JPH1181991A - Exhaust gas purifying device in engine - Google Patents
Exhaust gas purifying device in engineInfo
- Publication number
- JPH1181991A JPH1181991A JP9245489A JP24548997A JPH1181991A JP H1181991 A JPH1181991 A JP H1181991A JP 9245489 A JP9245489 A JP 9245489A JP 24548997 A JP24548997 A JP 24548997A JP H1181991 A JPH1181991 A JP H1181991A
- Authority
- JP
- Japan
- Prior art keywords
- amount
- exhaust gas
- adsorption
- engine
- adsorbent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Exhaust-Gas Circulating Devices (AREA)
- Exhaust Gas After Treatment (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はエンジンの排気浄化
装置に関し、特に、ディーゼルエンジンにおける窒素酸
化物の浄化に好適な排気浄化装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an engine, and more particularly to an exhaust gas purifying apparatus suitable for purifying nitrogen oxides in a diesel engine.
【0002】[0002]
【従来の技術】従来のディーゼルエンジンにおける排気
浄化装置として、HC吸着材に吸着させたHCを脱離さ
せ、酸素過剰雰囲気でNOxを還元処理し得るNOx触
媒に還元剤として供給することでNOx触媒雰囲気のH
C/NOx比を高め、NOx浄化率の向上を図る構成の
ものが知られている(特開平4−27706号公報等参
照)。2. Description of the Related Art As a conventional exhaust purification device for a diesel engine, a NOx catalyst is provided by desorbing HC adsorbed on an HC adsorbent and supplying it as a reducing agent to a NOx catalyst capable of reducing NOx in an oxygen-excess atmosphere. Atmosphere H
There is known a configuration in which the C / NOx ratio is increased to improve the NOx purification rate (see Japanese Patent Application Laid-Open No. 4-27706).
【0003】[0003]
【発明が解決しようとする課題】しかし、上記従来の排
気浄化装置によると、HC吸着材に吸着されたHCを使
い切ってしまうと、NOx触媒雰囲気のHC/NOx比
が低下してしまい、NOx転化率が低下するという問題
があった。例えば、HC吸着材からHCが脱離する運転
条件が長く継続すると脱離が進んでHCの吸着量が低下
し、その後に吸着量を十分に回復させる機会が得られな
いと、還元剤としてのHCの不足によってNOx触媒雰
囲気のHC/NOx比が低下して、NOxの還元性能が
低下してしまうことがあったものである。However, according to the above-mentioned conventional exhaust gas purifying apparatus, when the HC adsorbed by the HC adsorbent is used up, the HC / NOx ratio in the NOx catalyst atmosphere is reduced, and the NOx conversion is performed. There was a problem that the rate decreased. For example, if the operating conditions under which HC is desorbed from the HC adsorbent continue for a long time, desorption proceeds and the amount of adsorbed HC decreases, and if there is no opportunity to sufficiently recover the adsorbed amount thereafter, the reduction agent as In some cases, the HC / NOx ratio in the NOx catalyst atmosphere is reduced due to the shortage of HC, and the NOx reduction performance may be reduced.
【0004】本発明は、このような従来の問題点に着目
してなされたものであり、HC吸着材に還元剤としての
HCを必要に応じて積極的に吸着させることで、脱離条
件下においてNOx触媒雰囲気のHC/NOx比が低下
することを抑制でき、以て、NOx浄化性能を維持でき
る排気浄化装置を提供することを目的とする。[0004] The present invention has been made in view of such conventional problems, and by allowing HC as a reducing agent to be positively adsorbed on an HC adsorbent as necessary, the desorption conditions can be improved. Accordingly, it is an object of the present invention to provide an exhaust gas purification device that can suppress a decrease in the HC / NOx ratio in the NOx catalyst atmosphere and can maintain the NOx purification performance.
【0005】[0005]
【課題を解決するための手段】そのため請求項1記載の
発明は、酸素過剰状態で排気中のNOxを浄化し得るN
Ox触媒を備える一方、該NOx触媒の上流側に排気中
のHCを吸着するHC吸着材を備え、前記HC吸着材か
ら脱離したHCを下流側のNOx触媒に還元剤として供
給する構成のエンジンの排気浄化装置において、前記H
C吸着材がHCを吸着する条件のときであって、前記H
C吸着材に対するHCの吸着量が規定量よりも少ないと
判断されるときに、前記HC吸着材に流入する排気中の
HC量を増加させる構成とした。According to the first aspect of the present invention, N is capable of purifying NOx in exhaust gas in an excess oxygen state.
An engine having an Ox catalyst, an HC adsorbent for adsorbing HC in exhaust gas on the upstream side of the NOx catalyst, and supplying HC desorbed from the HC adsorbent to the downstream NOx catalyst as a reducing agent. In the exhaust gas purifying apparatus, the H
C under the condition that the C adsorbent adsorbs HC,
When it is determined that the amount of HC adsorbed on the C adsorbent is smaller than the specified amount, the amount of HC in the exhaust gas flowing into the HC adsorbent is increased.
【0006】かかる構成によると、HC吸着材は、低温
状態ではHCを吸着し、高温(活性状態)ではHCを脱
離するが、HCを吸着する条件であるときに所望の吸着
量が得られていないときには、積極的に排気中のHC量
を増加させて、HC吸着材に対するHC吸着量の確保を
図る。そして、脱離条件になったときに、必要十分に吸
着されているHCが脱離し、これが下流側のNOx触媒
に還元剤として供給され、NOx触媒におけるNOx浄
化率の向上が図られる。According to such a configuration, the HC adsorbent adsorbs HC in a low temperature state and desorbs HC in a high temperature (active state). However, a desired amount of adsorption can be obtained under conditions for adsorbing HC. If not, the amount of HC in the exhaust gas is positively increased to ensure the amount of HC adsorbed on the HC adsorbent. Then, when the desorption condition is satisfied, HC adsorbed as necessary and sufficiently is desorbed and supplied as a reducing agent to the downstream NOx catalyst, so that the NOx purification rate of the NOx catalyst is improved.
【0007】尚、HC吸着材は、HCの吸着性能のみを
持つものであっても良いし、また、HCの吸着性能と共
に触媒性能を有するHC吸着触媒であっても良い。請求
項2記載の発明は、図1に示すように構成される。図1
において、NOx触媒は、酸素過剰状態で排気中のNO
xを浄化し得る触媒であり、HC吸着材は、NOx触媒
の上流側に配置され排気中のHCを吸着するものであ
り、HC吸着材から脱離したHCを下流側のNOx触媒
に還元剤として供給する構成である。[0007] The HC adsorbent may be one having only HC adsorption performance, or may be an HC adsorption catalyst having catalytic performance together with HC adsorption performance. The invention according to claim 2 is configured as shown in FIG. FIG.
In NOx catalyst, the NOx catalyst
The HC adsorbent is disposed upstream of the NOx catalyst and adsorbs HC in the exhaust gas. The HC adsorbent removes the HC desorbed from the HC adsorbent to the downstream NOx catalyst by a reducing agent. It is a composition supplied as.
【0008】一方、吸着・脱離条件判別手段は、前記H
C吸着材の吸着・脱離条件を判別し、吸着量検出手段
は、前記HC吸着材に対するHCの吸着量を検出する。
また、HC増加手段と、前記HC吸着材に流入する排気
中のHC量を増加させるための手段である。そして、H
C増加制御手段は、前記吸着・脱離条件判別手段でHC
吸着材の吸着条件が判別され、かつ、前記吸着量検出手
段で検出されたHC吸着量が規定量よりも少ないとき
に、前記HC増加手段を作動させる。On the other hand, the adsorption / desorption condition discriminating means comprises the H
The adsorption / desorption conditions of the C adsorbent are determined, and the adsorption amount detecting means detects the amount of HC adsorbed on the HC adsorbent.
Further, it is a means for increasing HC and means for increasing the amount of HC in the exhaust gas flowing into the HC adsorbent. And H
The C increase control means controls the adsorption / desorption condition by the HC
When the adsorption condition of the adsorbent is determined and the amount of HC adsorption detected by the adsorption amount detecting means is smaller than a specified amount, the HC increasing means is operated.
【0009】かかる構成によると、HC吸着材がHCを
吸着する条件(低温状態,非活性状態)であることが検
出され、かつ、そのときのHC吸着量が規定量よりも少
ないと判断されるときには、HC増加手段を作動させる
ことにより、HC吸着材に流入する排気中のHC量が増
加し、以て、HC吸着材に対するHC吸着量の積極的な
増加が図られる。With this configuration, it is detected that the HC adsorbent is in a condition for adsorbing HC (low temperature state, inactive state), and it is determined that the HC adsorption amount at that time is smaller than the specified amount. In some cases, by operating the HC increasing means, the amount of HC in the exhaust gas flowing into the HC adsorbent increases, so that the amount of HC adsorbed on the HC adsorbent is positively increased.
【0010】請求項3記載の発明では、前記吸着・脱離
条件判別手段がエンジンの運転条件から、前記HC吸着
材の吸着・脱離条件を判別する構成とした。かかる構成
によると、例えばエンジン負荷,エンジン回転数等の運
転条件から排気温度が推定されるので、HC吸着材が吸
着を行う温度条件であるか、脱離を行う温度条件である
かを推定できることになる。According to the third aspect of the present invention, the adsorbing / desorbing condition judging means judges the adsorbing / desorbing condition of the HC adsorbent from the operating condition of the engine. According to this configuration, since the exhaust gas temperature is estimated from operating conditions such as the engine load and the engine speed, it is possible to estimate whether the temperature condition is such that the HC adsorbent performs adsorption or desorption. become.
【0011】請求項4記載の発明では、前記HC吸着材
に流入する排気温度を検出する排気温度検出手段を備
え、前記吸着・脱離条件判別手段が前記排気温度検出手
段の検出結果に基づいて、前記HC吸着材の吸着・脱離
条件を判別する構成とした。かかる構成によると、HC
吸着材に流入する排気温度を直接的に検出することで、
HC吸着材が吸着を行う温度条件であるか、脱離を行う
温度条件であるかを判別する。According to a fourth aspect of the present invention, there is provided an exhaust gas temperature detecting means for detecting the temperature of the exhaust gas flowing into the HC adsorbent, and the adsorbing / desorbing condition judging means is provided based on the detection result of the exhaust gas temperature detecting means. In this configuration, the conditions for adsorption and desorption of the HC adsorbent are determined. According to such a configuration, HC
By directly detecting the exhaust gas temperature flowing into the adsorbent,
It is determined whether the temperature condition is such that the HC adsorbent performs adsorption or desorption.
