JPH1170315A - Treatment of high temperature gas - Google Patents
Treatment of high temperature gasInfo
- Publication number
- JPH1170315A JPH1170315A JP9308209A JP30820997A JPH1170315A JP H1170315 A JPH1170315 A JP H1170315A JP 9308209 A JP9308209 A JP 9308209A JP 30820997 A JP30820997 A JP 30820997A JP H1170315 A JPH1170315 A JP H1170315A
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- gas
- amount
- raw material
- temperature gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Fire-Extinguishing Compositions (AREA)
- Chimneys And Flues (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、活性炭を用いて都市ゴ
ミなどの焼却炉などから発生する高温の排ガス中に含ま
れるダイオキシン類等の有害物を除去する高温ガスの処
理方法において、活性炭の発火や爆発の危険性がなく安
全に高温ガスを処理する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating high-temperature gas for removing harmful substances such as dioxins contained in high-temperature exhaust gas generated from incinerators such as municipal waste using activated carbon. The present invention relates to a method for safely processing hot gas without danger of ignition or explosion.
【0002】[0002]
【従来の技術】都市ゴミや産業廃棄物などを焼却したと
きに発生する排ガス中の有害物には、塩化水素や硫黄酸
化物等の酸性ガスや水銀等の重金属の他に、猛毒のダイ
オキシン類が含まれており、ダイオキシン類排出量の抑
制が世界的な問題になりつつある。2. Description of the Related Art Toxic substances in exhaust gas generated when incinerators such as municipal waste and industrial waste are incinerated include acid gases such as hydrogen chloride and sulfur oxides, heavy metals such as mercury, and highly toxic dioxins. And controlling dioxin emissions is becoming a global problem.
【0003】焼却過程におけるダイオキシン類の生成反
応は複雑であり未だ解明されていないが、塩素を含む廃
棄物の燃焼によって発生した前駆物質が排ガスの冷却過
程で再合成反応を起こしてダイオキシン類を生成すると
考えられている。生成したダイオキシン類の除去方法と
して最も有効な方法に活性炭による吸着除去があり、活
性炭による処理はダイオキシン以外にも水銀等多くの有
害物質を除去できるという利点がある。[0003] The dioxin formation reaction in the incineration process is complicated and has not been elucidated yet, but the precursor generated by the combustion of chlorine-containing waste undergoes a resynthesis reaction in the exhaust gas cooling process to form dioxins. It is believed that. The most effective method for removing the generated dioxins is adsorption removal with activated carbon, and treatment with activated carbon has the advantage that many harmful substances such as mercury can be removed in addition to dioxin.
【0004】活性炭による排ガスの処理方法は大きく二
つに分けられる。ひとつは粉末状の活性炭を煙道に噴霧
して、有害物を吸着した活性炭を飛灰と共に集塵機で捕
集排出する方法で、他のひとつは、粒状の活性炭を充填
した吸着塔を別に設け、これを集塵機の下流に設置して
有害物を吸着除去する方法であるが、特に前者の方法
は、通常の焼却プラントにおいて塩化水素や硫黄酸化物
等の酸性ガスを除去するために使われている消石灰粉末
の噴霧設備と同様の設備を使用できるため、設備面での
利点が大きく、既存の焼却プラントの多くでこの方法の
導入が進められている。[0004] Exhaust gas treatment by activated carbon can be roughly divided into two methods. One is a method of spraying activated carbon powder into a flue and collecting and discharging activated carbon adsorbing harmful substances with fly ash together with fly ash.The other is installing a separate adsorption tower filled with granular activated carbon, This method is installed downstream of a dust collector to adsorb and remove harmful substances.The former method is particularly used in ordinary incineration plants to remove acidic gases such as hydrogen chloride and sulfur oxides. Since equipment similar to the equipment for spraying slaked lime powder can be used, there is a great advantage in terms of equipment, and many existing incineration plants are introducing this method.
