for exploring deep underground (the MT method is used at a depth of several hundred meters or more, and the CSMT method is about 50 to several km). And these two methods are not suitable for conductivity surveys in the range of about 5 to 50 meters underground. All of these conventional methods do not automatically and continuously measure the conductivity, but are vertical exploration methods for each point. In the electromagnetic survey,
It is necessary to maintain the frequency of the electromagnetic wave used as accurately as possible, but the frequency of the transmitter and the receiver often shift during measurement due to temperature changes and errors in electronic circuit elements. Lack of accuracy. Further, an error occurs in the measurement result due to noise other than the measurement frequency.

【0003】[0003]

【本発明が解決しようとする課題】MT法やCSMT法
は、通常は屋外で測定するのが普通であり、時には山岳
地においても測定することがある。従って、出来るだけ
軽量であり、また、短時間に測定できることが望まれ
る。そして、測定現場において直ちに結果をみれること
も要求される。従来の方法では、このような課題につい
て努力をはらつてこなかった。また、従来の測定装置
は、測定の一地点毎しか結果をみることができないの
で、測定後に屋内で解析処理しているのが実情である。
本発明は上記の課題を解決することを目的とする。特
に、本発明は、測定現場において、大地の水平方向と鉛
直方向の電導率を連続的に表示することを目的とする。
さらに、土木建設の分野における調査及び工事の対象深
度は、地表から約50メートルの範囲が多いのである
が、前述の何れの方法を用いても、この範囲を的確に探
査することができない。本発明は、このような探査範囲
に適した周波数の電磁波を利用し、この範囲での信号処
理が一般的に困難とされている電子回路を高速化する工
夫によって実現しようとするものである。また、本発明
のようなCSMT法の電磁探査法においては、電場と磁
場の電圧および両者の位相差を正確に測定する必要があ
る。しかし、従来から周波数が高くなるにつれて、これ
らの量の測定が困難とされているが、本発明は、この課
題を解決しようとするものである。
The MT method and the CSMT method usually measure outdoors, and sometimes even in mountainous areas. Therefore, it is desirable that the measurement be as light as possible and that the measurement be possible in a short time. It is also required that the result be seen immediately at the measurement site. Conventional methods have not attempted to address these issues. In addition, since the conventional measuring device can see the result only at one point of the measurement, it is a fact that the analysis is performed indoors after the measurement.
An object of the present invention is to solve the above problems. In particular, an object of the present invention is to continuously display the electric conductivity in the horizontal direction and the vertical direction of the ground at the measurement site.
Further, the target depth of surveys and works in the field of civil engineering is often in a range of about 50 meters from the surface of the earth. However, any of the above-described methods cannot accurately search this range. The present invention is intended to be realized by utilizing an electromagnetic wave having a frequency suitable for such a search range and increasing the speed of an electronic circuit for which signal processing in this range is generally difficult. Further, in the electromagnetic survey method of the CSMT method as in the present invention, it is necessary to accurately measure the electric field and magnetic field voltages and the phase difference between the two. However, conventionally, it has been difficult to measure these quantities as the frequency increases, and the present invention is intended to solve this problem.

【0004】[0004]

【課題を解決するための手段】本発明は、人工電磁波を
利用した地盤の導電率測定を高速信号処理回路の応用に
よって、自動的かつ連続的な測定結果として出力できる
測定方法を生かした地盤の導電率自動探査法である。
SUMMARY OF THE INVENTION The present invention relates to a method for measuring ground conductivity utilizing an artificial electromagnetic wave, which is capable of automatically and continuously outputting a measurement result of the ground as a continuous measurement result by applying a high-speed signal processing circuit. This is an automatic conductivity detection method.

【0005】[0005]