【0012】請求項5記載の発明では、前記吸着量検出
手段が、エンジンの運転条件から前記HC吸着材におけ
る単位時間当たりの脱離量と吸着量とをそれぞれ演算し
て、前記HC吸着材におけるHC吸着量を検出する構成
とした。かかる構成によると、エンジン負荷,エンジン
回転数などのエンジン運転条件からHC吸着材に対する
吸着量及びHC吸着材からの脱離量がそれぞれに演算さ
れ、吸着条件においては前記演算された吸着量を積算
し、また、脱離条件ではそれまでの吸着量から前記演算
された脱離量を逐次減算することでそのときの吸着量
(HC残量)を演算する。In the invention described in claim 5, the adsorption amount detecting means calculates a desorption amount and an adsorption amount per unit time of the HC adsorbent from the operating conditions of the engine, and calculates the adsorbed amount of the HC adsorbent. It was configured to detect the HC adsorption amount. According to this configuration, the amount of adsorption to the HC adsorbent and the amount of desorption from the HC adsorbent are respectively calculated from engine operating conditions such as engine load and engine speed, and under the adsorption conditions, the calculated adsorption amount is integrated. In addition, under the desorption conditions, the adsorption amount (HC remaining amount) at that time is calculated by sequentially subtracting the calculated desorption amount from the adsorption amount up to that time.
【0013】請求項6記載の発明では、前記吸着量検出
手段が、エンジンの運転条件と前記HC吸着材の温度と
から前記HC吸着材における単位時間当たりの脱離量と
吸着量とをそれぞれ演算して、前記HC吸着材における
HC吸着量を検出する構成とした。かかる構成による
と、エンジン運転条件と共にそのときのHC吸着材の温
度に基づいて、吸着量,脱離量が演算されて、総吸着
量,HC残量が演算される。[0013] In the invention described in claim 6, the adsorption amount detecting means calculates the desorption amount and the adsorption amount per unit time of the HC adsorbent from the operating conditions of the engine and the temperature of the HC adsorbent. Then, the configuration is such that the HC adsorption amount in the HC adsorbent is detected. With this configuration, the amount of adsorption and the amount of desorption are calculated based on the engine operating conditions and the temperature of the HC adsorbent at that time, and the total amount of adsorption and the remaining amount of HC are calculated.
【0014】請求項7記載の発明では、前記HC増加手
段が、通常の燃料噴射とは別に燃料を噴射させること
で、エンジンから排出されるHCを増加させる構成とし
た。かかる構成によると、通常の燃焼のための燃料噴射
とは別に、例えばディーゼルエンジンにおける掃気行程
等において燃料を噴射させることで、エンジンから排出
される未燃HCを増加させ、以て、HC吸着材に流入す
る排気中のHC量を増加させる。According to a seventh aspect of the present invention, the HC increasing means increases the amount of HC discharged from the engine by injecting fuel separately from normal fuel injection. According to such a configuration, in addition to fuel injection for normal combustion, by injecting fuel in, for example, a scavenging stroke of a diesel engine, unburned HC discharged from the engine is increased, and thus the HC adsorbent To increase the amount of HC in the exhaust gas flowing into the exhaust gas.
【0015】請求項8記載の発明では、前記HC増加手
段が、燃料の噴射時期を遅角させることで、エンジンか
ら排出されるHCを増加させる構成とした。かかる構成
によると、燃料の噴射時期を、燃焼に最適な通常の時期
よりも遅角する(遅くする)ことで、エンジンから排出
される未燃HCを増加させ、以て、HC吸着材に流入す
る排気中のHC量を増加させる。In the invention described in claim 8, the HC increasing means is configured to increase HC discharged from the engine by delaying the fuel injection timing. According to this configuration, the fuel injection timing is retarded (retarded) from the normal timing that is optimal for combustion, so that the unburned HC discharged from the engine is increased, and therefore, the fuel flows into the HC adsorbent. Increase the amount of HC in the exhaust gas.
【0016】請求項9記載の発明では、燃焼室内に生成
されるスワールの強さを調整するスワール制御弁を備
え、前記HC増加手段が、前記スワール制御弁によって
スワールを弱めることで、エンジンから排出されるHC
を増加させる構成とした。かかる構成によると、スワー
ル制御弁によって調整されるスワールの強さを本来より
も弱めることで、燃焼室の内壁に付着する燃料量を多く
して、未燃HCとして排出されるHC量を増加させる。According to the ninth aspect of the present invention, a swirl control valve for adjusting the intensity of the swirl generated in the combustion chamber is provided, and the HC increasing means weakens the swirl by the swirl control valve to thereby discharge the engine from the engine. HC
Is increased. According to this configuration, the amount of fuel adhering to the inner wall of the combustion chamber is increased by reducing the strength of the swirl adjusted by the swirl control valve, so that the amount of HC discharged as unburned HC is increased. .
【0017】請求項10記載の発明では、前記HC増加手
段が、燃焼混合気の空気過剰率を低下させることで、エ
ンジンから排出されるHCを増加させる構成とした。か
かる構成によると、燃焼混合気の空気過剰率を通常より
も強制的に低下させて燃焼を悪化させ、以て、未燃HC
としてエンジンから排出されるHC量を増加させる。According to a tenth aspect of the present invention, the HC increasing means increases the amount of HC discharged from the engine by reducing the excess air ratio of the combustion mixture. According to such a configuration, the excess air ratio of the combustion air-fuel mixture is forcibly reduced to a level lower than normal, thereby deteriorating the combustion.
To increase the amount of HC discharged from the engine.
【0018】請求項11記載の発明では、吸気絞り弁と排
気還流装置とを備え、前記HC増加手段が、前記吸気絞
り弁の開度と排気還流装置による排気還流量とを制御し
て、燃焼混合気の空気過剰率を低下させてエンジンから
排出されるHCを増加させる構成とした。かかる構成に
よると、例えば排気還流装置における排気還流量を減少
させ、かつ、吸気絞り弁の開度を減少させることで、燃
焼混合気の空気過剰率を低下させ、以て、未燃HCとし
てエンジンから排出されるHC量を増加させる。According to the eleventh aspect of the invention, there is provided an intake throttle valve and an exhaust gas recirculation device, wherein the HC increasing means controls the opening degree of the intake throttle valve and the amount of exhaust gas recirculated by the exhaust gas recirculation device, thereby reducing combustion. The configuration is such that the excess air ratio of the air-fuel mixture is reduced to increase HC discharged from the engine. According to such a configuration, for example, by reducing the amount of exhaust gas recirculation in the exhaust gas recirculation device and reducing the opening of the intake throttle valve, the excess air ratio of the combustion air-fuel mixture is reduced. The amount of HC discharged from the fuel cell.
【0019】請求項12記載の発明では、前記HC吸着材
の劣化を診断する劣化診断手段と、該劣化診断手段でH
C吸着材の劣化状態が判定されたときに、前記HC増加
制御手段に代えて、前記吸着・脱離条件判別手段で脱離
条件が判別されているときに前記HC増加手段を作動さ
せる劣化時HC増加制御手段と、を設ける構成とした。According to the twelfth aspect of the present invention, the deterioration diagnosing means for diagnosing the deterioration of the HC adsorbent, and
When the deterioration state of the C adsorbent is determined, the HC increasing means is operated when the desorption condition is determined by the adsorption / desorption condition determining means instead of the HC increase control means. HC increase control means.
【0020】かかる構成によると、HC吸着材が劣化し
てHCの吸着性能が低下していることが判別されると、
吸着条件下でHCを増加させても所望の吸着を行わせる
ことができず、かつ、脱離条件になっても所望量のHC
を脱離させることができなくなるので、HC吸着材から
脱離したHCをNOx触媒に供給する代わりに、HC増
加手段によって増加させたHCを直接的にNOx触媒に
供給して、NOx触媒における還元剤としてのHCの確
保を図る。According to this configuration, when it is determined that the HC adsorbent has deteriorated and the HC adsorption performance has decreased,
Even if the amount of HC is increased under the adsorption condition, the desired adsorption cannot be performed.
Therefore, instead of supplying the HC desorbed from the HC adsorbent to the NOx catalyst, the HC increased by the HC increasing means is directly supplied to the NOx catalyst to reduce the NOx catalyst. To secure HC as an agent.
【0021】[0021]
【発明の効果】請求項1,2記載の発明によると、HC
吸着材に吸着されるHC量が少ないときに、吸着量を積
極的に増加させることができるので、HC吸着材から脱
離してNOx触媒に還元剤として供給されるHC量を安
定的に確保することができ、以て、NOx触媒における
NOx浄化率を高く維持できるという効果がある。According to the first and second aspects of the present invention, HC
When the amount of HC adsorbed by the adsorbent is small, the amount of adsorption can be positively increased, so that the amount of HC desorbed from the HC adsorbent and supplied to the NOx catalyst as a reducing agent is stably secured. Therefore, there is an effect that the NOx purification rate of the NOx catalyst can be kept high.
【0022】請求項3記載の発明によると、HC吸着材
の脱離・吸着条件を、エンジンの運転条件から簡便に検
知することができるという効果がある。請求項4記載の
発明によると、HC吸着材に流入する排気温度を直接的
に検出することで、HC吸着材の脱離・吸着条件を精度
良く検知できるという効果がある。According to the third aspect of the present invention, there is an effect that the desorption / adsorption conditions of the HC adsorbent can be easily detected from the operating conditions of the engine. According to the fourth aspect of the present invention, there is an effect that the desorption / adsorption conditions of the HC adsorbent can be accurately detected by directly detecting the exhaust gas temperature flowing into the HC adsorbent.
【0023】請求項5記載の発明によると、エンジン運
転条件によるHCの吸着量及び脱離量の違いを考慮し
て、HC吸着材に対する吸着量(HC残量)を精度良く
推定できるという効果がある。請求項6記載の発明によ
ると、エンジン運転条件及びHC吸着材の温度によるH
Cの吸着量及び脱離量の違いを考慮して、HC吸着材に
対する吸着量(HC残量)を一層精度良く推定できると
いう効果がある。According to the fifth aspect of the present invention, it is possible to accurately estimate the amount of adsorbed HC (the remaining amount of HC) on the HC adsorbent in consideration of the difference between the amount of adsorbed HC and the amount of desorbed HC depending on the engine operating conditions. is there. According to the sixth aspect of the present invention, H depends on engine operating conditions and the temperature of the HC adsorbent.