【0005】[0005]
【発明が解決しようとする課題】上述のような粉末活性
炭を用いる高温ガスの処理法は有害物の除去効率が高
く、装置も簡便であるという利点をもつが、一方で高温
のガス中に可燃性の微粉末を吹き込むことになるため、
煙道内での粉塵爆発や集塵機からの排出の際の発火事故
の恐れがある。The high-temperature gas treatment method using powdered activated carbon as described above has the advantages of high harmful substance removal efficiency and simple equipment, but on the other hand, combustible in high-temperature gas. Because it will blow fine powder of nature,
There is a risk of a dust explosion in the flue or a fire accident during discharge from the dust collector.
【0006】万が一、このような爆発や着火事故が発生
すると、有害物を多量に含んだ焼却灰や活性炭が周囲に
飛散し、深刻な環境汚染を引き起こす恐れがあるため、
排ガスや集塵機の低温化の検討が行われているが、排ガ
スの露点の問題から低温化には限界がある。そこで、粉
塵爆発や発火事故が起きにくく、安全に処理操作ができ
る、粉末活性炭を使用した高温ガスの処理方法が求めら
れていた。本発明は、上記従来の問題点を解消し、粉塵
爆発や発火事故が起きにくく、安全で、かつ処理効率の
高い粉末活性炭を使用した高温ガスの処理方法を提供す
るものである。[0006] In the event of such an explosion or ignition accident, incinerated ash or activated carbon containing a large amount of harmful substances may scatter around and cause serious environmental pollution.
Although studies are being made on lowering the temperature of exhaust gas and dust collectors, there is a limit to lowering the temperature due to the problem of the dew point of the exhaust gas. Therefore, there has been a demand for a method of treating high-temperature gas using powdered activated carbon, which is less likely to cause a dust explosion or an ignition accident and which can be safely treated. SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems and provides a method for treating high-temperature gas using powdered activated carbon which is less likely to cause a dust explosion and a fire accident, is safe and has a high treatment efficiency.
【0007】[0007]
【課題を解決するための手段】上記の問題点を解決する
べく鋭意検討した結果、下記の構成による発明に至っ
た。本発明による高温ガスの処理方法は、950℃での
熱分解ガスから算出した全酸素量が1.5wt%以下で
あり、灰分量が15wt%以上である粉末活性炭を用い
ることを特徴とするMeans for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the invention having the following structure has been reached. The method for treating a high-temperature gas according to the present invention is characterized by using powdered activated carbon having a total oxygen content of 1.5 wt% or less and an ash content of 15 wt% or more calculated from a pyrolysis gas at 950 ° C.
【0008】以下、本発明を詳細に説明する。活性炭の
発火機構は次のように考えられる。活性炭を酸素の存在
下で加熱していくと、活性炭表面の炭素原子が酸化さ
れ、酸化熱を放出すると共に含酸素官能基が形成され
る。このとき、活性炭表面の炭素原子はどれも一様に酸
化されるのではなく、いわゆる活性点に存在する炭素原
子が優先して酸化される。さらに、温度が上がると形成
されていた含酸素官能基は一酸化炭素や二酸化炭素とし
て活性炭表面から脱離し、新たな含酸素官能基が形成さ
れる。この含酸素官能基の生成と脱離の過程を繰り返し
ながら反応面が活性炭中を伝播し、これに伴う酸化熱の
発生量が放熱量を上回ると自発的に温度が上昇し、急激
に酸化速度が増大して発火に至る。また、気体中に活性
炭粉末が浮遊している状態では、活性炭への酸素の供給
量が大きいために、さらに激烈に反応が進行して粉塵爆
発を引き起こす場合もある。Hereinafter, the present invention will be described in detail. The ignition mechanism of activated carbon is considered as follows. When the activated carbon is heated in the presence of oxygen, carbon atoms on the surface of the activated carbon are oxidized, releasing oxidation heat and forming an oxygen-containing functional group. At this time, not all carbon atoms on the activated carbon surface are oxidized uniformly, but carbon atoms existing at so-called active sites are preferentially oxidized. Further, when the temperature rises, the formed oxygen-containing functional group is eliminated from the activated carbon surface as carbon monoxide or carbon dioxide, and a new oxygen-containing functional group is formed. The reaction surface propagates through the activated carbon while repeating the process of generating and desorbing the oxygen-containing functional groups, and when the amount of heat of oxidation accompanying this exceeds the amount of heat released, the temperature rises spontaneously and the oxidation rate rapidly increases. Increases, leading to ignition. Further, in the state where the activated carbon powder is suspended in the gas, the reaction proceeds more violently and may cause a dust explosion due to a large supply amount of oxygen to the activated carbon.