【作用】本発明は、測定に使用する電磁波の発信器を自
動周波数可変方式とし、発信周波数の精度を確保するた
めコンピューターによるデジタル制御方式とする。ま
た、自動的に周波数を一定の時間間隔で発信できるよう
に、精密タイマーとコンピューターによるプログラム処
理方式とする。次に、受信器においては、測定用の電磁
波発信器と同一の発信器を受信器内部に組み込み、この
発信器から測定したい周波数と同じ周波数の校正用信号
を取り出し、この信号を電場および磁場検出回路に導
き、このときの校正係数とあらかじめ設定している標準
の校正係数とを照合し、両者の差異に見合うように校正
係数を補正してから測定するようにして、測定結果の精
度を保持するようにしている。次に、受信器における信
号処理を高速にするため、電子回路はコンピューター制
御のアナログ方式を使用し、ここで出力されるアナログ
信号をデジタル信号に変換し、導電率を計算するために
必要な電場電圧と磁場電圧および地盤の地質構造を知る
ために必要な電場と磁場電圧との位相差もデジタル信号
電圧として出力できるようにしている。そして、これら
の出力電圧は、有線もしくは無線通信回線によって高速
パソコンに導き、あらかじめ組み込まれたプログラムに
よって導電率を求め、かつ、測定する受信器の移動に応
じて、導電率の水平および垂直方向の分布図を2次元断
面的に画面表示する。ここで、本発明の地盤の導電率自
動探査法の作用をさらに詳しく説明すれば、その測定装
置は、図1に示す発信器と、図2に示す受信器とで構成
される。発信器と受信器とにおいて、実時間に合わせた
信号処理や正確な周波数カウントを行う必要から、それ
ぞれに精密タイマー1を内蔵する。測定したい周波数の
発信は、図1の発信器2において、小型コンピューター
3のプログラム処理によって自動的に一定の測定時間間
隔で発信する。発信信号は必要な電圧まで増幅器4にて
上げ、これを発信アンテナ6によって、探査しようとす
る地点まで達するように電磁波を放射する。図2に示す
受信器において、測定前に、図1に示した発信器と同期
させた発信器(これは図2の1、2、3、4で構成され
る)で校正用の信号を磁場検出コイル9と電場検出用の
接地電極7に導き、自動校正処理を行い、適切な測定係
数を決定する。なお、磁場の校正電圧は、磁場検出コイ
ル9に巻かれたコイルに導かれる。発信器から放射した
電磁波によって生じた測定地点での応答信号は、通常微
弱であるため、これを信号処理し易い電圧まで前置増幅
器11および11’によって増幅させる。また、受信器
の感度調節は自動利得制御回路12および12’によっ
て行う。ここまでにおいて処理された信号は、さらに必
要な電圧まで主増幅器13、13’で増幅する。そし
て、増幅された電場電圧および磁場電圧は、位相検出器
15において両者の位相差を電圧値として出力される。
上記の処理によって検出した電場、磁場電圧および位相
差電圧は、それぞれ、14、14”、14’に示すAC
/DC変換器によってアナログ信号からデジタル信号に
変換され、これらの信号は、有線もしくは無線通信によ
って高速パソコンに伝送されて、この高速パソコンでプ
ログラム処理によって地盤の導電率と位相差を出力表示
する。
According to the present invention, the transmitter of the electromagnetic wave used for the measurement is of an automatic frequency variable type, and is of a digital control type by a computer in order to ensure the accuracy of the transmission frequency. In addition, a precision timer and a program processing method using a computer are used so that the frequency can be automatically transmitted at a fixed time interval. Next, in the receiver, the same transmitter as the measuring electromagnetic wave transmitter is incorporated in the receiver, a calibration signal having the same frequency as the frequency to be measured is taken out from the transmitter, and this signal is detected by an electric field and a magnetic field. It leads to the circuit, compares the calibration coefficient at this time with the standard calibration coefficient set in advance, corrects the calibration coefficient so as to match the difference between the two, and then measures, maintaining the accuracy of the measurement result I am trying to do it. Next, in order to speed up signal processing in the receiver, the electronic circuit uses a computer-controlled analog method, which converts the analog signal output into a digital signal and calculates the electric field necessary to calculate the conductivity. The phase difference between the electric field and the magnetic field voltage necessary to know the voltage and the magnetic field voltage and the geological structure of the ground can be output as a digital signal voltage. Then, these output voltages are guided to a high-speed personal computer through a wired or wireless communication line, and the conductivity is obtained by a pre-installed program, and in accordance with the movement of the receiver to be measured, the conductivity in the horizontal and vertical directions is measured. The distribution map is displayed on the screen in a two-dimensional cross section. Here, the operation of the automatic ground conductivity surveying method of the present invention will be described in more detail. The measuring device is composed of the transmitter shown in FIG. 1 and the receiver shown in FIG. Since the transmitter and the receiver need to perform signal processing and accurate frequency counting in accordance with real time, each has a built-in precision timer 1. The transmission of the frequency to be measured is automatically transmitted at a fixed measurement time interval by the transmitter 2 in FIG. The transmission signal is raised to a required voltage by the amplifier 4 and the transmission antenna 6 radiates an electromagnetic wave so as to reach a point to be searched. In the receiver shown in FIG. 2, before the measurement, a signal for calibration is transmitted from a transmitter synchronized with the transmitter shown in FIG. 1 (which is composed of 1, 2, 3, and 4 in FIG. 2) to a magnetic field. It is led to the detection coil 9 and the ground electrode 7 for electric field detection, and is subjected to automatic calibration processing to determine an appropriate measurement coefficient. The magnetic field calibration voltage is guided to a coil wound around the magnetic field detection coil 9. Since the response signal at the measurement point caused by the electromagnetic wave radiated from the transmitter is usually weak, it is amplified by the preamplifiers 11 and 11 'to a voltage at which the signal can be easily processed. The sensitivity of the receiver is adjusted by the automatic gain control circuits 12 and 12 '. The signals processed so far are further amplified by the main amplifiers 13 and 13 'to a required voltage. Then, the amplified electric field voltage and magnetic field voltage are output by the phase detector 15 as a voltage value based on the phase difference between the two.
The electric field, the magnetic field voltage, and the phase difference voltage detected by the above-described processing are AC, 14, 14 ", and 14 ', respectively.
The analog / digital converter converts the analog signal into a digital signal, and these signals are transmitted to a high-speed personal computer by wire or wireless communication, and the high-speed personal computer outputs and displays the ground conductivity and phase difference by program processing.

