JPH1164349A - Scanning tunnel microscope in plasma environment - Google Patents
Scanning tunnel microscope in plasma environmentInfo
- Publication number
- JPH1164349A JPH1164349A JP25122797A JP25122797A JPH1164349A JP H1164349 A JPH1164349 A JP H1164349A JP 25122797 A JP25122797 A JP 25122797A JP 25122797 A JP25122797 A JP 25122797A JP H1164349 A JPH1164349 A JP H1164349A
- Authority
- JP
- Japan
- Prior art keywords
- environment
- microscope
- plasma
- scanning
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000523 sample Substances 0.000 claims abstract description 16
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims abstract description 5
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims abstract description 3
- 239000011248 coating agent Substances 0.000 claims abstract description 3
- 238000000576 coating method Methods 0.000 claims abstract description 3
- 238000005530 etching Methods 0.000 claims abstract description 3
- 230000005641 tunneling Effects 0.000 claims description 13
- 230000008021 deposition Effects 0.000 claims 1
- 238000000151 deposition Methods 0.000 claims 1
- 238000012986 modification Methods 0.000 claims 1
- 230000004048 modification Effects 0.000 claims 1
- 238000003672 processing method Methods 0.000 claims 1
- 238000001228 spectrum Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 9
- 239000007788 liquid Substances 0.000 abstract description 4
- 238000005755 formation reaction Methods 0.000 abstract description 2
- 238000000034 method Methods 0.000 abstract description 2
- 239000007787 solid Substances 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用】本発明は走査式トンネル顕微鏡技術に
関する。This invention relates to the technology of scanning tunneling microscopes.
【0002】[0002]
【従来の技術および発明が解決しようとしている課題】
走査式トンネル顕微鏡は、真空中、大気中、ガス中、液
体中での固体表面ナノメータースケール構造の解析に広
く用いられている。Problems to be solved by the prior art and the invention
Scanning tunneling microscopes are widely used to analyze nanometer-scale structures on solid surfaces in vacuum, air, gas, and liquid.
【0003】しかしながら、従来の技術では、電離ガス
集合体であるプラズマ環境中では、荷電粒子(電子、イ
オン)の存在やプラズマ空間電位の存在などのため、走
査式トンネル顕微鏡の測定は不可能であった。However, in the prior art, in a plasma environment, which is an ionized gas aggregate, measurement by a scanning tunneling microscope is impossible because of the presence of charged particles (electrons and ions) and the presence of plasma space potential. there were.
【0004】本発明は、かかる状況の下で、プラズマ環
境中での計測が可能な走査式トンネル顕微鏡を提供する
ことを目的とする。An object of the present invention is to provide a scanning tunneling microscope capable of performing measurement in a plasma environment under such circumstances.
【0005】[0005]
【課題を解決するための手段】本発明者は、前記課題を
解決するために、低温プラズマ発生部と耐プラズマ電圧
性(30V以上)エレクトロニクスを有する走査式トン
ネル顕微鏡部とから構成され、先端10μm以下の微小
部を残し絶縁被覆した探針を用いた低温プラズマ環境下
で動作/計測を可能とする走査式トンネル顕微鏡の開発
に至った。In order to solve the above-mentioned problems, the present inventor has constituted a low-temperature plasma generating section and a scanning tunneling microscope section having plasma-resistant (30 V or more) electronics, and has a tip of 10 μm. We have developed a scanning tunneling microscope that can operate / measure in a low-temperature plasma environment using a probe covered with an insulating coating while leaving the following minute parts.
【0006】[0006]
【作用】本発明は以上のような構成であり、従来、大気
中、ガス雰囲気、液体雰囲気、真空雰囲気での計測にか
ぎられていたものを、低温プラズマ環境雰囲気中での走
査式トンネル顕微鏡測定を可能とする。The present invention has a configuration as described above. What has been conventionally limited to measurement in the atmosphere, gas atmosphere, liquid atmosphere, and vacuum atmosphere is replaced by scanning tunneling microscope measurement in a low-temperature plasma environment atmosphere. Is possible.