【0009】このような発火あるいは爆発を抑制し、安
全に高温ガスの処理を行うためには、含酸素官能基を形
成しやすい活性点が少なく、かつ活性炭中を酸化反応面
が伝播しにくい活性炭を使用することが有効である。活
性炭表面の活性点の量は活性炭表面に存在する含酸素官
能基の量に対応する。表面含酸素官能基量は、活性炭の
950℃での熱分解ガスから算出した全酸素量によって
求めることができるため、活性点の少ない活性炭を使用
するためには含酸素官能基の少ない活性炭を選択するこ
とが必要である。また、酸化反応面の伝播の抑制には活
性炭中の灰分が有効であると考えられる。これらの見地
に立って、種々の粉末活性炭の性状と発火特性の検討を
行った結果、950℃での熱分解ガスから算出した全酸
素量が1.5wt%以下であり、灰分量が15wt%以
上である粉末活性炭を使用することにより活性炭の発火
の危険性を抑制できることを見出し、本発明に至った。In order to suppress such ignition or explosion and to safely process high-temperature gas, activated carbon in which oxygen-containing functional groups are easily formed is small, and the activated carbon is not easily propagated in the activated carbon. It is effective to use. The amount of active sites on the activated carbon surface corresponds to the amount of oxygen-containing functional groups present on the activated carbon surface. The amount of surface oxygen-containing functional groups can be determined from the total amount of oxygen calculated from the pyrolysis gas of activated carbon at 950 ° C. To use activated carbon with few active points, select activated carbon with few oxygen-containing functional groups. It is necessary to. In addition, it is considered that ash in activated carbon is effective for suppressing propagation of the oxidation reaction surface. From these viewpoints, the properties and ignition characteristics of various powdered activated carbons were examined. As a result, the total oxygen content calculated from the pyrolysis gas at 950 ° C. was 1.5 wt% or less, and the ash content was 15 wt%. The present inventors have found that the risk of ignition of activated carbon can be suppressed by using the powdered activated carbon described above, and have reached the present invention.
【0010】本発明に使用される活性炭の原料として
は、多くの炭素質物質が考えられるが、工業的には活性
化の難易、原料の品位、価格、大量かつ安定的に入手で
きることなどの点が選定条件となる。原料としては、植
物物系の木材、のこくず、ヤシ殻、パルプ廃液、化石燃
料系の石炭、石油重質油、あるいはそれらを熱分解した
石炭および石油系ピッチ、合成高分子、フェノール樹
脂、フラン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリ
デン樹脂、プラスチック廃棄物、廃タイヤ等多種多用で
ある。これら原料から本発明に用いる活性炭を製造する
方法としては、原料によって異なるが、一般には、まず
均一に炭化するため原料を粉化してから造粒することに
より、均一な大きさのペレットとし、これを炭化、賦活
した後、再び粉化する方法が挙げられる。得られた活性
炭の灰分量が足りなくなる場合には、原料を粉化した後
で、無機酸化物を添加してから造粒し炭化すればよい。
この時用いられる無機酸化物としては、安全性の点か
ら、アルミナ、シリカ、酸化鉄等が好ましい。この様に
して灰分量を15wt%以上、より好ましくは15wt
%以上50wt%以下にすることにより、吸着能力をほ
とんど低下させることなく、粉塵爆発の生じにくい活性
炭を得ることができるのである。炭化後の賦活法は、ガ
ス賦活と薬品賦活に大別される。ガス賦活法は、薬品賦
活が化学的な活性化であるのに対して、物理的な活性化
ともいわれ、炭化された原料を高温で水蒸気、炭酸ガ
ス、酸素、その他の酸化ガスなどと接触反応させて、微
細な多孔質の吸着炭をつくる方法であり、工業的には水
蒸気を用いる方法が主流である。薬品賦活法は、原料に
賦活薬品を均等に含侵させて、不活性ガス雰囲気中で加
熱し、薬品の脱水および酸化反応により、微細な多孔質
の吸着炭をつくる方法である。使用される薬品として
は、塩化亜鉛、りん酸、りん酸ナトリウム、塩化カルシ
ウム、硫化カリウム、水酸化カリウム、水酸化ナトリウ
ム、炭酸カリウム、炭酸ナトリウム、硫酸ナトリウム、
硫酸カリウム、炭酸カルシウム等がある。本発明に使用
される活性炭の原料および製法に関しては特に限定され
るものでなく、どのような原料や方法で作られた活性炭
でも本発明に使用できる。As the raw material of the activated carbon used in the present invention, many carbonaceous substances can be considered. However, industrially, it is difficult to activate the raw material, the quality of the raw material, the price, the availability of the raw material in large quantities and stably, and the like. Is the selection condition. Raw materials include plant-based wood, sawdust, coconut shell, pulp waste liquid, fossil fuel-based coal, petroleum heavy oil, or thermally decomposed coal and petroleum pitch, synthetic polymers, phenolic resins, It is widely