In consideration of the difference between the amount of C adsorbed and the amount of desorbed C, there is an effect that the amount of adsorption (remaining HC) on the HC adsorbent can be more accurately estimated.
【0024】請求項7記載の発明によると、通常の燃料
噴射とは別に行わせる燃料噴射によってエンジンから排
出される未燃HCを増加させ、HC吸着材にHCを積極
的に吸着させることができるという効果がある。請求項
8記載の発明によると、燃料噴射時期を通常よりも遅角
させることによってエンジンから排出される未燃HCを
増加させ、HC吸着材にHCを積極的に吸着させること
ができるという効果がある。According to the present invention, unburned HC discharged from the engine is increased by fuel injection performed separately from normal fuel injection, and HC can be positively adsorbed by the HC adsorbent. This has the effect. According to the eighth aspect of the invention, the unburned HC discharged from the engine is increased by retarding the fuel injection timing more than usual, and the HC adsorbent can positively adsorb HC. is there.
【0025】請求項9記載の発明によると、スワールの
強さを強制的に弱くすることで、燃焼室の内壁に付着す
る燃料を増加させ、以て、エンジンから排出される未燃
HCを増加させ、HC吸着材にHCを積極的に吸着させ
ることができるという効果がある。請求項10記載の発明
によると、燃焼混合気の空気過剰率を強制的に低下させ
て燃焼性を悪化させることにより、エンジンから排出さ
れる未燃HCを増加させ、HC吸着材にHCを積極的に
吸着させることができるという効果がある。According to the ninth aspect of the present invention, the amount of fuel adhering to the inner wall of the combustion chamber is increased by forcibly reducing the strength of the swirl, thereby increasing the unburned HC discharged from the engine. Accordingly, there is an effect that HC can be positively adsorbed on the HC adsorbent. According to the tenth aspect of the present invention, the unburned HC discharged from the engine is increased by forcibly reducing the excess air ratio of the combustion air-fuel mixture and deteriorating the combustibility, and HC is positively added to the HC adsorbent. There is an effect that it can be made to adsorb | suck effectively.
【0026】請求項11記載の発明によると、吸気絞り弁
の開度及び排気還流量の制御によって燃焼混合気の空気
過剰率を強制的に低下させることができ、以て、エンジ
ンから排出される未燃HCを増加させてHC吸着材にH
Cを積極的に吸着させることができるという効果があ
る。請求項12記載の発明によると、HC吸着材が劣化し
てHCの吸着性能が低下しても、HC吸着材から脱離さ
れるHCの代わりに、直接的にNOx触媒に対して還元
剤としてのHCを供給することができ、NOx触媒にお
けるNOx浄化性能を維持できるという効果がある。According to the eleventh aspect of the present invention, the excess air ratio of the combustion mixture can be forcibly reduced by controlling the opening degree of the intake throttle valve and the exhaust gas recirculation amount, and the exhaust gas is discharged from the engine. Increase unburned HC and add H to HC adsorbent
There is an effect that C can be positively adsorbed. According to the invention as set forth in claim 12, even if the HC adsorbent deteriorates and the HC adsorbing performance decreases, instead of the HC desorbed from the HC adsorbent, the HC adsorbent is directly used as a reducing agent for the NOx catalyst. There is an effect that HC can be supplied and the NOx purification performance of the NOx catalyst can be maintained.
【0027】[0027]
【発明の実施の形態】以下に本発明の実施の形態を説明
する。図2は、第1の実施の形態を示すエンジンのシス
テム構成図である。この図2において、ディーゼルエン
ジン101には、排気浄化装置として、排気通路中10
2に位置する触媒ケース203に介装されたHC吸着触
媒201とNOx触媒202とを備える。Embodiments of the present invention will be described below. FIG. 2 is a system configuration diagram of the engine according to the first embodiment. In FIG. 2, a diesel engine 101 is provided with an exhaust purification
2 is provided with an HC adsorption catalyst 201 and a NOx catalyst 202 interposed in a catalyst case 203 located in the second position.
【0028】また、エンジン101には、燃料噴射装置
として任意の時期に燃料を噴射可能であるコモンレール
式燃料噴射装置107が備えられており、マイクロコン
ピュータを内蔵するエンジンコントロールユニット(エ
ンジンC/U)106 は、図示しないエンジン回転セン
サ,アクセル開度センサからのエンジン回転信号,アク
セル開度信号等に基づいて、前記コモンレール式燃料噴
射装置107による燃料噴射量,噴射時期を制御する。The engine 101 is provided with a common rail type fuel injection device 107 capable of injecting fuel at an arbitrary time as a fuel injection device, and an engine control unit (engine C / U) incorporating a microcomputer. Reference numeral 106 controls the fuel injection amount and the injection timing of the common rail type fuel injection device 107 based on an engine rotation signal, an accelerator opening signal, and the like from an engine rotation sensor and an accelerator opening sensor (not shown).
【0029】尚、燃料噴射装置としてユニットインジェ
クタを備える構成であっても良い。前記HC吸着触媒2
01(HC吸着材)は、図3に示すように、低温時には
排気中のHCを吸着し、所定温度T’(吸着触媒の固有
値)を越えると吸着していたHCの脱離を開始する特性
を有する。そして、高温時(HC吸着触媒の活性状態)
において、前記HC吸着触媒201から脱離されたHC
が、下流側のNOx触媒202に還元剤として供給され
ることで、NOx触媒202の雰囲気におけるHC/N
Ox比が増大し、NOx触媒202におけるNOxの転
化効率の向上が図られる。The fuel injection device may be provided with a unit injector. The HC adsorption catalyst 2
As shown in FIG. 3, 01 (HC adsorbent) adsorbs HC in exhaust gas at a low temperature and starts desorption of the adsorbed HC when the temperature exceeds a predetermined temperature T ′ (specific value of the adsorption catalyst). Having. And at high temperature (HC adsorption catalyst active state)
, The HC desorbed from the HC adsorption catalyst 201
Is supplied as a reducing agent to the NOx catalyst 202 on the downstream side, so that HC / N
The Ox ratio increases, and the NOx conversion efficiency of the NOx catalyst 202 is improved.
【0030】但し、HC吸着触媒201におけるHCの
吸着量が少なく、下流側のNOx触媒202に脱離供給
されるHC量が少なくなると、NOx触媒202の雰囲
気におけるHC/NOx比が低下し、NOxの還元処理
性能が低下することになってしまう。そこで、本発明で
は、HC吸着触媒201においてHC吸着可能な温度域
(低負荷運転領域)で、吸着HC量が少ないと判断され
る場合に、HC増加手段によってエンジン101から排
出されるHC量を増やして、前記HC吸着触媒201に
対して積極的にHCを吸着させる。However, if the amount of HC adsorbed on the HC adsorption catalyst 201 is small and the amount of HC desorbed and supplied to the NOx catalyst 202 on the downstream side is small, the HC / NOx ratio in the atmosphere of the NOx catalyst 202 decreases, and the NOx Will result in a reduction in the reduction processing performance. Therefore, in the present invention, when it is determined that the amount of adsorbed HC is small in a temperature range in which HC can be adsorbed by the HC adsorption catalyst 201 (low load operation region), the amount of HC discharged from the engine 101 by the HC increasing means is reduced. By increasing the amount, HC is positively adsorbed on the HC adsorption catalyst 201.
【0031】ここで、前記HC増加手段として、主噴射
(通常の燃料噴射)とは別に、掃気行程中,主噴射後の
下死点近傍若しくは主噴射直後から360 °ATDCの間
にコモンレール式燃料噴射装置107から燃料を噴射さ
せる構成として、エンジン101から排出されるHC量
を増やして、前記HC吸着触媒201に対して積極的に
HCを吸着させる(HC増加制御手段)。Here, as the HC increasing means, apart from the main injection (normal fuel injection), during the scavenging stroke, near the bottom dead center after the main injection or immediately after the main injection, a common rail type fuel is supplied between 360 ° ATDC. As a configuration in which fuel is injected from the injection device 107, the amount of HC discharged from the engine 101 is increased, and HC is positively adsorbed on the HC adsorption catalyst 201 (HC increase control means).
【0032】前記HC吸着触媒201に対するHC吸着
量は、図4に示す単位時間当たりのHC脱離量の特性を
示すマップと、図5に示す単位時間当たりのHC吸着量
の特性を示すマップとからエンジンの運転条件に基づい
て推定演算される。即ち、吸着領域においては、前記H
C吸着量マップから吸入空気量Q(エンジン負荷を代表
する値)とエンジン回転数Neとに基づき検索される吸
着量a1を積算し、脱離領域においては、前記HC脱離
量マップから吸入空気量Q(エンジン負荷)と回転数N
eとに基づき検索される脱離量d1をそれまでの吸着量
から順次減算することで、残りの吸着量を演算する(吸
着量検出手段)。The amount of HC adsorbed on the HC adsorption catalyst 201 is shown in a map showing the characteristics of the amount of HC desorbed per unit time shown in FIG. 4 and a map showing the characteristics of the amount of HC adsorbed per unit time shown in FIG. Is calculated based on the operating conditions of the engine. That is, in the adsorption area, the H
The adsorption amount a1 searched based on the intake air amount Q (a value representative of the engine load) and the engine speed Ne from the C adsorption amount map is integrated, and in the desorption region, the intake air amount from the HC desorption amount map is calculated. Quantity Q (engine load) and rotation speed N
The remaining adsorption amount is calculated by sequentially subtracting the desorption amount d1 retrieved based on e from the adsorption amount up to that time (adsorption amount detecting means).