【0005】[0005]

【実施例1】図3の図面に基づいて、本発明の実施例を
説明する。図3において、17は、測定用電磁波の発信
器であり、19は、外形を円形もしくは矩形状に約10
メートルに巻かれたループ式アンテナであり、18は、
発信器に供給するバッテリーである。発信器は、出力約
100W程度の能力のものであり、電源電圧は±24V
程度を必要とするものであるから、12Vの小型バッテ
リー4個から供給する。発信周波数は、下限で1.4K
Hzとし、これから高い周波数側へ、2の平方根倍ずつ
のピッチで高くして、上限は125.44KHzまでと
し、その間を14の周波数帯に分割して発信する。探査
する受信点では、磁場検出コイル24、磁場検出用の金
属製の接地電極を約2メートルほどの間隔で地盤に打接
しておく。磁場検出コイル24は、長さ18cmほどの
フェライト棒に巻き付けたコイルなどによって信号を検
出する。そして、これらの検出信号は、ケーブルによっ
て受信器21に導き、これをケーブル22によりパソコ
ン20へ伝送する。なお、このケーブル22の代わりに
無線通信による伝送方式も可能である。また、受信器2
1および磁場検出コイル24を、小型台車にて可搬方式
として、一定速度で移動測定すれば移動方向に沿った連
続的な地盤の伝導率分布をリアルタイムに表示して測定
結果を知ることが出来る。ただし、この場合、接地電極
は台車の下部に固定した金属棒を地盤と摺動的にスプリ
ング等によって接触させる装置、或いは金属製の電極車
輪などによって電場の検出が可能である。導電率の探査
結果は、現場において受信器に装備されているディスプ
レイ画面表示から直視できるが、後で、室内で種々の地
質検討に利用する場合のためにパソコン20にメモリー
しておくことも容易である。発信器17と受信器21の
間隔は、最大の探査深度が、例えば、50mであれば、
MT法の探査理論では、探査深度の約3倍以上離せばよ
いので、150m地点に発信器17をセットすることに
なる。すなわち、送受信点間の距離が近くなるため、発
信器の出力を大きいものにしなくて、前述した100W
程度の小型発信器で済み、CSMT法としては軽量型と
なり、山岳地帯などでも簡単に測定できる。
Embodiment 1 An embodiment of the present invention will be described with reference to FIG. In FIG. 3, reference numeral 17 denotes a transmitter for measuring electromagnetic waves, and 19 denotes a circular or rectangular outer shape of about 10 mm.
A loop antenna wound around a meter, 18 is
It is a battery supplied to the transmitter. The transmitter has an output of about 100W and the power supply voltage is ± 24V
Since it requires a certain degree, it is supplied from four small batteries of 12V. Transmission frequency is 1.4K at the lower limit
Hz, and the frequency is raised to a higher frequency side at a pitch of a square root of two. The upper limit is up to 125.44 KHz, and the interval is divided into 14 frequency bands for transmission. At the receiving point to be searched, the magnetic field detecting coil 24 and a metal ground electrode for detecting the magnetic field are brought into contact with the ground at intervals of about 2 meters. The magnetic field detection coil 24 detects a signal by a coil wound around a ferrite rod having a length of about 18 cm. These detection signals are guided to the receiver 21 by a cable, and transmitted to the personal computer 20 by a cable 22. Note that, instead of the cable 22, a transmission method using wireless communication is also possible. Also, receiver 2
1 and the magnetic field detection coil 24 are portable with a small truck, and when moving and measuring at a constant speed, a continuous conductivity distribution of the ground along the moving direction can be displayed in real time to know the measurement result. . However, in this case, the ground electrode can detect the electric field by using a device in which a metal rod fixed to the lower part of the bogie is slidably contacted with the ground by a spring or the like, or a metal electrode wheel. The conductivity search results can be viewed directly from the display screen installed on the receiver at the site, but can also be easily stored in the personal computer 20 later for use in various geological studies indoors. It is. If the maximum search depth is, for example, 50 m, the interval between the transmitter 17 and the receiver 21 is as follows.
According to the search theory of the MT method, the transmitter 17 is set at a point of 150 m because it is sufficient that the distance is at least about three times the search depth. That is, since the distance between the transmitting and receiving points is short, the output of the transmitter is not increased and the above-described 100 W
Only a small transmitter is required, and the CSMT method is lightweight, making it easy to measure even in mountainous areas.