used for furan resin, polyvinyl chloride resin, polyvinylidene chloride resin, plastic waste, and waste tire. The method of producing the activated carbon used in the present invention from these raw materials varies depending on the raw materials.In general, the raw materials are first powdered for uniform carbonization and then granulated to obtain pellets of uniform size. After carbonization and activation, and then powdering again. If the ash content of the obtained activated carbon becomes insufficient, the raw material may be powdered, and then the inorganic oxide may be added, followed by granulation and carbonization.
As the inorganic oxide used at this time, alumina, silica, iron oxide and the like are preferable from the viewpoint of safety. In this way, the ash content is 15 wt% or more, more preferably 15 wt%.
% To 50 wt% or less, it is possible to obtain activated carbon that is less likely to cause a dust explosion, without substantially reducing the adsorption capacity. Activation methods after carbonization are roughly classified into gas activation and chemical activation. In the gas activation method, chemical activation is chemical activation, whereas physical activation is also called physical activation, and the carbonized raw material is contact-reacted with steam, carbon dioxide, oxygen, and other oxidizing gases at high temperatures. This is a method for producing fine porous adsorbed carbon, and a method using steam is the mainstream industrially. The chemical activation method is a method in which a raw material is uniformly impregnated with an activating chemical, heated in an inert gas atmosphere, and a fine porous adsorbed carbon is produced by a dehydration and oxidation reaction of the chemical. The chemicals used include zinc chloride, phosphoric acid, sodium phosphate, calcium chloride, potassium sulfide, potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, sodium sulfate,
There are potassium sulfate, calcium carbonate and the like. The raw material and production method of the activated carbon used in the present invention are not particularly limited, and activated carbon produced by any raw material or method can be used in the present invention.
【0011】本発明に使用される粉末活性炭の粒径とし
ては、特に限定するものではないが、好ましくは0.0
1μm以上、300μm以下、さらに好ましくは0.1
μm以上、100μm以下とするのが良い。これは活性
炭があまりに細かいと、取り扱いが面倒であり、有害成
分を折角吸着しても、その後で回収しにくくなる恐れが
あるためである。また、粒径が大きすぎると今度は吸着
させる効率が落ちやすいためである。本発明に使用され
る粉末活性炭の比表面積としては、特に限定するもので
はないが、好ましくは100m2 /g以上、2000m
2 /g以下、さらに好ましくは300m2 /g以上、1
500m2 /g以下とするのが良い。The particle size of the powdered activated carbon used in the present invention is not particularly limited, but is preferably 0.0
1 μm or more and 300 μm or less, more preferably 0.1 μm or less
It is preferable that the thickness be not less than μm and not more than 100 μm. This is because if the activated carbon is too fine, handling is troublesome, and even if harmful components are adsorbed at an angle, there is a possibility that it will be difficult to recover the harmful components thereafter. On the other hand, if the particle size is too large, the efficiency of adsorption is likely to decrease this time. The specific surface area of the powdered activated carbon used in the present invention is not particularly limited, but is preferably 100 m 2 / g or more and 2000 m 2 or more.