【0033】そして、吸着量が所定量a0より少ない場
合には、吸着領域でHC増加手段によってHC吸着触媒
201へHCを積極的に供給することで吸着量の積極的
な増大を図り、吸着領域から脱離領域に移行したときの
脱離量を確保して、NOx触媒202の雰囲気における
HC/NOx比を増大させる。一方、吸着量が所定量a
0より多い場合及び吸着量が前記HC増加手段の動作に
よって所定量a0に達したときには、必要十分なHC/
NOx比を確保できるHC脱離量が得られるものと判断
して、HC増加手段を動作させることによるHC吸着触
媒201への積極的なHCの供給は行わない。When the amount of adsorption is smaller than the predetermined amount a0, the amount of adsorption is actively increased by actively supplying HC to the HC adsorption catalyst 201 by the HC increasing means in the adsorption region. , The amount of desorption at the time of shifting to the desorption region is secured, and the HC / NOx ratio in the atmosphere of the NOx catalyst 202 is increased. On the other hand, the adsorption amount is a predetermined amount a
When the amount is larger than 0 and when the amount of adsorption reaches the predetermined amount a0 by the operation of the HC increasing means, a necessary and sufficient amount of HC /
It is determined that the HC desorption amount that can secure the NOx ratio can be obtained, and the active supply of HC to the HC adsorption catalyst 201 by operating the HC increasing means is not performed.
【0034】上記第1の実施の形態におけるHC吸着制
御の様子を図6のフローチャートに従って説明する。S
1では、エンジン101の運転条件(吸入空気量Q,エ
ンジン回転数Ne)を読み込む。S2(吸着・脱離条件
検出手段)では、エンジン101の運転条件が、HC吸
着触媒201におけるHCの吸着が行われる領域(吸着
領域)か、吸着していたHCの脱離を行う領域(脱離領
域)かを判定する。The state of the HC adsorption control in the first embodiment will be described with reference to the flowchart of FIG. S
In step 1, the operating conditions of the engine 101 (intake air amount Q, engine speed Ne) are read. In S2 (adsorption / desorption condition detection means), the operating condition of the engine 101 is determined as follows: the HC adsorption catalyst 201 performs the adsorption of HC (adsorption area) or the adsorbed HC desorption area (desorption). Remote area).
【0035】脱離領域の場合には、S3へ進み、図4に
示すHC脱離マップから運転状態に応じた単位時間当た
りのHC脱離量d1を算出する。S4では、総吸着量
(総堆積量)aから前記S13で求めた脱離量d1を減
算することで、HC吸着触媒201におけるHC吸着量
(残量)を算出する。S5では、総吸着量aから脱離量
d1を減算した結果が0を越えているか否かを判別し、
前記減算結果が0以下になった場合には、S6へ進ん
で、総吸着量aを0として、総吸着量aがマイナスの値
に算出されることを回避する。In the case of the desorption region, the process proceeds to S3, where the HC desorption amount d1 per unit time according to the operating state is calculated from the HC desorption map shown in FIG. In S4, the HC adsorption amount (remaining amount) in the HC adsorption catalyst 201 is calculated by subtracting the desorption amount d1 obtained in S13 from the total adsorption amount (total deposition amount) a. In S5, it is determined whether or not the result of subtracting the desorption amount d1 from the total adsorption amount a exceeds 0,
If the result of the subtraction is 0 or less, the process proceeds to S6, in which the total adsorption amount a is set to 0, and the calculation of the total adsorption amount a to a negative value is avoided.
【0036】一方、S2で、吸着領域であると判定され
たときには、S7へ進む。S7では、総吸着量aが吸着
規定量a0以上であるか否かを判定する。総吸着量aが
吸着規定量a0以上であるときには、S8へ進んで、H
C増加手段を停止させる。また、総吸着量aが吸着規定
量a0未満であるときには、S9へ進み、HC増加手段
を作動させる(HC増加制御手段)。。On the other hand, when it is determined in S2 that the area is the suction area, the process proceeds to S7. In S7, it is determined whether or not the total suction amount a is equal to or more than the specified suction amount a0. When the total adsorption amount a is equal to or more than the specified adsorption amount a0, the process proceeds to S8, where H
C Increase means is stopped. When the total adsorption amount a is less than the specified adsorption amount a0, the process proceeds to S9, and the HC increasing means is operated (HC increasing control means). .
【0037】S10では、図5に示す単位時間当たりの
HC吸着量マップから吸着量alを検出し、これを総吸
着量aに順次加算することで、総吸着量aを増大更新さ
せる。尚、上記S3〜S6,S10の部分が吸着量検出手
段に相当する。次に、本発明の第2の実施の形態を説明
する。In S10, the adsorption amount al is detected from the HC adsorption amount map per unit time shown in FIG. 5, and this is sequentially added to the total adsorption amount a, thereby increasing and updating the total adsorption amount a. Incidentally, the above-mentioned steps S3 to S6 and S10 correspond to the adsorption amount detecting means. Next, a second embodiment of the present invention will be described.
【0038】第2の実施の形態におけるシステム構成
は、図2に示される第1の実施の形態と同一であり、図
2を参照しつつ第2の実施の形態を以下に説明する。触
媒は熱慣性を有することから、高温→低温または低温→
高温に雰囲気温度(排気温度)が変わっても、HC吸着
触媒201の温度が雰囲気温度の変化に瞬時に追従し
て、雰囲気温度に対応する吸着脱離特性を示すようにな
るわけではないので、安定した定常状態においてはエン
ジンの運転条件からHCの吸着・脱離量を精度良く推定
できるが、過渡的には誤差を生じることになってしま
う。The system configuration of the second embodiment is the same as that of the first embodiment shown in FIG. 2, and the second embodiment will be described below with reference to FIG. Since the catalyst has thermal inertia, high temperature → low temperature or low temperature →
Even if the ambient temperature (exhaust temperature) changes to a high temperature, the temperature of the HC adsorption catalyst 201 does not immediately follow the change in the ambient temperature and exhibit the adsorption / desorption characteristic corresponding to the ambient temperature. In a stable steady state, the amount of adsorption and desorption of HC can be accurately estimated from the operating conditions of the engine, but an error occurs transiently.
【0039】そこで、第2の実施の形態では、エンジン
101の運転状態から排気温度を演算し、該排気温度の
履歴からHC吸着触媒201の温度を演算する。そし
て、前記演算された触媒201の温度とエンジン回転数
Neとに基づいてHCの吸着脱離係数を図7,図8に示
すマップから読み取り、その係数と図4,図5のHC吸
着・脱離量マップから求められる吸着・脱離量とから触
媒201へのHC吸着量を演算する。Therefore, in the second embodiment, the exhaust gas temperature is calculated from the operating state of the engine 101, and the temperature of the HC adsorption catalyst 201 is calculated from the history of the exhaust gas temperature. The HC adsorption / desorption coefficient is read from the maps shown in FIGS. 7 and 8 based on the calculated temperature of the catalyst 201 and the engine speed Ne, and the coefficient and the HC adsorption / desorption coefficients shown in FIGS. The amount of HC adsorbed on the catalyst 201 is calculated from the amount of adsorption and desorption obtained from the separation map.
【0040】図9のフローチャートに従って、上記構成
の第2の実施形態を詳述する。S21では、エンジン1
01の運転条件(吸入空気量Q,エンジン回転数Ne)
を読み込む。S22では、エンジン101の運転条件か
ら排気温度を演算し、該排気温度,単位時間当たりの排
気流量(吸入空気量相当),触媒の表面積及び熱伝導係
数からHC吸着触媒201の温度を演算する。The second embodiment having the above configuration will be described in detail with reference to the flowchart of FIG. In S21, the engine 1
01 (intake air amount Q, engine speed Ne)
Read. In S22, the exhaust temperature is calculated from the operating conditions of the engine 101, and the temperature of the HC adsorption catalyst 201 is calculated from the exhaust temperature, the exhaust flow rate per unit time (corresponding to the intake air amount), the surface area of the catalyst, and the heat transfer coefficient.
【0041】S23では、S22で演算したHC吸着触
媒201の温度から吸着領域か脱離領域かを判定する。
S23で脱離領域であると判定されたときには、S24
へ進み、図4に示すエンジン運転条件(吸入空気量,エ
ンジン回転数)に応じたHC脱離マップと図7に示す触
媒温度とエンジン回転数とに応じたHC脱離係数マップ
とに基づいて、運転状態と触媒温度に応じた単位時間当
たりのHC脱離量d1を算出する。具体的には、図4の
HC脱離マップから検索したエンジン運転条件に応じた
HC脱離量に、図7のHC脱離係数マップから検索した
触媒温度に応じたHC脱離係数を乗算して、HC脱離量
d1を算出する。In S23, it is determined from the temperature of the HC adsorption catalyst 201 calculated in S22 whether the region is an adsorption region or a desorption region.
If it is determined in S23 that the region is the desorption region, the process proceeds to S24
Then, based on the HC desorption map corresponding to the engine operating conditions (intake air amount, engine speed) shown in FIG. 4 and the HC desorption coefficient map shown in FIG. 7 corresponding to the catalyst temperature and the engine speed. Then, the HC desorption amount d1 per unit time according to the operating state and the catalyst temperature is calculated. Specifically, the HC desorption amount corresponding to the engine operating condition retrieved from the HC desorption map of FIG. 4 is multiplied by the HC desorption coefficient corresponding to the catalyst temperature retrieved from the HC desorption coefficient map of FIG. Thus, the HC desorption amount d1 is calculated.
【0042】S25では、総HC吸着量(総HC堆積
量)aから前記演算されたHC脱離量d1を減算して、
HC吸着触媒201のHC吸着量(残量)を演算する。
S26では、総吸着量aから脱離量d1を減算した結果
が0を越えているか否かを判別し、前記減算結果が0以
下になった場合には、S27へ進んで、総吸着量aを0
として、総吸着量aがマイナスの値に算出されることを
回避する。In step S25, the calculated HC desorption amount d1 is subtracted from the total HC adsorption amount (total HC accumulation amount) a.
The HC adsorption amount (remaining amount) of the HC adsorption catalyst 201 is calculated.
In S26, it is determined whether or not the result of subtracting the desorption amount d1 from the total adsorption amount a exceeds 0. If the subtraction result is 0 or less, the process proceeds to S27, where the total adsorption amount a To 0
To avoid calculating the total amount of adsorption a to a negative value.
【0043】一方、S23で、吸着領域であると判定さ
れたときには、S28へ進む。S28では、総吸着量a
が吸着規定量a0以上であるか否かを判定する。総吸着
量aが吸着規定量a0以上であるときには、S29へ進
んで、HC増加手段(掃気行程等における燃料噴射)を
停止させる。また、総吸着量aが吸着規定量a0未満で
あるときには、S30へ進み、HC増加手段を作動させ
る。On the other hand, when it is determined in S23 that the area is the suction area, the process proceeds to S28. In S28, the total adsorption amount a
Is greater than or equal to the specified adsorption amount a0. When the total adsorption amount a is equal to or greater than the specified adsorption amount a0, the process proceeds to S29, and the HC increasing means (fuel injection in a scavenging stroke or the like) is stopped. When the total adsorption amount a is less than the specified adsorption amount a0, the process proceeds to S30, and the HC increasing means is operated.