【0006】[0006]

【効果】本発明は、人工電磁波を利用した地盤の導電率
測定を高速信号処理回路の応用によって、自動的かつ連
続的な測定結果として出力できる測定方法を生かして地
盤の導電率を自動探査する方法であり、上記のような構
成にしたので、従来のMT法やCSMT法や地下レーダ
ー法では探査することのできなかった地下約5メートル
乃至50メートルの範囲における導電率を的確に探査す
ることができる効果がある。この深度は、土木建設の分
野における調査及び工事の対象深度であるので、この深
度を的確に探査できることは、本発明の重要な効果であ
る。また、従来の方法は、一地点毎の垂直的な探査方法
であったのに対して、本発明の方法は、自動的かつ連続
的に導電率を測定することができ、しかも、測定現場に
おいて、大地の水平方向と鉛直方向の電導率を連続的に
表示することができる。従って、従来のように、測定
後、室内で解析処理する必要はない。
According to the present invention, the conductivity of the ground is automatically detected by utilizing a measurement method capable of automatically and continuously measuring the conductivity of the ground using artificial electromagnetic waves as a continuous measurement result by applying a high-speed signal processing circuit. It is a method, and the above-mentioned configuration is used, so that it is possible to accurately probe the conductivity in a range of about 5 to 50 meters underground, which cannot be searched by the conventional MT method, CSMT method, or underground radar method. There is an effect that can be. Since this depth is the target depth for investigation and construction in the field of civil engineering, being able to accurately explore this depth is an important effect of the present invention. Also, while the conventional method is a vertical exploration method for each point, the method of the present invention can automatically and continuously measure the conductivity, and furthermore, at the measurement site In addition, the horizontal and vertical conductivities of the ground can be displayed continuously. Therefore, there is no need to perform analysis processing indoors after measurement as in the related art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の発信器のブロックダイヤグラムを示
す。
FIG. 1 shows a block diagram of a transmitter according to the invention.

【図2】本発明の受信器のブロックダイヤグラムを示
す。
FIG. 2 shows a block diagram of the receiver of the invention.

【図3】本発明の発信器の具体的構造を示した斜視図で
ある。
FIG. 3 is a perspective view showing a specific structure of the transmitter according to the present invention.

【図4】本発明の受信器の具体的構造を示した斜視図で
ある。
FIG. 4 is a perspective view showing a specific structure of a receiver according to the present invention.

【符号の説明】[Explanation of symbols]

1 精密タイマー 2 周波数自動
可変発信器 3 小型コンピューター 4 出力増幅器 5 周波数表示部 6 発信アンテ
ナ 7 電場検出用接地電極 9 磁場検出コ
イル 10 校正電圧入力コイル 11 前置増幅器 11’ 前置増幅
器 12 自動利得制御回路 12’ 自動利得
制御回路 13 主増幅器 13’ 主増幅器 14 AC/DC変換器 14’ AC/D
C変換器 14” AC/DC変換器 15 位相検波器 17 発信器 18 バッテリ
ーボックス 19 ループアンテナ 20 パソコン 21 受信器 22 通信ケー
ブル 23 接地電極 24 磁場検出
コイル
DESCRIPTION OF SYMBOLS 1 Precision timer 2 Automatic variable frequency transmitter 3 Small computer 4 Output amplifier 5 Frequency display part 6 Transmission antenna 7 Ground electrode for electric field detection 9 Magnetic field detection coil 10 Calibration voltage input coil 11 Preamplifier 11 'Preamplifier 12 Automatic gain control Circuit 12 'Automatic gain control circuit 13 Main amplifier 13' Main amplifier 14 AC / DC converter 14 'AC / D
C converter 14 "AC / DC converter 15 Phase detector 17 Transmitter 18 Battery box 19 Loop antenna 20 Personal computer 21 Receiver 22 Communication cable 23 Ground electrode 24 Magnetic field detection coil