2 / g or less, more preferably 300 m 2 / g or more, 1
It is better to be 500 m 2 / g or less.
【0012】950℃での熱分解ガスからの全酸素量の
算出は、以下の方法により行うことができる。石英の反
応管に活性炭試料を入れて10-2mmHgに真空排気
し、該反応管を950℃に保った炉に挿入後、30分間
にわたって発生するガスを捕集する。発生したガスの量
とガスクロマトグラフィーで求めたガスの組成から、ガ
ス中の一酸化炭素及び二酸化炭素の量を計算する。発生
した一酸化炭素及び二酸化炭素中に含まれる酸素の量を
算出して、反応管中の活性炭量に対する重量百分率を求
め、950℃での熱分解ガスから算出した全酸素量とす
る。これが1.5wt%以下となることが本発明の必須
要件である。なお、反応管に入れる活性炭試料の量が多
すぎると規定時間内に熱分解が終了せず全酸素量が低め
に見積もられるため注意を要する。The calculation of the total amount of oxygen from the pyrolysis gas at 950 ° C. can be performed by the following method. The activated carbon sample is placed in a quartz reaction tube, evacuated to 10 -2 mmHg, and the reaction tube is inserted into a furnace maintained at 950 ° C., and gas generated over 30 minutes is collected. The amounts of carbon monoxide and carbon dioxide in the gas are calculated from the amount of generated gas and the composition of the gas determined by gas chromatography. The amount of generated carbon monoxide and the amount of oxygen contained in carbon dioxide are calculated, the weight percentage with respect to the amount of activated carbon in the reaction tube is determined, and the total amount is calculated from the pyrolysis gas at 950 ° C. It is an essential requirement of the present invention that this be 1.5 wt% or less. It should be noted that if the amount of the activated carbon sample put in the reaction tube is too large, the thermal decomposition is not completed within the specified time and the total oxygen amount is estimated to be lower.
【0013】灰分量の測定は以下の方法により行うこと
ができる。磁性ルツボに活性炭試料を入れ、空気中で8
15℃で5時間以上加熱する。冷却後、残存した灰分の
質量を測定し、ルツボに入れた活性炭量に対する重量百
分率を求め、灰分量とする。なお、ルツボに入れる活性
炭試料の量が多すぎると規定時間内に灰化が終了せず灰
分量が多めに見積もられるため注意を要する。本発明に
おける高温ガスの処理方法は、上述の活性炭を高温ガス
特に150℃以上の高温ガスと接触することにより行な
われる。接触の方法については特に限定されないが、焼
却炉に用いる場合には煙道に噴霧することが好ましい。The ash content can be measured by the following method. Put the activated carbon sample in a magnetic crucible,
Heat at 15 ° C. for 5 hours or more. After cooling, the mass of the remaining ash is measured, and the weight percentage with respect to the amount of activated carbon put in the crucible is determined to be the ash content. It should be noted that if the amount of the activated carbon sample put in the crucible is too large, the incineration does not end within the specified time and the amount of ash is overestimated, so care must be taken. The method for treating a high-temperature gas in the present invention is performed by bringing the above-mentioned activated carbon into contact with a high-temperature gas, particularly a high-temperature gas of 150 ° C. or higher. The method of contact is not particularly limited, but when used in an incinerator, it is preferable to spray it on a flue.
【0014】[0014]
【実施例】以下に実施例および比較例を挙げて本発明を
より具体的に説明するが、本発明はその要旨を越えない
限り、下記実施例より限定されるものではない.3種類
の異なる石炭を出発原料として、水蒸気賦活法によって
3種類の粉末活性炭を作製し(実施例1〜3)、その性
状と発火特性を測定した。結果を表1に示す。また、有
害物の除去性能を調べるために、それぞれの粉末活性炭
を焼却炉排ガス中に噴霧し、活性炭噴霧口前とバグフィ
ルター出口のダイオキシン類濃度を測定して結果を示し
た。The present invention will be described more specifically with reference to examples and comparative examples below, but the present invention is not limited to the following examples unless it exceeds the gist thereof. Using three different types of coal as starting materials, three types of powdered activated carbon were produced by a steam activation method (Examples 1 to 3), and their properties and ignition characteristics were measured. Table 1 shows the results. In addition, in order to examine the performance of removing harmful substances, each activated carbon powder was sprayed into the exhaust gas of an incinerator, and the dioxin concentrations in front of the activated carbon spray port and at the bag filter outlet were measured, and the results were shown.
【0015】比表面積の測定はカルロエルバ社製「ソー
プトマチック2100」を使用し、窒素吸着によるBE
T法により行った。粒径の測定は“HORIBA”社製
レーザー回折式粒度分布測定装置「LA−500」を使
用し、メジアン径を求めた。全酸素量は950℃での熱
分解ガスから算出した全酸素量で、以下の方法により測
定した。石英の反応管に活性炭試料約0.5gを入れて
10-2mmHgに真空排気し、該反応管を950℃に保
った炉に挿入後、30分間にわたって発生するガスを捕
集した。発生したガスの量とガスクロマトグラフィーで
求めたガスの組成から、ガス中の一酸化炭素及び二酸化
炭素の量を計算した。発生した一酸化炭素及び二酸化炭
素中に含まれる酸素の量を算出して、反応管中の活性炭
量に対する重量百分率を求め、全酸素量とした。[0015] The specific surface area was measured using a "SORPOMATIC 2100" manufactured by Carlo Elba, using BE by nitrogen adsorption.
Performed by the T method. The particle size was measured using a laser diffraction particle size distribution analyzer “LA-500” manufactured by “HORIBA” and the median diameter was determined. The total oxygen amount was the total oxygen amount calculated from the pyrolysis gas at 950 ° C., and was measured by the following method. About 0.5 g of activated carbon sample was placed in a quartz reaction tube, evacuated to 10 -2 mmHg, and the reaction tube was inserted into a furnace maintained at 950 ° C., and gas generated over 30 minutes was collected. The amounts of carbon monoxide and carbon dioxide in the gas were calculated from the amount of generated gas and the composition of the gas determined by gas chromatography. The amount of oxygen contained in the generated carbon monoxide and carbon dioxide was calculated, and the weight percentage with respect to the amount of activated carbon in the reaction tube was obtained, and the result was defined as the total amount of oxygen.
【0016】灰分量の測定は以下の方法により行った。
磁性ルツボに活性炭試料1〜2gを入れ、空気中で81
5℃で6時間加熱した。冷却後、残存した灰分の質量を
測定し、ルツボに入れた活性炭量に対する重量百分率を
求め、灰分量とした。発火特性として各試料の発火点を
測定した。発火点が高いほど活性炭の発火の危険性が小
さいと判断される。発火点の測定は示差熱分析装置を使
用し、以下の方法により行った。活性炭試料5mgを石
英製の試料容器に入れて示差熱分析装置に掛け、200
ml/分の流量で空気を流通させながら、10℃/分で
昇温した。発火点に達すると急激に試料の発熱が起こる
ため、横軸を試料温度、縦軸を示差温度として結果を図
示し、急上昇前の温度線の延長と急上昇後の温度線の延
長の交点を求め、対応する試料温度を発火点とした。The ash content was measured by the following method.
Put 1-2 g of activated carbon sample in a magnetic crucible,
Heat at 5 ° C. for 6 hours. After cooling, the mass of the remaining ash was measured, and the weight percentage with respect to the amount of activated carbon put in the crucible was determined to be the ash content. The ignition point of each sample was measured as the ignition characteristic. It is determined that the higher the ignition point, the lower the risk of ignition of the activated carbon. The ignition point was measured by the following method using a differential thermal analyzer. 5 mg of an activated carbon sample was put in a sample container made of quartz, and the sample was applied to a differential thermal analyzer.
The temperature was raised at 10 ° C./min while flowing air at a flow rate of ml / min. When the ignition point is reached, the sample heats up rapidly, so the results are plotted with the horizontal axis representing the sample temperature and the vertical axis representing the differential temperature, and the intersection of the extension of the temperature line before the rapid rise and the extension of the temperature line after the sudden rise The corresponding sample temperature was taken as the ignition point.
【0017】空気中200℃での粉塵爆発試験をハート
マン法により実施した。内容積は21で、粉塵形成条件
は、ガス溜圧力3.0kg/cm2 、吹き上げ時間1
秒、点火遅れ時間1秒、スパーク時間1秒で行った。着
火源として、電気火花に加え、綿火薬(0.1molN
aNO2 +綿1g)0.1gを使用した。着火エネルギ
ーは、電気火花170Jと綿火薬200Jの合計370
Jである。粉塵濃度を200g/m3 と500g/m3
として、n=10で粉塵爆発試験を行った。結果を表1
に示す。A dust explosion test at 200 ° C. in air was performed by the Hartmann method. The internal volume was 21 and the dust formation conditions were as follows: gas reservoir pressure 3.0 kg / cm 2 , blowing time 1
Seconds, ignition delay time 1 second, spark time 1 second. As an ignition source, in addition to electric sparks, cotton powder (0.1 mol N
0.1 g of aNO 2 + cotton (1 g) was used. Ignition energy is a total of 370 of electric spark 170J and cotton powder 200J.
J. Dust concentration of 200 g / m 3 and 500 g / m 3
A dust explosion test was performed at n = 10. Table 1 shows the results
Shown in
【0018】[0018]
【表1】 [Table 1]
【0019】(比較例)市販の粉末活性炭(NORIT
GL−50)を使用し、実施例と同様にして、その性
状と発火特性を測定した。結果を表1に示す。Comparative Example Commercially available powdered activated carbon (NORIT)
GL-50) and its properties and ignition characteristics were measured in the same manner as in the examples. Table 1 shows the results.
【0020】以上の実施例および比較例により、950
℃での熱分解ガスから算出した全酸素量が1.5wt%
以下であり、灰分量が15wt%以上である粉末活性炭
は発火点が高く、該活性炭を使用することにより安全
に、かつ効率良く排ガスの処理を行うことができること
がわかる。According to the above examples and comparative examples, 950
1.5wt% of total oxygen calculated from pyrolysis gas at ℃
The powder activated carbon having an ash content of 15% by weight or more has a high ignition point, and it can be understood that the use of the activated carbon makes it possible to safely and efficiently treat the exhaust gas.
【0021】[0021]
【発明の効果】本発明の高温ガスの処理方法によれば、
粉塵爆発や発火事故が起きにくく、安全で、かつ効率の
良い高温ガスの処理を行うことができる。According to the hot gas processing method of the present invention,
Dust explosions and fire accidents are unlikely to occur, and safe and efficient high-temperature gas treatment can be performed.
Claims (4)
素量が1.5wt%以下であり、灰分量が15wt%以
上である粉末活性炭を用いることを特徴とする高温ガス
の処理方法1. A method for treating a high-temperature gas, comprising using activated carbon powder having a total oxygen content calculated from a pyrolysis gas at 950 ° C. of 1.5 wt% or less and an ash content of 15 wt% or more.
ス処理方法2. A method for treating exhaust gas from an incinerator using the method according to claim 1.
1又は2に記載の処理方法3. The processing method according to claim 1, wherein the high-temperature gas contains dioxins.
求項1乃至3のいずれかに記載の処理方法4. The processing method according to claim 1, wherein the temperature of the high-temperature gas is 150 ° C. or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9308209A JPH1170315A (en) | 1997-06-18 | 1997-11-11 | Treatment of high temperature gas |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16086397 | 1997-06-18 | ||
JP9-160863 | 1997-06-18 | ||
JP9308209A JPH1170315A (en) | 1997-06-18 | 1997-11-11 | Treatment of high temperature gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1170315A true JPH1170315A (en) | 1999-03-16 |
Family
ID=26487214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9308209A Pending JPH1170315A (en) | 1997-06-18 | 1997-11-11 | Treatment of high temperature gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1170315A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003286020A (en) * | 2002-03-27 | 2003-10-07 | Electric Power Dev Co Ltd | Highly activated active coke powder and manufacturing method thereof |
WO2005030641A1 (en) * | 2003-09-26 | 2005-04-07 | Electric Power Development Co., Ltd. | Highly activated coke powder and process for producing the same |
JP2008142684A (en) * | 2006-12-13 | 2008-06-26 | Mitsubishi Heavy Ind Ltd | Heat utilization system, operating method when this system starts or stops, and heat treatment system |
-
1997
- 1997-11-11 JP JP9308209A patent/JPH1170315A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003286020A (en) * | 2002-03-27 | 2003-10-07 | Electric Power Dev Co Ltd | Highly activated active coke powder and manufacturing method thereof |
WO2005030641A1 (en) * | 2003-09-26 | 2005-04-07 | Electric Power Development Co., Ltd. | Highly activated coke powder and process for producing the same |
JP2008142684A (en) * | 2006-12-13 | 2008-06-26 | Mitsubishi Heavy Ind Ltd | Heat utilization system, operating method when this system starts or stops, and heat treatment system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10933370B2 (en) | Sorbents for the oxidation and removal of mercury | |
US20030206843A1 (en) | Methods and compositions to sequester combustion-gas mercury in fly ash and concrete | |
US6932956B2 (en) | Production of sulphur and activated carbon | |
JP2007196215A (en) | Adsorbent for removing trace harmful air pollutant in combustion flue gas and its manufacturing method | |
CN101654232A (en) | Method for adsorbing and purifying PH3 under reducing condition | |
CN107952786B (en) | A kind of treatment method of solid hazardous waste | |
KR20070113287A (en) | Adsorbent for mercury removal from combustion gases | |
JPH1170315A (en) | Treatment of high temperature gas | |
JP5689878B2 (en) | Solid inorganic composition, process for its preparation and its use for reducing heavy metals in flue gas | |
JP2000225320A (en) | Method for treating high temperature gas and active carbon | |
CN108499309A (en) | A kind of industrial smoke dioxin predecessor remover | |
JP3436092B2 (en) | Hot gas treatment method | |
JP3521730B2 (en) | How to remove organic chlorine compounds | |
JPH108118A (en) | Production of desulfurizing agent for steel making from waste gas of waste incineration | |
JP2001170481A (en) | Coal-based molded active carbon and method of treating exhaust gas containing dioxins | |
EP1090881A1 (en) | Coal-based molded activated carbon and process for the treatment of waste gas containing dioxins using same | |
JP3928872B2 (en) | PCB removal agent and removal method | |
JPH11106211A (en) | Production of active carbon from refuse derived fuel | |
CN119281802A (en) | A method for treating waste incineration fly ash by plasma melting | |
JP3569797B2 (en) | Method for removing HCl in exhaust gas and HCl absorbent used therefor | |
JPH10128062A (en) | Waste gas treating agent for incineration equipment | |
JPH10508789A (en) | Reactive compositions and methods for purifying gases containing nitric oxide | |
JPH11347398A (en) | Acid gas adsorbent | |
JPH0886425A (en) | Incineration apparatus | |
CN117085641A (en) | Heavy metal adsorbent in solid-waste pyrolysis process and preparation and use methods thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050628 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051115 |