【0044】S31では、図5に示すエンジン運転条件
(吸入空気量,エンジン回転数)に応じたHC吸着マッ
プと図8に示す触媒温度とエンジン回転数とに応じたH
C吸着係数マップとに基づいて、運転状態と実際の触媒
温度に応じた単位時間当たりのHC吸着量a1を算出
し、これを総吸着量aに加算する。前記吸着量a1の算
出は、具体的には、図5のHC吸着マップから検索した
エンジン運転条件に応じたHC吸着量に、図8のHC吸
着係数マップから検索した触媒温度に応じたHC吸着係
数を乗算して行われる。At S31, an HC adsorption map corresponding to the engine operating conditions (intake air amount, engine speed) shown in FIG. 5 and H corresponding to the catalyst temperature and the engine speed shown in FIG.
Based on the C adsorption coefficient map, the HC adsorption amount a1 per unit time according to the operating state and the actual catalyst temperature is calculated, and this is added to the total adsorption amount a. More specifically, the calculation of the adsorption amount a1 is performed based on the HC adsorption amount corresponding to the engine operating condition retrieved from the HC adsorption map shown in FIG. 5 and the HC adsorption amount corresponding to the catalyst temperature retrieved from the HC adsorption coefficient map shown in FIG. This is performed by multiplying the coefficients.
【0045】図10は、第3の実施の形態におけるシステ
ム構成を示す図であり、第1,第2の実施の形態に共通
である図2に示したシステム構成に対して、HC吸着触
媒201の上流側に排気温度検出手段としての温度セン
サ103を設けてある点のみが異なる。そして、第2の
実施の形態においては、排気温度をエンジンの運転条件
から推定演算する構成としたが、第3の実施の形態で
は、前記温度センサ103によって直接的に排気温度を
検出する構成としてあり、これにより、触媒入口の排気
温度を正確に測定することができ、以て、外気温の影響
等を受けずに触媒温度を推定してHC吸着・脱離量を精
度良く演算できる。FIG. 10 is a diagram showing a system configuration according to the third embodiment. The HC adsorption catalyst 201 is different from the system configuration shown in FIG. 2 which is common to the first and second embodiments. The only difference is that a temperature sensor 103 as exhaust temperature detecting means is provided on the upstream side of. In the second embodiment, the exhaust gas temperature is estimated and calculated from the operating conditions of the engine. In the third embodiment, the exhaust gas temperature is directly detected by the temperature sensor 103. Thus, this makes it possible to accurately measure the exhaust gas temperature at the inlet of the catalyst, and to thereby estimate the catalyst temperature without being affected by the outside air temperature and calculate the HC adsorption / desorption amount with high accuracy.
【0046】次に、図11のフローチャートに従って、
上記構成の第3の実施形態を詳述する。S41では、エ
ンジン101の運転条件を読み込む。S42では、前記
温度センサ103で検出された排気温度,単位時間当た
りの排気流量,触媒の表面積及び熱伝導係数からHC吸
着触媒201の温度を演算する。Next, according to the flowchart of FIG.
A third embodiment having the above configuration will be described in detail. In S41, the operating conditions of the engine 101 are read. In S42, the temperature of the HC adsorption catalyst 201 is calculated from the exhaust gas temperature detected by the temperature sensor 103, the exhaust gas flow per unit time, the surface area of the catalyst, and the heat transfer coefficient.
【0047】S43では、S42で演算したHC吸着触
媒201の温度から吸着領域か脱離領域かを判定する。
S43で脱離領域であると判定されたときには、S44
へ進み、前記S24と同様にして、単位時間当たりのH
C脱離量d1を算出する。S45では、それまでの総吸
着量aと前記HC脱離量d1とからHC吸着触媒201
のHC吸着量(残量)を演算する。In S43, it is determined from the temperature of the HC adsorption catalyst 201 calculated in S42 whether the region is an adsorption region or a desorption region.
If it is determined in S43 that the region is the detached region, the process proceeds to S44
To H in the same manner as in S24.
The C desorption amount d1 is calculated. In S45, the HC adsorption catalyst 201 is determined based on the total adsorption amount a and the HC desorption amount d1.
The HC adsorption amount (remaining amount) is calculated.
【0048】S46,S47では、総吸着量aがマイナ
スの値に算出されることを回避するための処理を行う。
一方、S43で、吸着領域であると判定されたときに
は、S48へ進む。S48では、総吸着量aが吸着規定
量a0以上であるか否かを判定する。総吸着量aが吸着
規定量a0以上であるときには、S49へ進んで、HC
増加手段(掃気行程等における燃料噴射)を停止させ
る。In steps S46 and S47, processing is performed to prevent the total adsorption amount a from being calculated to a negative value.
On the other hand, when it is determined in S43 that the area is the suction area, the process proceeds to S48. In S48, it is determined whether or not the total adsorption amount a is equal to or more than the specified adsorption amount a0. When the total adsorption amount a is equal to or more than the specified adsorption amount a0, the process proceeds to S49, where HC
The increasing means (fuel injection in a scavenging stroke or the like) is stopped.
【0049】また、総吸着量aが吸着規定量a0未満で
あるときには、S50へ進み、HC増加手段を作動させ
る。S51では、前記S31と同様に、HC吸着量a1
を算出し、これを総吸着量aに加算して、総吸着量aを
更新する。図12は、第4の実施の形態におけるシステ
ム構成を示す図であり、図10に示される第3の実施の
形態のシステム構成に対して、HC吸着触媒201の下
流側にも排気温度検出手段としての温度センサ104を
設けてある点のみが異なる。When the total adsorption amount a is less than the specified adsorption amount a0, the routine proceeds to S50, where the HC increasing means is operated. In S51, similarly to S31, the HC adsorption amount a1
Is calculated and added to the total amount of adsorption a to update the total amount of adsorption a. FIG. 12 is a diagram showing a system configuration according to the fourth embodiment. In contrast to the system configuration according to the third embodiment shown in FIG. The only difference is that a temperature sensor 104 is provided.
【0050】かかる構成によると、触媒201の入口温
度及び出口温度をそれぞれに測定することができ、触媒
出入口温度からより高精度に触媒の活性(脱離状態)を
判定することが可能となる。HC触媒201の出入口温
度は、触媒の活性状態においては出口温度が入口温度を
上回るが、図13に示すように、劣化により活性が低下
すると入口と出口の排気温度の差ΔTが小さくなる。According to such a configuration, the inlet temperature and the outlet temperature of the catalyst 201 can be measured separately, and the activity (desorption state) of the catalyst can be determined with higher accuracy from the catalyst inlet / outlet temperature. As for the inlet / outlet temperature of the HC catalyst 201, the outlet temperature is higher than the inlet temperature in the activated state of the catalyst, but as shown in FIG. 13, when the activity is lowered due to deterioration, the difference ΔT between the inlet and outlet exhaust temperatures becomes smaller.
【0051】そこで、図14に示すように、各運転状態
において前記温度差ΔTの基準値を設定し、この基準値
を実際の温度差ΔTが下回った場合には、触媒が劣化し
ていると判定することができる。そして、前記HC吸着
触媒201が劣化してHCの吸着性能が低下していると
推定されるときには、脱離条件においてHC増加手段に
よってNOx触媒202へ還元剤HCを供給すること
で、吸着触媒201が劣化の後もNOx触媒202のN
Ox浄化性能を維持することが可能となる。Therefore, as shown in FIG. 14, a reference value of the temperature difference ΔT is set in each operation state, and when the actual temperature difference ΔT falls below this reference value, it is determined that the catalyst has deteriorated. Can be determined. When it is estimated that the HC adsorbing catalyst 201 is deteriorated and the HC adsorbing performance is degraded, the reducing agent HC is supplied to the NOx catalyst 202 by the HC increasing means under the desorption condition, so that the adsorbing catalyst 201 is depleted. Of the NOx catalyst 202 even after the
Ox purification performance can be maintained.
【0052】図15は、第4の実施の形態の制御内容を
示すフローチャートである。S6lでは、エンジン10
1の運転条件(吸入空気量Q,エンジン回転数Ne)を
読み込む。S62では触媒劣化フラグを判別すること
で、HC吸着触媒201の劣化状況を判定する。FIG. 15 is a flowchart showing the control contents of the fourth embodiment. In S61, the engine 10
The first operating condition (intake air amount Q, engine speed Ne) is read. In S62, the deterioration state of the HC adsorption catalyst 201 is determined by determining the catalyst deterioration flag.
【0053】前記触媒劣化フラグがOFFで触媒劣化が
発生していないときには、S63へ進み、温度センサ1
03からHC吸着触媒201の入口排気温度Tを検出
し、その温度TがHC脱離開始温度T1より高いか否か
を判定する。入口排気温度TがHC脱離開始温度T1よ
り高い場合には、S64へ進み、入口排気温度T=触媒
温度と見做して、図4に示すエンジン運転状態に応じた
HC脱離マップと図7に示す触媒温度に応じたHC脱離
係数マップとを参照して、エンジンの運転状態とHC吸
着触媒201の温度に応じた単位時間当たりのHC脱離
量を算出する。If the catalyst deterioration flag is OFF and no catalyst deterioration has occurred, the routine proceeds to S63, where the temperature sensor 1
From 03, the inlet exhaust temperature T of the HC adsorption catalyst 201 is detected, and it is determined whether the temperature T is higher than the HC desorption start temperature T1. If the inlet exhaust gas temperature T is higher than the HC desorption start temperature T1, the process proceeds to S64, where it is assumed that the inlet exhaust gas temperature T = catalyst temperature, and the HC desorption map and the diagram shown in FIG. The HC desorption amount per unit time according to the operating state of the engine and the temperature of the HC adsorption catalyst 201 is calculated with reference to the HC desorption coefficient map corresponding to the catalyst temperature shown in FIG.