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】人工電磁波を利用した地盤の導電率測定を
高速信号処理回路の応用によって、自動的かつ連続的な
測定結果として出力できる測定方法を生かした地盤の導
電率自動探査法。
1. An automatic ground conductivity exploration method utilizing a measurement method capable of automatically and continuously outputting a ground conductivity measurement using artificial electromagnetic waves as a continuous measurement result by applying a high-speed signal processing circuit.
【請求項2】温度変化や回路素子の誤差などによる人工
電磁波の発信周波数のずれを自動的に校正して、測定結
果の精度を高め得るようにした請求項1記載の地盤の導
電率自動探査法。
2. An automatic ground conductivity exploration according to claim 1, wherein the deviation of the transmission frequency of the artificial electromagnetic wave due to a temperature change or an error of a circuit element is automatically calibrated to improve the accuracy of the measurement result. Law.
【請求項3】受信装置を移動させながら地盤の導電率の
水平方向及び鉛直方向の変化を連続的に表示できる装置
を有することを特徴とする地盤の導電率自動探査法。
3. An automatic ground conductivity exploration method comprising a device capable of continuously displaying horizontal and vertical changes in ground conductivity while moving a receiving device.
【請求項4】従来の電磁法探査装置によって測定が困難
とされている地下約5メートル乃至約100メートル程
度の土木建設分野でよく行なわれる地盤調査に適した導
電率自動探査法。
4. An automatic conductivity surveying method suitable for ground surveys often carried out in the field of civil engineering construction of about 5 meters to about 100 meters underground where it is difficult to measure with a conventional electromagnetic surveying device.
JP27788297A 1997-09-04 1997-09-04 Automatically probing method of conductivity of ground Pending JPH1184022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27788297A JPH1184022A (en) 1997-09-04 1997-09-04 Automatically probing method of conductivity of ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27788297A JPH1184022A (en) 1997-09-04 1997-09-04 Automatically probing method of conductivity of ground

Publications (1)

Publication Number Publication Date
JPH1184022A true JPH1184022A (en) 1999-03-26

Family

ID=17589612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27788297A Pending JPH1184022A (en) 1997-09-04 1997-09-04 Automatically probing method of conductivity of ground

Country Status (1)

Country Link
JP (1) JPH1184022A (en)

Similar Documents

Publication Publication Date Title
CN103869371B (en) Manual field source frequency domain full-gradient electromagnetic measuring method
CN102096113B (en) Time Domain Earth-Space Electromagnetic Detection System and Calibration Method
US6876202B2 (en) System, method and computer product geological surveying utilizing natural electromagnetic fields
US10101489B2 (en) System for exploring underground geophysical properties and method for analyzing underground geophysical properties using the same
US7492168B2 (en) Systems and methods for resistivity measurement
CN102062876A (en) Electrical sounding method for whole-region couple source frequency domain
US10107931B2 (en) Noise measurement in a locating receiver
CA2084656C (en) Sub-audio magnetics instrument
CN108362372A (en) Low frequency noise measurement system
KR100399984B1 (en) Electromagnetic Underground Detecting Method and The Same System
AU2015200963B2 (en) Method and system for broadband measurements using multiple electromagnetic receivers
US7109716B2 (en) Soil and time modeling for improved electromagnetic locators for underground utilities
JPH1184022A (en) Automatically probing method of conductivity of ground
CN108776359A (en) The measurement bearing calibration of the small loop line transient electromagnetic system of transceiver
RU230312U1 (en) Device for monitoring the condition of metal pipelines from the ground surface above the pipeline
CN119224859B (en) Ground-air frequency domain electromagnetic near-frequency dual-angle field source layout and parameter design method
RU2793393C1 (en) Method for measuring the semi-axes of the full polarization ellipse of the magnetic field and a device for its implementation
CN114153006B (en) An omnidirectional conductivity tracing exploration device
Farris et al. Grid-Induced Telluric Currents for Non-Contact Load Monitoring and Fault Detection
Whiteford Assessment of the audio-magnetotelluric method for geothermal resistivity surveying
CN118033752A (en) Geophysical prospecting method for detecting underground water by non-traditional magnetotelluric sounding method
CN117849887A (en) Detection method, system and equipment for underground power cable
RU2230341C1 (en) Method of induction vertical sounding
RU1840791C (en) Method and device for measuring impedance of earth's crust in very low frequency range of radio-waves
Wolf et al. Design, Development and Application of a Modular Electromagnetic Induction (EMI) Sensor for Near-Surface Geophysical Surveys