【0007】[0007]
【実施例】図1は本発明装置の実施例を示す概略図であ
る。図において1はプローブ、2は試料部、3はピエゾ
アクチュエーターなどのプローブ走査ユニット、4は試
料走査ユニット、7は低温プラズマ発生装置、6は発生
させた低温プラズマであり、これら走査式プローブ顕微
鏡装置一式が、容器5の中に収められ、ガス導入口8、
同排出口9が設置されている。図面は本研究実施例であ
り、本発明の範囲がこれらに限定されるものでないこと
は勿論である。図2および図3は、実際に高周波グロー
空気プラズマ環境下で測定した走査式トンネル顕微鏡の
グラファイト像である。プラズマ中でのナノスケールレ
ベルの表面構造解析の初めての例である。FIG. 1 is a schematic view showing an embodiment of the apparatus of the present invention. In the figure, 1 is a probe, 2 is a sample unit, 3 is a probe scanning unit such as a piezo actuator, 4 is a sample scanning unit, 7 is a low-temperature plasma generator, and 6 is a low-temperature plasma generated. The set is housed in the container 5 and the gas inlet 8,
The outlet 9 is provided. The drawings are working examples, and the scope of the present invention is not limited to these working examples. 2 and 3 are graphite images of a scanning tunneling microscope actually measured in a high-frequency glow air plasma environment. This is the first example of nanoscale surface structure analysis in plasma.
【0008】[0008]
【発明の効果】従来、ガス雰囲気、液体雰囲気、真空雰
囲気での計測に限られていた走査式プローブ顕微鏡を、
プラズマ雰囲気中での測定を可能とする。さらにまた、
これら走査式プローブ顕微鏡を利用した、トンネル分光
装置、および、プラズマ環境下という新たな条件下での
成膜、エッチング、化学反応合成、原子操作、表面処理
などの材料プロセシング装置/方法を提供する。The scanning probe microscope, which has been conventionally limited to measurement in a gas atmosphere, a liquid atmosphere, and a vacuum atmosphere,
Enables measurement in a plasma atmosphere. Furthermore,
Provided are a tunneling spectrometer and a material processing apparatus / method such as film formation, etching, chemical reaction synthesis, atomic manipulation, surface treatment, etc. under new conditions of a plasma environment using these scanning probe microscopes.
【図1】実験装置の概略を示す図である。FIG. 1 is a diagram schematically showing an experimental apparatus.
【図2】実際に高周波グロー空気プラズマ(430MH
z,0.3Torr)環境下で測定した走査式トンネル
顕微鏡のグラファイト表面像である。プラズマ環境中で
のナノスケールレベルの走査式トンネル顕微鏡表面構造
解析の初めての例である。FIG. 2 shows a high-frequency glow air plasma (430 MH)
3 is a graphite surface image of a scanning tunneling microscope measured under an environment of (z, 0.3 Torr). This is the first example of surface structure analysis of a scanning tunneling microscope at the nanoscale in a plasma environment.
【図3】図2と同じく、実際に高周波グロー空気プラズ
マ(430MHz,0.3Torr)環境下で測定した
走査式トンネル顕微鏡のグラファイト表面テラス像
(A)とその切断面(A−A’)構造図(B)。5nm
の高さのステップ構造が認められる。FIG. 3 is a graph showing a terrace surface image (A) of a graphite tunnel surface of a scanning tunneling microscope actually measured in a high-frequency glow air plasma (430 MHz, 0.3 Torr) environment and a cross-section (AA ′) structure thereof as in FIG. Figure (B). 5 nm
A step structure of height is observed.
図1 1 プローブ 2 試料部 3 プローブ走査ユニット 4 試料走査ユニット 5 容器 6 プラズマ 7 プラズマ発生装置 8 ガス導入口 9 ガス排出口 FIG. 1 1 Probe 2 Sample section 3 Probe scanning unit 4 Sample scanning unit 5 Vessel 6 Plasma 7 Plasma generator 8 Gas inlet 9 Gas outlet
Claims (4)
鏡部とから構成され、低温プラズマ環境下で動作/計測
を可能とする走査式トンネル顕微鏡。1. A scanning tunnel microscope comprising a low-temperature plasma generating section and a scanning tunnel microscope section, and capable of operating / measuring in a low-temperature plasma environment.
鏡部とから構成され、かつ、30V以上の耐プラズマ電
圧性エレクトロニクスを有し、先端10μm以下の微小
部を残し絶縁被覆した探針を用い、低温プラズマ環境下
で動作/計測を可能とする走査式トンネル顕微鏡。2. A probe comprising a low-temperature plasma generating section and a scanning tunneling microscope section, having a plasma voltage-resistant electronics of 30 V or more, and using an insulated coating tip except for a minute portion having a tip of 10 μm or less. A scanning tunnel microscope that can operate and measure in a low-temperature plasma environment.
ルスペクトル装置。3. A tunnel spectrum device using the above device (claims 1 and 2).
料の表面改質、堆積、エッチング、原子操作、化学反応
合成などの材料プロセシング装置および材料プロセシン
グ方法。4. A material processing apparatus and a material processing method using the above apparatus (claims 1 and 2), such as surface modification, deposition, etching, atomic operation, and chemical reaction synthesis of a material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25122797A JPH1164349A (en) | 1997-08-13 | 1997-08-13 | Scanning tunnel microscope in plasma environment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25122797A JPH1164349A (en) | 1997-08-13 | 1997-08-13 | Scanning tunnel microscope in plasma environment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1164349A true JPH1164349A (en) | 1999-03-05 |
Family
ID=17219608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25122797A Pending JPH1164349A (en) | 1997-08-13 | 1997-08-13 | Scanning tunnel microscope in plasma environment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1164349A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011058626A (en) * | 2009-09-07 | 2011-03-24 | Fei Co | High-vacuum seal |
-
1997
- 1997-08-13 JP JP25122797A patent/JPH1164349A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011058626A (en) * | 2009-09-07 | 2011-03-24 | Fei Co | High-vacuum seal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3270165B2 (en) | Surface analysis and processing equipment | |
Rye et al. | Chemical‐state effects in Auger electron spectroscopy | |
McIntyre et al. | A variable pressure/temperature scanning tunneling microscope for surface science and catalysis studies | |
US6982519B2 (en) | Individually electrically addressable vertically aligned carbon nanofibers on insulating substrates | |
Hou et al. | Ar, O2, CHF3, and SF6 plasma treatments of screen-printed carbon nanotube films for electrode applications | |
JP2007187665A (en) | Conductive carbon nanotube tip, scanning probe microscope with same, and method for manufacturing same | |
KR20050072891A (en) | Electron source, apparatus and method for inspecting non-opening of a hole using the same | |
TW202001975A (en) | Apparatus and method for examining and/or processing a sample | |
Boyes | High‐Resolution and Low‐Voltage SEM Imaging and Chemical Microanalysis | |
JPH1164349A (en) | Scanning tunnel microscope in plasma environment | |
Merkulov et al. | Field emission properties of different forms of carbon | |
Tselev et al. | In-situ near-field probe microscopy of plasma processing | |
Wetzel et al. | A versatile instrument for in situ combination of scanning probe microscopy and time-of-flight mass spectrometry | |
Yamashita et al. | Flexure structural scanner of tip scan type for high-speed scanning tunneling microscopy | |
Cheran et al. | Scanning Kelvin microprobe in the tandem analysis of surface topography and chemistry | |
Kopelvski et al. | Potentialities of a new dedicated system for real time field emission devices characterization: a case study | |
JP2005032542A (en) | Electron reflection suppressing material and its manufacturing method | |
Gacka et al. | Fabrication of focused ion beam-deposited nanowire probes for conductive atomic force microscopy | |
JP4229849B2 (en) | Acicular carbon film manufacturing method, acicular carbon film and field emission structure | |
Koops et al. | Novel lithography and signal processing with water vapor ions | |
Ogo et al. | Micromechanical structures for electron‐and ion‐beam irradiation phenomena | |
JP3837531B2 (en) | Microscope and surface observation method | |
JP2868949B2 (en) | Thin film production equipment | |
Grishin et al. | Isotope effect in the vibrational spectra of water measured in experiments with a scanning tunneling microscope | |
Salmeron | The use of modern techniques for the characterization of the structural and chemical properties of surfaces |