【0054】尚、前記入口排気温度T,排気流量,触媒
の表面積及び熱伝導係数から触媒温度を演算させても良
い。S65では、前記S64で演算された脱離量をそれ
までの総吸着量aから減算する。S66では、上記減算
処理の結果としての総吸着量aが0を越えているか否か
を判別し、0以下になっているときには、S67で総吸
着量aを0にリセットする。The catalyst temperature may be calculated from the inlet exhaust gas temperature T, the exhaust gas flow rate, the surface area of the catalyst, and the heat conduction coefficient. In S65, the desorption amount calculated in S64 is subtracted from the total adsorption amount a so far. In S66, it is determined whether or not the total suction amount a as a result of the subtraction processing exceeds 0. If the total suction amount a is not more than 0, the total suction amount a is reset to 0 in S67.
【0055】S68では、HC吸着触媒201にHC吸
着が無い状態で、触媒出入口温度から触媒201の劣化
を判定する。図12に示すように触媒出口温度は活性温
度T2を超えると入口温度より高くなるが、劣化が進む
と前記出入口温度の差が小さくなるので、吸着HCの影
響の無い状儀でこの出入口温度の差△Tから触媒の劣化
を判定する(劣化診断手段)。In step S68, the deterioration of the catalyst 201 is determined based on the catalyst entrance / exit temperature while the HC adsorption catalyst 201 does not adsorb HC. As shown in FIG. 12, when the catalyst outlet temperature exceeds the activation temperature T2, the catalyst outlet temperature becomes higher than the inlet temperature. However, as the deterioration proceeds, the difference between the inlet and outlet temperatures becomes smaller. The deterioration of the catalyst is determined from the difference ΔT (deterioration diagnosis means).
【0056】具体的には、図14に示すマップから検索
されるエンジンの運転条件に応じた基準温度差ΔTと、
センサ103,104で実測した△Tとを比較し、実測
値が基準値を下回るときには、HC吸着触媒201が劣
化したと判定し、S69で触媒劣化フラグをセットす
る。S63でHC吸着触媒201の入口排気温度TがH
C脱離開始温度T1より低いと判定されたとき、即ち、
吸着領域であるときには、S70へ進み、HC吸着触媒
201のHC吸着量aが吸着規定量a0以上であるか否
かを判別する。Specifically, a reference temperature difference ΔT corresponding to the engine operating conditions retrieved from the map shown in FIG.
When the measured value is smaller than the reference value, it is determined that the HC adsorption catalyst 201 has deteriorated, and a catalyst deterioration flag is set in S69. In S63, the exhaust gas temperature T at the inlet of the HC adsorption catalyst 201 becomes H
When it is determined that the temperature is lower than the C desorption start temperature T1, that is,
If it is in the adsorption region, the process proceeds to S70, and it is determined whether the HC adsorption amount a of the HC adsorption catalyst 201 is equal to or more than the specified adsorption amount a0.
【0057】HC吸着量aが吸着規定量a0以上である
ときには、S71でHC増加手段を停止する。一方、H
C吸着量aが吸着規定量a0以上であるときには、S7
2で、掃気行程中に燃料噴射を行わせることでHC吸着
触媒201にHCを供給するHC増加手段を作動させ
る。If the HC adsorption amount a is equal to or greater than the specified adsorption amount a0, the HC increasing means is stopped in S71. On the other hand, H
When the C adsorption amount a is equal to or more than the specified adsorption amount a0, S7
In step 2, the HC increasing means for supplying HC to the HC adsorption catalyst 201 by operating fuel injection during the scavenging stroke is operated.
【0058】S73では、図5に示す単位時間当たりの
HC吸着量マップと図8に示す触媒温度に応じた吸着係
数マップを参照して、エンジンの運転状態と触媒温度と
に応じた吸着量a1を算出して、該吸着量a1に基づい
て総吸着量aを増大更新する。また、S62で触媒劣化
フラグがonでHC吸着触媒201の劣化が判定されて
いる状態であるときには、S74へ進み、温度センサ1
03で検出される触媒入口温度Tが脱離開始温度T1以
上であるか否かを判別する。In step S73, referring to the HC adsorption amount map per unit time shown in FIG. 5 and the adsorption coefficient map corresponding to the catalyst temperature shown in FIG. 8, the adsorption amount a1 corresponding to the operating state of the engine and the catalyst temperature is determined. Is calculated, and the total amount of adsorption a is increased and updated based on the amount of adsorption a1. When the catalyst deterioration flag is on in S62 and the deterioration of the HC adsorption catalyst 201 is determined, the process proceeds to S74, and the temperature sensor 1
It is determined whether or not the catalyst inlet temperature T detected at 03 is equal to or higher than the desorption start temperature T1.
【0059】そして、脱離開始温度T1以上であるとき
には、S75へ進んで、HC増加手段を作動させ(劣化
時HC増加制御手段)、脱離開始温度T1未満であると
きには、S76へ進んで、前記HC増加手段(掃気行程
等における燃料噴射)を停止させる。即ち、HC吸着触
媒201の劣化によってHCの吸着・脱離性能が低下す
ると、正常状態であればHCの脱離が行われる条件下で
あっても、必要十分なHCをNOx触媒202に対して
還元剤として供給することができなくなるので、劣化時
には、HC吸着触媒201から脱離したHCを供給する
代わりに、HC増加手段によってエンジンから排出され
るHCを直接NOx触媒202に供給して、NOx触媒
202におけるHC/NOx比の増大を図る。When the temperature is equal to or higher than the desorption start temperature T1, the process proceeds to S75, in which the HC increasing means is operated (deterioration-time HC increase control means). When the temperature is lower than the desorption start temperature T1, the process proceeds to S76. The HC increasing means (fuel injection in a scavenging stroke or the like) is stopped. That is, if the HC adsorption / desorption performance deteriorates due to the deterioration of the HC adsorption catalyst 201, a sufficient amount of HC is supplied to the NOx catalyst 202 under a normal condition even under the condition in which HC desorption is performed. Since it cannot be supplied as a reducing agent, at the time of deterioration, instead of supplying HC desorbed from the HC adsorption catalyst 201, HC discharged from the engine by the HC increasing means is directly supplied to the NOx catalyst 202, The HC / NOx ratio in the catalyst 202 is increased.
【0060】図16は、本発明の第5の実施の形態にお
けるシステム構成を示す図であり、本実施の形態では、
HC増加手段として、通常の噴射時期を遅角させること
でエンジンから排出されるHCを増加させ、以て、HC
吸着触媒201に対して積極的にHCを吸着させること
を特徴とするが、噴射時期の遅角によるHC増加は、コ
モンレール式燃料噴射装置の他、分配型燃料噴射装置で
も実施可能であるため、図16には、燃料噴射装置10
7として分配型燃料噴射装置を示してある。FIG. 16 is a diagram showing a system configuration according to the fifth embodiment of the present invention.
As a means for increasing HC, the amount of HC discharged from the engine is increased by retarding the normal injection timing, so that HC
Although HC is positively adsorbed to the adsorption catalyst 201, the increase in HC due to the delay of the injection timing can be performed not only by the common rail type fuel injection device but also by the distribution type fuel injection device. FIG. 16 shows the fuel injection device 10.
Reference numeral 7 denotes a distribution type fuel injection device.
【0061】第5の実施の形態は、第1〜第4の実施の
形態に示した主噴射とは別に掃気行程等において燃料を
噴射させるHC増加手段に対して、噴射時期の遅角をH
C増加手段とする点のみが異なり、第1〜第4の実施の
形態のいずれにも適用可能である。例えば、第1の実施
の形態に適用した場合には、図6のフローチャートにお
いて、S7でHC吸着量aが規定量a0未満であると判
別され、S9へ進むと、噴射時期を遅角させることで、
エンジン101から排出されるHC量を増大させ、HC
吸着触媒201に吸着されるHCの積極的な増大を図
る。そして、HC吸着量aが規定量a0以上になると、
S8へ進んで、前記噴射時期の遅角を停止し、通常の噴
射時期での噴射に復帰させる。The fifth embodiment is different from the main injection shown in the first to fourth embodiments in that the HC injection means for injecting fuel during a scavenging stroke or the like is provided with a retardation of the injection timing by H.
The only difference is that the C increasing means is used, and the present invention can be applied to any of the first to fourth embodiments. For example, when applied to the first embodiment, in the flowchart of FIG. 6, it is determined in S7 that the HC adsorption amount a is less than the specified amount a0, and when the process proceeds to S9, the injection timing is retarded. so,
The amount of HC discharged from the engine 101 is increased,
Active increase of HC adsorbed on the adsorption catalyst 201 is aimed at. When the HC adsorption amount a becomes equal to or more than the specified amount a0,
Proceeding to S8, the retard of the injection timing is stopped, and the injection is returned to the normal injection timing.
【0062】図9のS28〜S30、図11のS48〜
S50、図15のS70〜S72においても同様に噴射
時期の遅角制御をHC増加手段として用いることができ
る。図17は、本発明の第6の実施の形態を示すシステ
ム構成図であり、この図17に示すシステム構成では、
吸気ポート中にアクチュエータによって開閉駆動される
スワール制御弁108を備えた構成となっており、この
スワール制御弁108の制御によってHC増加手段を実
現することを特徴とする。S28 to S30 of FIG. 9 and S48 to S48 of FIG.
In S50 and S70 to S72 in FIG. 15, similarly, the retard control of the injection timing can be used as the HC increasing means. FIG. 17 is a system configuration diagram showing the sixth embodiment of the present invention. In the system configuration shown in FIG.
The intake port includes a swirl control valve 108 driven to be opened and closed by an actuator, and the control of the swirl control valve 108 realizes an HC increasing means.
【0063】即ち、本来、前記スワール制御弁108に
よって強いスワールを発生させるべき低負荷,低回転領
域と重なる吸着領域において、HC吸着触媒201に対
するHCの吸着量が規定量よりも少ないと判断されたと
きには、スワールを強制的に弱める(スワール制御弁1
08の開度を増大させる)ことで燃焼室(キヤビテイ)
内の流動を弱めて、燃焼室内壁に噴射ノズルから噴射さ
れた燃料を付着させ未燃HCとして排出させる。That is, it is determined that the amount of HC adsorbed on the HC adsorption catalyst 201 is smaller than the specified amount in the adsorption region overlapping the low-load, low-rotation region where the swirl control valve 108 should generate a strong swirl. Sometimes, the swirl is forcibly weakened (swirl control valve 1
08 opening) to increase the combustion chamber (cavity)
The fuel injected from the injection nozzle adheres to the inner wall of the combustion chamber and is discharged as unburned HC.
【0064】この第6の実施の形態も、第1〜第4の実
施の形態のいずれに対しても適用可能であり、例えば、
第1の実施の形態に適用した場合には、図6のフローチ
ャートにおいて、S7でHC吸着量aが規定量a0未満
であると判別され、S9へ進むと、スワール制御弁10
8の開度を通常よりも開けることでスワールを弱め、エ
ンジンからのHC排出量を増大させる。そして、HC吸
着量aが規定量a0以上になると、S8へ進んで、前記
スワールを弱める制御を停止し、通常の開度にスワール
制御弁108を制御する。The sixth embodiment is also applicable to any of the first to fourth embodiments. For example,
When applied to the first embodiment, in the flowchart of FIG. 6, it is determined in S7 that the HC adsorption amount a is less than the specified amount a0, and when the process proceeds to S9, the swirl control valve 10
The swirl is weakened by opening the opening degree of the opening 8 more than usual, and the amount of HC emission from the engine is increased. When the HC adsorption amount a becomes equal to or greater than the specified amount a0, the process proceeds to S8, in which the control for weakening the swirl is stopped, and the swirl control valve 108 is controlled to a normal opening.
【0065】図9のS28〜S30、図11のS48〜
S50、図15のS70〜S72においても同様にスワ
ールを弱める制御をHC増加手段として用いることがで
きる。図18は、本発明の第7の実施の形態を示すシス
テム構成図であり、この図18に示すシステム構成で
は、排気通路102とインテークマニホールドとを連通
させるEGR通路109と、該EGR通路109に介装
されアクチュエータで開閉駆動されるEGR弁110と
から構成される排気還流装置を備えると共に、インテー
クマニホールドとエアクリーナ111との間にアクチュ
エータで開閉駆動される吸気絞り弁105を設けてあ
る。S28 to S30 in FIG. 9 and S48 to S30 in FIG.
Similarly in S50 and S70 to S72 in FIG. 15, the control for weakening the swirl can be used as the HC increasing means. FIG. 18 is a system configuration diagram showing a seventh embodiment of the present invention. In the system configuration shown in FIG. 18, an EGR passage 109 for communicating the exhaust passage 102 with the intake manifold, An exhaust gas recirculation device including an EGR valve 110 interposed and driven to open and close by an actuator is provided, and an intake throttle valve 105 driven to be opened and closed by an actuator is provided between the intake manifold and the air cleaner 111.
【0066】そして、それぞれアクチュエータによって
開閉駆動される前記EGR弁110,吸気絞り弁105
の開度を制御することで、HC増加手段を実現するもの
であり、具体的には、吸着領域(低負荷領域)で、吸気
絞り弁105と同時にEGR弁110を少し閉じること
で空気過剰率を低下させて燃焼を悪化させ、未燃HCを
増加させるものである。The EGR valve 110 and the intake throttle valve 105, which are opened and closed by actuators, respectively.
By controlling the degree of opening, the HC increasing means is realized. Specifically, in the adsorption region (low load region), the EGR valve 110 is slightly closed at the same time as the intake throttle valve 105 to reduce the excess air ratio. Is reduced to deteriorate combustion and increase unburned HC.
【0067】この第7の実施の形態も、第1〜第4の実
施の形態のいずれに対しても適用可能であり、例えば、
第1の実施の形態に適用した場合には、図6のフローチ
ャートにおいて、S7でHC吸着量aが規定量a0未満
であると判別され、S9へ進むと、吸気絞り弁105と
同時にEGR弁110を少し閉じることで空気過剰率を
低下させて燃焼を悪化させ、未燃HCを増加させ、HC
吸着触媒201に対して積極的にHCを吸着させる。そ
して、HC吸着量aが規定量a0以上になると、S8へ
進んで、前記EGR弁110,吸気絞り弁105の開度
制御を停止する(絞っていた開度を開ける)。The seventh embodiment is also applicable to any of the first to fourth embodiments. For example,
When applied to the first embodiment, in the flowchart of FIG. 6, it is determined in S7 that the HC adsorption amount a is less than the specified amount a0, and when the process proceeds to S9, the EGR valve 110 is simultaneously operated with the intake throttle valve 105. A little, the excess air ratio is lowered to worsen the combustion, the unburned HC is increased,
HC is positively adsorbed on the adsorption catalyst 201. When the HC adsorption amount a becomes equal to or more than the specified amount a0, the process proceeds to S8, in which the opening control of the EGR valve 110 and the intake throttle valve 105 is stopped (the throttled opening is opened).
【0068】図9のS28〜S30、図11のS48〜
S50、図15のS70〜S72においても同様に吸気
絞り弁105,EGR弁110を閉じることで燃焼を悪
化させて未燃HCを増加させる制御をHC増加手段とし
て用いることができる。S28 to S30 in FIG. 9 and S48 to S48 in FIG.
Similarly in S50 and S70 to S72 in FIG. 15, the control to increase the unburned HC by worsening the combustion by closing the intake throttle valve 105 and the EGR valve 110 can be used as the HC increasing means.
【図1】請求項2記載の発明に係る排気浄化装置の構成
ブロック図。FIG. 1 is a block diagram showing the configuration of an exhaust emission control device according to a second embodiment of the present invention.
【図2】第1の実施形態におけるシステム構成図。FIG. 2 is a system configuration diagram according to the first embodiment.
【図3】HC吸着触媒のHC脱離特性を示す図。FIG. 3 is a view showing HC desorption characteristics of an HC adsorption catalyst.
【図4】エンジンの運転条件に応じて脱離量を記憶した
HC脱離量検出マップを示す図。FIG. 4 is a diagram showing an HC desorption amount detection map in which desorption amounts are stored in accordance with engine operating conditions.
【図5】エンジンの運転条件に応じて吸着量を記憶した
HC吸着量検出マップを示す図。FIG. 5 is a diagram showing an HC adsorption amount detection map in which the amount of adsorption is stored according to operating conditions of the engine.
【図6】第1の実施形態の制御内容を示すフローチャー
ト。FIG. 6 is a flowchart showing control contents according to the first embodiment;
【図7】エンジン回転数Neと触媒入口温度とに応じて
HC脱離係数を記憶したHC脱離係数マップを示す図。FIG. 7 is a view showing an HC desorption coefficient map in which an HC desorption coefficient is stored according to an engine speed Ne and a catalyst inlet temperature.
【図8】エンジン回転数Neと触媒入口温度とに応じて
HC吸着係数を記憶したHC吸着係数マップを示す図。FIG. 8 is a view showing an HC adsorption coefficient map in which an HC adsorption coefficient is stored according to an engine speed Ne and a catalyst inlet temperature.
【図9】第2の実施形態の制御内容を示すフローチャー
ト。FIG. 9 is a flowchart illustrating control contents according to the second embodiment.
【図10】第3の実施形態におけるシステム構成図。FIG. 10 is a system configuration diagram according to a third embodiment.
【図11】第3の実施形態の制御内容を示すフローチャー
ト。FIG. 11 is a flowchart illustrating control contents according to the third embodiment.
【図12】第4の実施形態におけるシステム構成図。FIG. 12 is a system configuration diagram according to a fourth embodiment.
【図13】触媒劣化と触媒出入口温度の差△Tの関係を示
した図。FIG. 13 is a diagram illustrating a relationship between catalyst deterioration and a difference ΔT between catalyst inlet / outlet temperatures.
【図14】触媒出入口温度の差△Tの基準値を記憶したマ
ップを示す図。FIG. 14 is a view showing a map in which a reference value of a difference ΔT between catalyst inlet / outlet temperatures is stored.
【図15】第4の実施形態の制御内容を示すフローチャー
ト。FIG. 15 is a flowchart illustrating control contents according to the fourth embodiment.
【図16】第5の実施形態を示すシステム構成図。FIG. 16 is a system configuration diagram showing a fifth embodiment.
【図17】第6の実施形態を示すシステム構成図。FIG. 17 is a system configuration diagram showing a sixth embodiment.
【図18】第7の実施形態を示すシステム構成図。FIG. 18 is a system configuration diagram showing a seventh embodiment.
101 エンジン 102 排気通路 103 ,104 温度センサ 105 吸気絞り弁 106 エンジンコントロールユニット 107 燃料噴射装置 108 スワール制御弁 109 EGRバルブ 110 EGR通路 111 エアクリーナ 201 HC吸着触媒 202 NOx触媒 203 触媒ケース 101 engine 102 exhaust passage 103, 104 temperature sensor 105 intake throttle valve 106 engine control unit 107 fuel injection device 108 swirl control valve 109 EGR valve 110 EGR passage 111 air cleaner 201 HC adsorption catalyst 202 NOx catalyst 203 catalyst case
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02B 31/00 F02B 31/00 L F02D 21/08 301 F02D 21/08 301A 41/04 310 41/04 310Z 41/40 41/40 D F 43/00 301 43/00 301N 301K F02M 25/07 570 F02M 25/07 570B ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F02B 31/00 F02B 31/00 L F02D 21/08 301 F02D 21/08 301A 41/04 310 41/04 310Z 41/40 41 / 40 DF 43/00 301 43/00 301N 301K F02M 25/07 570 F02M 25/07 570B
Claims (12)
るNOx触媒を備える一方、該NOx触媒の上流側に排
気中のHCを吸着するHC吸着材を備え、前記HC吸着
材から脱離したHCを下流側のNOx触媒に還元剤とし
て供給する構成のエンジンの排気浄化装置において、 前記HC吸着材がHCを吸着する条件のときであって、
前記HC吸着材に対するHCの吸着量が規定量よりも少
ないと判断されるときに、前記HC吸着材に流入する排
気中のHC量を増加させることを特徴とするエンジンの
排気浄化装置。An NOx catalyst capable of purifying NOx in exhaust gas in an excess oxygen state is provided, and an HC adsorbent for adsorbing HC in exhaust gas is provided upstream of the NOx catalyst, and desorbed from the HC adsorbent. In the exhaust gas purifying apparatus for an engine configured to supply the reduced HC to the NOx catalyst on the downstream side as a reducing agent, the condition is that the HC adsorbent adsorbs HC,
An exhaust gas purifying apparatus for an engine, wherein when it is determined that the amount of HC adsorbed on the HC adsorbent is smaller than a specified amount, the amount of HC in the exhaust gas flowing into the HC adsorbent is increased.
るNOx触媒と、該NOx触媒の上流側に配置され排気
中のHCを吸着するHC吸着材とを備え、前記HC吸着
材から脱離したHCを下流側のNOx触媒に還元剤とし
て供給する構成のエンジンの排気浄化装置において、 前記HC吸着材の吸着・脱離条件を判別する吸着・脱離
条件判別手段と、 前記HC吸着材に対するHCの吸着量を検出する吸着量
検出手段と、 前記HC吸着材に流入する排気中のHC量を増加させる
HC増加手段と、 前記吸着・脱離条件判別手段でHC吸着材の吸着条件が
判別され、かつ、前記吸着量検出手段で検出されたHC
吸着量が規定量よりも少ないときに、前記HC増加手段
を作動させるHC増加制御手段と、 を設けたことを特徴とするエンジンの排気浄化装置。2. An NOx catalyst capable of purifying NOx in exhaust gas in an excess oxygen state, and an HC adsorbent disposed upstream of the NOx catalyst for adsorbing HC in the exhaust gas. An exhaust / purification device for an engine configured to supply the separated HC as a reducing agent to a downstream NOx catalyst, wherein an adsorption / desorption condition determining means for determining an adsorption / desorption condition of the HC adsorbent; Adsorption amount detecting means for detecting the amount of HC adsorbed to the fuel cell; HC increasing means for increasing the amount of HC in the exhaust gas flowing into the HC adsorbent; HC determined and detected by the adsorption amount detecting means.
An exhaust gas purification device for an engine, comprising: HC increase control means for operating the HC increase means when the amount of adsorption is smaller than a prescribed amount.
運転条件から、前記HC吸着材の吸着・脱離条件を判別
することを特徴とする請求項2記載のエンジンの排気浄
化装置。3. An exhaust gas purifying apparatus for an engine according to claim 2, wherein said adsorption / desorption condition judging means judges the adsorption / desorption condition of said HC adsorbent from the operating condition of the engine.
する排気温度検出手段を備え、前記吸着・脱離条件判別
手段が前記排気温度検出手段の検出結果に基づいて、前
記HC吸着材の吸着・脱離条件を判別することを特徴と
する請求項2記載のエンジンの排気浄化装置。4. An exhaust gas temperature detecting means for detecting an exhaust gas temperature flowing into the HC adsorbent, wherein the adsorbing / desorbing condition determining means detects the temperature of the HC adsorbing material based on a detection result of the exhaust temperature detecting means. 3. The exhaust gas purifying apparatus for an engine according to claim 2, wherein conditions for adsorption and desorption are determined.
件から前記HC吸着材における単位時間当たりの脱離量
と吸着量とをそれぞれ演算して、前記HC吸着材におけ
るHC吸着量を検出することを特徴とする請求項2〜4
のいずれか1つに記載のエンジンの排気浄化装置。5. The adsorption amount detecting means calculates a desorption amount and an adsorption amount per unit time of the HC adsorbent from an operating condition of an engine, and detects the HC adsorption amount in the HC adsorbent. 5. The method according to claim 2, wherein
An exhaust gas purification device for an engine according to any one of the above.
件と前記HC吸着材の温度とから前記HC吸着材におけ
る単位時間当たりの脱離量と吸着量とをそれぞれ演算し
て、前記HC吸着材におけるHC吸着量を検出すること
を特徴とする請求項2〜4のいずれか1つに記載のエン
ジンの排気浄化装置。6. The HC adsorbing means calculates an amount of desorption and an amount of adsorbed per unit time of the HC adsorbent from the operating conditions of the engine and the temperature of the HC adsorbent, respectively, and calculates the amount of adsorbed HC. The exhaust gas purification device for an engine according to any one of claims 2 to 4, wherein an amount of HC adsorbed on the material is detected.
別に燃料を噴射させることで、エンジンから排出される
HCを増加させることを特徴とする請求項2〜6のいず
れか1つに記載のエンジンの排気浄化装置。7. The method according to claim 2, wherein the HC increasing means increases the amount of HC discharged from the engine by injecting fuel separately from normal fuel injection. An exhaust gas purifying device for an engine according to the above.
角させることで、エンジンから排出されるHCを増加さ
せることを特徴とする請求項2〜6のいずれか1つに記
載のエンジンの排気浄化装置。8. The engine according to claim 2, wherein the HC increasing means increases HC discharged from the engine by delaying fuel injection timing. Exhaust purification equipment.
整するスワール制御弁を備え、 前記HC増加手段が、前記スワール制御弁によってスワ
ールを弱めることで、エンジンから排出されるHCを増
加させることを特徴とする請求項2〜6のいずれか1つ
に記載のエンジンの排気浄化装置。9. A swirl control valve for adjusting the intensity of swirl generated in the combustion chamber, wherein the HC increasing means weakens the swirl by the swirl control valve to increase HC exhausted from the engine. The exhaust gas purification device for an engine according to any one of claims 2 to 6, wherein:
剰率を低下させることで、エンジンから排出されるHC
を増加させることを特徴とする請求項2〜6のいずれか
1つに記載のエンジンの排気浄化装置。10. The HC exhausted from the engine by reducing the excess air ratio of the combustion mixture by the HC increasing means.
The exhaust gas purifying apparatus for an engine according to any one of claims 2 to 6, wherein the value is increased.
HC増加手段が、前記吸気絞り弁の開度と排気還流装置
による排気還流量とを制御して、燃焼混合気の空気過剰
率を低下させてエンジンから排出されるHCを増加させ
ることを特徴とする請求項10記載のエンジンの排気浄化
装置。11. An excess air ratio of a combustion mixture, comprising an intake throttle valve and an exhaust gas recirculation device, wherein the HC increasing means controls an opening degree of the intake throttle valve and an amount of exhaust gas recirculated by the exhaust gas recirculation device. 11. The exhaust gas purifying apparatus for an engine according to claim 10, wherein the exhaust gas is reduced to increase HC discharged from the engine.
手段と、 該劣化診断手段でHC吸着材の劣化状態が判定されたと
きに、前記HC増加制御手段に代えて、前記吸着・脱離
条件判別手段で脱離条件が判別されているときに前記H
C増加手段を作動させる劣化時HC増加制御手段と、 を設けたことを特徴とする請求項2〜11のいずれか1つ
に記載のエンジンの排気浄化装置。12. A deterioration diagnosing means for diagnosing deterioration of the HC adsorbent, and when the deterioration diagnosing means determines the deterioration state of the HC adsorbent, the adsorption / desorption is performed in place of the HC increase control means. When the desorption condition is determined by the desorption condition determining means,
The exhaust gas purifying apparatus for an engine according to any one of claims 2 to 11, further comprising: a deterioration-time HC increasing control means for operating the C increasing means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24548997A JP3695081B2 (en) | 1997-09-10 | 1997-09-10 | Engine exhaust purification system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24548997A JP3695081B2 (en) | 1997-09-10 | 1997-09-10 | Engine exhaust purification system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1181991A true JPH1181991A (en) | 1999-03-26 |
JP3695081B2 JP3695081B2 (en) | 2005-09-14 |
Family
ID=17134428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24548997A Expired - Fee Related JP3695081B2 (en) | 1997-09-10 | 1997-09-10 | Engine exhaust purification system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3695081B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007064047A1 (en) * | 2005-12-02 | 2007-06-07 | Toyota Jidosha Kabushiki Kaisha | Exhaust purifier for internal combustion engine |
US7703275B2 (en) | 2003-12-01 | 2010-04-27 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification device of compression ignition type internal combustion engine |
-
1997
- 1997-09-10 JP JP24548997A patent/JP3695081B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7703275B2 (en) | 2003-12-01 | 2010-04-27 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification device of compression ignition type internal combustion engine |
WO2007064047A1 (en) * | 2005-12-02 | 2007-06-07 | Toyota Jidosha Kabushiki Kaisha | Exhaust purifier for internal combustion engine |
EP1956209A1 (en) * | 2005-12-02 | 2008-08-13 | Toyota Jidosha Kabushiki Kaisha | Exhaust purifier for internal combustion engine |
EP1956209A4 (en) * | 2005-12-02 | 2009-12-02 | Toyota Motor Co Ltd | EXHAUST PURIFIER FOR INTERNAL COMBUSTION ENGINE |
US7845163B2 (en) | 2005-12-02 | 2010-12-07 | Toyota Jidosha Kabushiki Kaisha | Device for purifying exhaust gas of an internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JP3695081B2 (en) | 2005-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4120523B2 (en) | Exhaust gas recirculation control device for internal combustion engine | |
US6901744B2 (en) | Air-fuel ratio control apparatus of internal combustion engine | |
US7555895B2 (en) | Exhaust gas purifying apparatus and method for internal combustion engine | |
KR100336549B1 (en) | Evaporative fuel supply control device of lean-burn internal combustion engine | |
JP3750380B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH08296482A (en) | Air-fuel ratio controller for internal combustion engine | |
JP3805098B2 (en) | Engine exhaust gas purification control device | |
JP2000314342A (en) | Air-fuel ratio control device for internal combustion engine | |
JPH1162728A (en) | Vaporized fuel concentration determining device for internal combustion engine | |
JPH06229330A (en) | Evaporated fuel controller of internal combustion engine | |
JP2005048715A (en) | Exhaust emission control device for internal combustion engine | |
US6145306A (en) | Exhaust gas purifying of lean-burn internal combustion engine | |
JP3642171B2 (en) | Diesel engine exhaust purification system | |
JP3767157B2 (en) | Diesel engine exhaust purification system | |
JP3850999B2 (en) | Internal combustion engine | |
JP3695081B2 (en) | Engine exhaust purification system | |
JP2006258047A (en) | Exhaust gas purification system for internal combustion engine | |
JP3562315B2 (en) | Evaporative fuel supply control device for lean burn internal combustion engine | |
JP4746313B2 (en) | Control device for internal combustion engine | |
JP3488480B2 (en) | Evaporative fuel control system for internal combustion engine | |
JP4609061B2 (en) | Control device for internal combustion engine | |
JPH1054310A (en) | Intake control device for internal combustion engine | |
JP2004360488A (en) | Exhaust purification device for internal combustion engine | |
JP3123438B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2006177425A (en) | Controller of lean-burn internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050329 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050607 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050620 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090708 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100708 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110708 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120708 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120708 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130708 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |