JPH1161110A - Regeneration of residual refrigerant - Google Patents
Regeneration of residual refrigerantInfo
- Publication number
- JPH1161110A JPH1161110A JP9221807A JP22180797A JPH1161110A JP H1161110 A JPH1161110 A JP H1161110A JP 9221807 A JP9221807 A JP 9221807A JP 22180797 A JP22180797 A JP 22180797A JP H1161110 A JPH1161110 A JP H1161110A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- composition
- container
- residual
- residual refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、容器に残留し組成
が変化した非共沸混合冷媒を、その容器内で組成を復元
して再利用するための、簡便な残留冷媒の再生方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a simple method for regenerating a non-azeotropic mixed refrigerant remaining in a container and having a changed composition, in which the composition is restored and reused in the container.
【0002】[0002]
【従来の技術】従来、冷房・冷凍機器用の冷媒として
は、ジクロロジフルオロメタン(通称CFC12、以下
同じ)やクロロジフルオロメタン(HCFC22)など
単一組成のものが広く用いられていた。しかし近年にな
って、クロロフルオロカ−ボン類(CFC)による成層
圏のオゾン層破壊が深刻な環境問題として提起され、1
995年末にその生産が中止されるに至った。そこで、
既存のCFCを使用した冷房・冷凍設備については、そ
の代替又は補充用として物性や冷却性能を調整した複数
のハイドロクロロフルオロカーボン類(HCFC)、ハ
イドロフルオロカーボン類(HFC)、フルオロカーボ
ン類(FC)、ハイドロカーボン類(HC)等からなる
混合冷媒が開発されるに至っている。2. Description of the Related Art Conventionally, refrigerants having a single composition such as dichlorodifluoromethane (commonly called CFC12, the same applies hereinafter) and chlorodifluoromethane (HCFC22) have been widely used as refrigerants for cooling / refrigeration equipment. However, in recent years, stratospheric ozone depletion due to chlorofluorocarbons (CFCs) has been raised as a serious environmental problem.
Its production ceased at the end of 995. Therefore,
For cooling and refrigeration equipment using existing CFCs, a plurality of hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), fluorocarbons (FCs), hydrocarbons (FCCs) whose physical properties and cooling performance have been adjusted as replacements or supplements Mixed refrigerants composed of carbons (HC) and the like have been developed.
【0003】更に、前記のHCFCについても、CFC
に比較してオゾン層破壊に対する影響は小さいものの、
CFCの代替用途などで使用量が増大する可能性が高い
ことから2020年の原則全廃が決定され、1996年
より国際的な総量規制が開始された。そこで特に、空調
機器などに広く使用されているHCFC22の代替品と
して、規制の対象外であるオゾン破壊係数ゼロのHFC
成分を用いた冷媒が検討されている。[0003] Further, the above-mentioned HCFC is also
Although the impact on ozone depletion is smaller than
Since there is a high possibility that the amount of CFC used will increase in alternative applications, the principle of abolition in 2020 was decided, and international total regulation was started in 1996. Therefore, in particular, as an alternative to HCFC22 widely used in air conditioners and the like, an HFC with an ozone depletion potential of zero, which is not subject to regulation,
Refrigerants using components have been studied.
【0004】HCFC22に代替し得る冷媒組成物とし
ては、従来のHCFC22用の機器にそのまま入れ換え
て使用できる単一組成の冷媒が見当たらないため、複数
成分を混合することで物性などを調整した2成分系また
は3成分系以上のHFC系混合冷媒が開発されている。
また、同様な観点から、HCの混合冷媒、HCとHFC
との混合冷媒、更にはハイドロフルオロエーテル(HF
E)やフルオロエーテル(FE)を含む混合冷媒も各種
のものが提案されている。[0004] As a refrigerant composition that can be substituted for HCFC22, there is no refrigerant having a single composition that can be used as it is in conventional HCFC22 equipment. Therefore, a two-component refrigerant whose physical properties are adjusted by mixing a plurality of components is used. An HFC-based mixed refrigerant of a system or a ternary system or more has been developed.
Further, from a similar viewpoint, a mixed refrigerant of HC, HC and HFC
And a mixed refrigerant with hydrofluoroether (HF)
Various mixed refrigerants containing E) or fluoroether (FE) have been proposed.
【0005】[0005]
【発明が解決しようとする課題】しかしこれらの混合冷
媒は、そのほとんどが非共沸混合物であるため、CFC
12やHCFC22など単一組成の冷媒や、低温用冷媒
として従来用いられていた通称R502などの共沸混合
冷媒と異なり、容器から抜き出して使用したり小分けし
たりすると、抜き出しの初期と後期とで残留液相の組成
が変化するという問題があった。すなわち、これらの非
共沸混合物にあっては、気液平衡関係によって、含まれ
る低沸点成分の濃度が液相におけるより気相において高
くなるので、一定容量の容器内で抜き取りにより液相の
容量が減少すると、相対的に気相の容量が増大し低沸点
成分が気相に移行し、結果として液相の低沸点成分の濃
度が低下するという現象が起こる。液相の組成が許容限
界を越えて変化すると、冷却性能その他の性能が変化し
て使用が困難になる。実際には、容器から80%程度抜
き出した後の残留冷媒は再使用せず、そのまま充填工場
に返却される場合が多い。しかし充填工場に返却されて
も、回収や再生処理に多大の経費と時間とを要するの
で、このことが製品の価格上昇の原因となっていた。ま
た、この残留冷媒に新たな冷媒を補充するとしても、補
充された冷媒製品について改めて成分分析と組成調整を
行う必要があるなど、製品管理上も問題があった。However, since most of these mixed refrigerants are non-azeotropic mixtures, CFCs
Unlike azeotropic mixed refrigerants such as R12 and HCFC22 having a single composition, and so-called R502, which has been conventionally used as a low-temperature refrigerant, when extracted from a container and used or subdivided, the initial and late stages of extraction are different. There is a problem that the composition of the residual liquid phase changes. In other words, in these non-azeotropic mixtures, the concentration of low-boiling components contained in the gas phase becomes higher in the gas phase than in the liquid phase due to the gas-liquid equilibrium relationship. Decreases, the capacity of the gas phase relatively increases, and the low-boiling components move to the gas phase, and as a result, the concentration of the low-boiling components in the liquid phase decreases. If the composition of the liquid phase changes beyond the permissible limit, the cooling performance and other performances change, making it difficult to use. In practice, the residual refrigerant after being extracted from the container by about 80% is often returned to the filling factory without being reused. However, even when returned to the filling factory, the collection and the reprocessing process require a great deal of cost and time, and this has caused an increase in the price of the product. Further, even if a new refrigerant is replenished to the residual refrigerant, there is a problem in product management such that component analysis and composition adjustment of the replenished refrigerant product must be performed again.
【0006】非共沸混合冷媒における液相組成の変動の
問題を解決する手段として、例えば特開平8−1578
10号公報は、容器に充填する冷媒の組成を、予め低沸
点分が過剰となるように調整しておく方法を提案してい
る。しかし、この方法も、容器の容量、抜き出し量、抜
き出し回数などによって液組成が変動することを避ける
ことはできない。本発明は、上記の課題を解決するため
になされたものであって、従ってその目的は、容器に残
留し組成が変化した非共沸混合冷媒を、その容器内で組
成を復元して再利用可能とする簡便な残留冷媒の再生方
法を提供することにある。As means for solving the problem of fluctuation of the liquid phase composition in a non-azeotropic mixed refrigerant, for example, Japanese Patent Application Laid-Open No. 8-15878
No. 10 proposes a method in which the composition of the refrigerant to be charged into the container is adjusted in advance so that the low boiling point component becomes excessive. However, this method also cannot avoid fluctuations in the liquid composition due to the capacity of the container, the amount of withdrawal, the number of withdrawals, and the like. The present invention has been made in order to solve the above-described problems, and an object of the present invention is to reuse a non-azeotropic mixed refrigerant having a changed composition remaining in a container by restoring the composition in the container. It is an object of the present invention to provide a simple and easy method for regenerating a residual refrigerant.
【0007】[0007]
【課題を解決するための手段】上記の課題を解決するた
めに本発明は、容器に残留し組成が変化した非共沸混合
冷媒の気相又は液相を、これと等重量以上の、この残留
冷媒の元の組成と実質的に同等な組成を有する調整用冷
媒の気相と導通させ、この導通状態を、残留冷媒の組成
が±1重量%の許容範囲内で復元するまで保持する残留
冷媒の再生方法を提供する。この調整用冷媒の量は、残
留冷媒の2重量倍以上とすることが好ましい。また前記
の導通状態は、残留冷媒の組成が±0.5重量%の許容
範囲内で復元するまで保持することが好ましい。前記の
非共沸混合冷媒は、HCFC、HFC、HC、FC、H
FE、FE、及びフルオロヨードカーボン(FIC)の
群から選ばれた2種以上からなる非共沸混合物であるこ
とが好ましい。特に前記の非共沸混合冷媒は、ジフルオ
ロメタン(HFC32)、ペンタフルオロエタン(HF
C125)及び1,1,1,2−テトラフルオロエタン
(HFC134a)の群から選ばれた2種以上からなる
非共沸混合物であることが好ましい。本明細書におい
て、「冷媒」とは断りない限りその液相を意味する。ま
た「組成」とは冷媒(液相)を構成する各成分の重量比
を意味する。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a method for converting a gaseous or liquid phase of a non-azeotropic mixed refrigerant having a composition changed and remaining in a container into an equal weight or more of the same. The residual refrigerant is communicated with the gas phase of the conditioning refrigerant having a composition substantially equivalent to the original composition of the residual refrigerant, and this conduction state is maintained until the composition of the residual refrigerant is restored within the allowable range of ± 1% by weight. A method for regenerating a refrigerant is provided. It is preferable that the amount of the adjusting refrigerant is at least 2 times the weight of the residual refrigerant. Further, it is preferable that the above-mentioned conduction state is maintained until the composition of the residual refrigerant is restored within an allowable range of ± 0.5% by weight. The non-azeotropic mixed refrigerant is HCFC, HFC, HC, FC, H
It is preferably a non-azeotropic mixture of two or more selected from the group consisting of FE, FE, and fluoroiodocarbon (FIC). Particularly, the non-azeotropic refrigerant mixture is difluoromethane (HFC32), pentafluoroethane (HF).
C125) and a non-azeotropic mixture of two or more selected from the group of 1,1,1,2-tetrafluoroethane (HFC134a). In this specification, the term “refrigerant” means its liquid phase unless otherwise specified. The term “composition” means the weight ratio of each component constituting the refrigerant (liquid phase).
【0008】[0008]
【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて説明する。図1は、本発明の残留冷媒の再生方
法の一実施形態を示している。図1において、符号1は
実使用容器である。この実使用容器1は、元来は所定の
組成(元組成S0 )を有する非共沸混合冷媒が規定量充
填されていたものであるが、器底に達する液相抜出管2
によって液相の一部が抜き出され、残りの液相が残留冷
媒Rとして残留している。この残留冷媒Rの組成S
1 は、一定容器内における液相と気相との相対的な量的
変化に伴って元組成S0 から変化している。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the method for regenerating the residual refrigerant of the present invention. In FIG. 1, reference numeral 1 denotes an actually used container. The actual use container 1 is originally filled with a specified amount of a non-azeotropic mixed refrigerant having a predetermined composition (original composition S 0 ).
As a result, a part of the liquid phase is extracted, and the remaining liquid phase remains as the residual refrigerant R. Composition S of this residual refrigerant R
1 changes from the original composition S 0 with a relative quantitative change between the liquid phase and the gas phase in a certain vessel.
【0009】本発明においては、別の容器(調整用容
器)3に、前記残留冷媒Rと等重量以上の、前記の元組
成S0 と実質的に同等な組成を有する調整用の冷媒(調
整用冷媒)Hを充填し、この調整用容器3の頂部と前記
の実使用容器1の頂部とを導通管4で連結する。これに
よって、調整用冷媒Hと残留冷媒Rとが互いに気相にお
いて導通したことになる。この連結系を一定温度(好ま
しくは室温)の環境下に静置すると、調整用容器3内の
気液平衡関係と実使用容器1内の気液平衡関係とが一致
するようになり、その結果として残留冷媒Rの組成S1
が次第に元組成S 0 に近づき、±1重量%、好ましくは
±0.5重量%の許容範囲内で元組成S0に戻る。この
とき、調整用冷媒Hの量が残留冷媒Rの2重量倍以上で
あると、前記許容範囲内での復元が円滑かつ速やかに進
行する。In the present invention, another container (adjusting container)
Unit) 3, the above-mentioned original set having a weight equal to or greater than the residual refrigerant R
S0Conditioning refrigerant having a composition substantially equivalent to
(Conditioning refrigerant) H, and the top of the conditioner 3
Is connected to the top of the actual use container 1 by the conduit 4. to this
Therefore, the adjusting refrigerant H and the residual refrigerant R are in a gas phase with each other.
And it became conductive. Keep this connection at a constant temperature (preferably
Or room temperature), the container in the adjustment container 3
The gas-liquid equilibrium relationship matches the gas-liquid equilibrium relationship in the actual container 1
And as a result, the composition S of the residual refrigerant R1
Gradually becomes the original composition S 0To ± 1% by weight, preferably
Original composition S within the allowable range of ± 0.5% by weight0Return to this
When the amount of the adjusting refrigerant H is 2 weight times or more of the residual refrigerant R,
In this case, restoration within the above-mentioned allowable range proceeds smoothly and promptly.
Run.
【0010】これによって、実使用容器1内の残留冷媒
Rは元組成(S0 )を保ちながら最後まで使い切ること
ができるようになり経済的であるばかりでなく、この実
使用容器1に組成S0 を有する新たな混合冷媒を補充し
ても、実質的に容器内の冷媒組成が変化することはない
ので、充填工場における詰め替え作業も大幅に簡略化さ
れる。As a result, the residual refrigerant R in the actually used container 1 can be used up to the end while maintaining the original composition (S 0 ), which is not only economical, but also has the composition S in the actually used container 1. Refilling with a new mixed refrigerant having zero does not substantially change the refrigerant composition in the container, so that the refilling operation in the filling factory is greatly simplified.
【0011】図2は、本発明の他の一実施形態を示して
いる。図2の実施形態は、実質的に図1のものと同様で
あるが、ただし導通管4が弁7を経由して実使用容器1
内の底部近傍まで延びる延長管11に連結されていて、
弁7,8が開放されたとき実使用容器1内の残留冷媒R
の液相が調整用冷媒Hの気相と導通するようになってい
る。FIG. 2 shows another embodiment of the present invention. The embodiment of FIG. 2 is substantially similar to that of FIG. 1, except that the conduit 4 is connected to the actual container 1 via a valve 7.
Connected to an extension tube 11 extending to near the bottom of the inside,
When the valves 7 and 8 are opened, the residual refrigerant R in the actual use container 1
Is conducted to the gas phase of the adjusting refrigerant H.
【0012】この実施形態においては、残留冷媒Rの液
相における低沸点成分の不足が、調整用容器3内の気液
平衡関係と実使用容器1内の気液平衡関係とが一致する
まで調整用冷媒Hの気相から直接補われることになるの
で、その結果として残留冷媒Rの組成S1 が次第に元組
成S0 に近づき、±1重量%、好ましくは±0.5重量
%の許容範囲内で元組成S0 に戻る。In this embodiment, the shortage of the low boiling point component in the liquid phase of the residual refrigerant R is adjusted until the gas-liquid equilibrium relationship in the adjusting container 3 matches the gas-liquid equilibrium relationship in the actual use container 1. As a result, the composition S 1 of the residual refrigerant R gradually approaches the original composition S 0, and the allowable range of ± 1% by weight, preferably ± 0.5% by weight. Back to the original composition S 0 at the inner.
【0013】図3は、本発明の更に他の一実施形態を示
している。この実施形態は、例えば充填工場などにおい
て、各種容量の複数の実使用容器に様々な残量で含まれ
る残留冷媒の組成を、一括して復元する方法を示してい
る。図3において、大小様々な複数の実使用容器V1 ,
V2 ,V3 ,…,Vn に、元来はそれぞれ同一の元組成
S0 を有する非共沸混合冷媒が充填されていて、それぞ
れの容器に付属した器底に達する液相抜出管によってそ
れぞれ異なる量の液相が抜き出された結果、それぞれに
残量と組成とが異なることとなった残留冷媒R1 ,
R2 ,R3 ,…,Rn が含まれている。FIG. 3 shows still another embodiment of the present invention. This embodiment shows a method of collectively restoring the composition of residual refrigerant contained in various residual amounts in a plurality of actually used containers having various capacities, for example, in a filling factory. In FIG. 3, a plurality of practically used containers V 1 ,
V 2 , V 3 ,..., V n are each filled with a non-azeotropic mixed refrigerant originally having the same original composition S 0, and a liquid-phase discharge pipe reaching the bottom attached to each container. As a result, different amounts of the liquid phase are extracted, and as a result, the residual refrigerants R 1 ,
R 2 , R 3 ,..., R n are included.
【0014】先ず、それぞれの実使用容器V1 ,V2 ,
V3 ,…,Vn の頂部を連結管5で連結する。一方、前
記の残留冷媒R1 ,R2 ,R3 ,…,Rn の合計量の好
ましくは2重量倍以上の調整用冷媒Hを充填した調整用
容器3を用意する。この調整用冷媒Hの組成は実質的に
元組成S0 と同等とされている。そして、この調整用容
器3の頂部と、前記の連結管5とを導通管6で連結す
る。First, each of the actually used containers V 1 , V 2 ,
The tops of V 3 ,..., V n are connected by a connecting pipe 5. On the other hand, an adjusting container 3 filled with the adjusting refrigerant H, preferably at least 2 times the total amount of the residual refrigerants R 1 , R 2 , R 3 ,..., R n is prepared. The composition of the adjusting refrigerant H is substantially equal to the original composition S 0 . Then, the top of the adjusting container 3 and the connecting pipe 5 are connected by the connecting pipe 6.
【0015】これによって、調整用冷媒Hと各残留冷媒
R1 ,R2 ,R3 ,…,Rn とが互いに気相において導
通したことになる。この連結系を一定温度(好ましくは
室温)の環境下に静置すると、調整用容器3内の気液平
衡関係とそれぞれ実使用容器V1 ,V2 ,V3 ,…,V
n 内の気液平衡関係とが一致するようになり、その結果
として、それぞれの残留冷媒R1 ,R2 ,R3 ,…,R
n の組成S1 ,S2 ,S3 ,…,Sn が、何れも元組成
S0 に近づく。この方法で、各種容量の実使用容器に含
まれ、それぞれに量と組成が変化した残留冷媒を、一括
して、±1重量%、好ましくは±0.5重量%の許容範
囲内で元組成S0 に戻すことができる。As a result, the adjusting refrigerant H and each of the residual refrigerants R 1 , R 2 , R 3 ,..., R n are conducted in the gas phase. When this connection system is allowed to stand at a constant temperature (preferably room temperature) environment, the gas-liquid equilibrium relationship in the adjustment container 3 and the actual use containers V 1 , V 2 , V 3 ,.
n and the gas-liquid equilibrium relation within n , and as a result, each of the residual refrigerants R 1 , R 2 , R 3 ,.
n composition of S 1, S 2, S 3 , ..., S n are both closer to the original composition S 0. In this way, the residual refrigerants contained in the actual use containers of various capacities and having different amounts and compositions are collectively collected within the allowable range of ± 1% by weight, preferably ± 0.5% by weight. It can be returned to S 0 .
【0016】以下、本発明の構成要素について詳しく説
明する。本発明の残留冷媒の再生方法で処理される冷媒
は、HCFC、HFC、HC、FC、HFE、FE、及
びFICの群から選ばれた2種以上からなる非共沸混合
物であることが好ましい。これらの内、HCFCの具体
例としては、例えばHCFC22(CHClF2)、H
CFC123(CHCl2-CF3)、HCFC124
(CHClF-CF3)、HCFC141b(CH3-CC
l2F)、HCFC142b(CH3-CClF2)、HC
FC225ca(CHCl2-CF2-CF3)、HCFC
225cb(CHClF-CF2-CClF2)などを挙げ
ることができる。HFCの具体例としては、例えばHF
C23(CHF3)、HFC32(CH2F2)、HFC
41(CH3F)、HFC134(CHF2-CHF2)、
HFC134a(CH2F-CF3)、HFC143a
(CH3-CF3)、HFC125(CHF2-CF3)、H
FC161(CH3-CH2F)、HFC227ea(C
F3-CHF-CF3)、HFC227ca(CHF2-CF
2-CF3)、HFC236ca(CHF2-CF2-CH
F2)、HFC236cb(CH2F-CF2-CF3)、H
FC236ea(CHF2-CHF-CF3)、HFC23
6fa(CF3-CH2-CF 3)、HFC245ca(C
H2F-CF2-CHF2)、HFC245cb(CH3-C
F2-CHF2)、HFC245fa(CHF2-CH2-C
F3)、HFC254cb(CH3-CF2-CHF2)など
を挙げることができる。HCの具体例としては、例えば
HC290(CH3-CH2-CH3)、HC600(CH3
-CH2-CH2-CH3)、HC600a((CH3)2CH
-CH3)、HC601(CH3-CH2-CH2-CH2-CH
3)、HC601a((CH3)2CH-CH2-CH3)、
HC601b((CH3)4C)、HC170(CH3-C
H3)、HC−C270(環状-CH2-CH2-CH2-)、
HC1270(CH3-CH=CH 2)などを挙げることが
できる。FCの具体例としては、例えばFC218(C
F3-CF2-CF3)、FC−C318(環状-C4F8-)
などを挙げることができる。HFE、FEの具体例とし
ては、例えばHFE134(CHF2-O-CHF2)、H
FE143a(CH3-O-CF3)、HFE125(CH
F2-O-CF3)、HFE227ca2(CHF2-CF2-
O-CF3)、HFE245cb2(CH3-CF2-O-C
F3)、HFE−C318(環状-CF2-CF2-CF2-O
-CF2-)、FE116(CF3-O-CF3)などを挙げ
ることができる。FICの具体例としては、例えばFI
C13I1(CF3I)、FIC115I1(CF3-C
F2I)などを挙げることができる。Hereinafter, the components of the present invention will be described in detail.
I will tell. Refrigerant treated by the method for regenerating residual refrigerant of the present invention
Are HCFC, HFC, HC, FC, HFE, FE, and
And non-azeotropic mixture of two or more selected from the group of FIC
It is preferably an object. Of these, specifics of HCFC
As an example, for example, HCFC22 (CHClFTwo), H
CFC123 (CHClTwo-CFThree), HCFC124
(CHClF-CFThree), HCFC141b (CHThree-CC
lTwoF), HCFC142b (CHThree-CCIFTwo), HC
FC225ca (CHClTwo-CFTwo-CFThree), HCFC
225cb (CHClF-CFTwo-CCIFTwo)
Can be As a specific example of HFC, for example, HF
C23 (CHFThree), HFC32 (CHTwoFTwo), HFC
41 (CHThreeF), HFC134 (CHFTwo-CHFTwo),
HFC134a (CHTwoF-CFThree), HFC143a
(CHThree-CFThree), HFC125 (CHFTwo-CFThree), H
FC161 (CHThree-CHTwoF), HFC227ea (C
FThree-CHF-CFThree), HFC227ca (CHFTwo-CF
Two-CFThree), HFC236ca (CHFTwo-CFTwo-CH
FTwo), HFC236cb (CHTwoF-CFTwo-CFThree), H
FC236ea (CHFTwo-CHF-CFThree), HFC23
6fa (CFThree-CHTwo-CF Three), HFC245ca (C
HTwoF-CFTwo-CHFTwo), HFC245cb (CHThree-C
FTwo-CHFTwo), HFC245fa (CHFTwo-CHTwo-C
FThree), HFC254cb (CHThree-CFTwo-CHFTwo)Such
Can be mentioned. Specific examples of HC include, for example,
HC290 (CHThree-CHTwo-CHThree), HC600 (CHThree
-CHTwo-CHTwo-CHThree), HC600a ((CHThree)TwoCH
-CHThree), HC601 (CHThree-CHTwo-CHTwo-CHTwo-CH
Three), HC601a ((CHThree)TwoCH-CHTwo-CHThree),
HC601b ((CHThree)FourC), HC170 (CHThree-C
HThree), HC-C270 (cyclic-CHTwo-CHTwo-CHTwo-),
HC1270 (CHThree-CH = CH Two)
it can. As a specific example of FC, for example, FC218 (C
FThree-CFTwo-CFThree), FC-C318 (cyclic-CFourF8-)
And the like. Specific examples of HFE and FE
For example, HFE134 (CHFTwo-O-CHFTwo), H
FE143a (CHThree-O-CFThree), HFE125 (CH
FTwo-O-CFThree), HFE227ca2 (CHFTwo-CFTwo-
O-CFThree), HFE245cb2 (CHThree-CFTwo-OC
FThree), HFE-C318 (cyclic-CFTwo-CFTwo-CFTwo-O
-CFTwo-), FE116 (CFThree-O-CFThree)
Can be As a specific example of FIC, for example, FI
C13I1 (CFThreeI), FIC115I1 (CFThree-C
FTwoI) and the like.
【0017】特に、本発明の再生方法は、従来から知ら
れている非共沸混合冷媒の容器残留液相に有効に適用で
きる。これらの非共沸混合冷媒の例として、通称及び成
分・組成(重量%)を挙げれば、例えば、 R403B:HC290/HCFC22/FC218=
5/56/39 R407C:HFC32/HFC125/HFC134
a=23/25/52 R407E:HFC32/HFC125/HFC134
a=25/15/60 R900JA:HFC32/HFC134a=30/7
0 などがある。In particular, the regeneration method of the present invention can be effectively applied to a conventionally known liquid phase remaining in a container of a non-azeotropic refrigerant mixture. Examples of these non-azeotropic mixed refrigerants include a common name and a component / composition (% by weight). For example, R403B: HC290 / HCFC22 / FC218 =
5/56/39 R407C: HFC32 / HFC125 / HFC134
a = 23/25/52 R407E: HFC32 / HFC125 / HFC134
a = 25/15/60 R900JA: HFC32 / HFC134a = 30/7
0 and so on.
【0018】前記の従来から知られている非共沸混合冷
媒の内でも、特にR407CはHCFC22の代替冷媒
として有望視されている。このR407Cを一定の容器
に充填し、この容器から液相を抜き出したとき、液相抜
き出し率に対する残留液相中のHFC32(標準沸点−
51.7℃)及びHFC125(標準沸点−48.5
℃)の組成変化を図3に示す。[0018] Among the non-azeotropic mixed refrigerants known from the prior art, R407C in particular is considered to be promising as an alternative refrigerant to HCFC22. When R407C was filled in a certain container and the liquid phase was withdrawn from this container, HFC32 (standard boiling point-
51.7 ° C) and HFC125 (standard boiling point -48.5)
3C) is shown in FIG.
【0019】図3から、液相の抜き出し率が増大するに
伴って残留液相中のHFC32及びHFC125の濃度
が一様に低下し、図示しないが、相対的にHFC134
a(標準沸点−26.5℃)の濃度が増大し、特に抜き
出し率が70%〜80%以上ではその組成変化が著しく
なることがわかる。FIG. 3 shows that the concentration of HFC32 and HFC125 in the remaining liquid phase decreases uniformly as the extraction rate of the liquid phase increases.
It can be seen that the concentration of a (standard boiling point -26.5 ° C) increases, and the composition change becomes remarkable particularly when the extraction rate is 70% to 80% or more.
【0020】実際にこの方法で所定量の冷媒を複数の冷
凍・空調機器に順次小分けして移充填すると、結果的に
機器ごとの組成変化は避けられず、機器の性能を管理限
界内に保持するためには、ある一定の抜き出し率に達し
たとき、それ以上の抜き出しを中止しなければならな
い。通常、室温下では例えば70%〜80%程度の液相
抜き出し率で抜き出しを中止すれば、HFC32及びH
FC125の組成変化をそれぞれ元組成のほぼ−0.5
重量%以内に抑えることができる。HFC32及びHF
C125の−0.5重量%の組成変化は、相対的にHF
C134aに+1重量%の組成変化をもたらすから、結
果として各成分の組成変化を元組成の±1重量%以内と
することができ、この程度であれば、冷凍・空調機器の
性能面からも許容範囲内とされる。従ってHFC32、
HFC125及びHFC134aからなる非共沸混合冷
媒の場合、本発明は前記の抜き出し後に残留する20%
〜30%の残留冷媒Rに対して適用されることになる。When a predetermined amount of refrigerant is actually divided into a plurality of refrigeration / air-conditioning devices and transferred and filled in this method, a composition change for each device is inevitable, and the performance of the device is kept within the control limits. In order to do so, when a certain extraction rate is reached, further extraction must be stopped. Normally, at room temperature, if the withdrawal is stopped at a liquid phase withdrawal rate of, for example, about 70% to 80%, the HFC 32 and H
The change in the composition of FC125 was approximately -0.5 of the original composition.
% By weight. HFC32 and HF
A composition change of -125% by weight of C125 is relative to HF
Since + 1% by weight of composition change is caused to C134a, the composition change of each component can be made within ± 1% by weight of the original composition as a result. To this extent, the performance of refrigeration and air conditioning equipment is acceptable. Within the range. Therefore HFC32,
In the case of a non-azeotropic mixed refrigerant consisting of HFC125 and HFC134a, the present invention relates to the 20%
It will be applied to % 30% residual refrigerant R.
【0021】本発明の方法は、残留冷媒Rの気相又は液
相を、元組成を有する調整用冷媒Hの気相と導通させ、
調整用容器内の気液平衡関係と実使用容器内の気液平衡
関係とを一致させることによって残留冷媒Rの組成を調
整用冷媒Hの組成に近づけることを目的とするものであ
り、この組成変化は、量の多いほうの組成に近づく方向
に進むので、組成調整源としての調整用冷媒の量は、残
留冷媒の等重量以上とする必要がある。更に残留冷媒の
組成を±0.5重量%の許容範囲内まで円滑かつ迅速に
復元させるためには、2重量倍以上とすることが好まし
い。図3に示したように、複数の実使用容器に含まれる
残留冷媒の組成を一括復元する場合には、残留冷媒の総
量に対して2重量倍以上の調整用冷媒を使用することが
好ましい。In the method of the present invention, the gas phase or the liquid phase of the residual refrigerant R is brought into conduction with the gas phase of the adjusting refrigerant H having the original composition,
The purpose is to bring the composition of the residual refrigerant R closer to the composition of the adjustment refrigerant H by matching the gas-liquid equilibrium relationship in the adjustment container with the gas-liquid equilibrium relationship in the actual use container. Since the change proceeds in a direction approaching the composition having the larger amount, the amount of the adjusting refrigerant as the composition adjusting source needs to be equal to or more than the weight of the residual refrigerant. Further, in order to smoothly and quickly restore the composition of the residual refrigerant to within the allowable range of ± 0.5% by weight, it is preferable that the composition be 2 times or more. As shown in FIG. 3, when the composition of the residual refrigerant contained in the plurality of actually used containers is collectively restored, it is preferable to use the adjusting refrigerant that is at least 2 times the weight of the total amount of the residual refrigerant.
【0022】本発明の方法においては、調整用容器内と
実使用容器内との気液平衡関係を一致させる必要がある
ので、必然的に調整用容器と実使用容器とは実質的に同
一温度下に置かれる。調整用容器と実使用容器との温度
差は、あるとしても5℃以内とすることが好ましい。ま
た、保持中の温度は一定であることが好ましいので、温
度変化も、あるとしても5℃以内に抑えることが好まし
い。実際には常温で行えばよいので、特に温度に配慮す
る必要はない。In the method of the present invention, since the gas-liquid equilibrium relationship between the inside of the adjustment container and the inside of the actual use container needs to be matched, it is inevitable that the adjustment container and the actual use container have substantially the same temperature. Put down. It is preferable that the temperature difference between the adjustment container and the actually used container be within 5 ° C., if any. Further, since the temperature during the holding is preferably constant, it is preferable that the temperature change is suppressed within 5 ° C., if any. Actually, it is sufficient to perform the process at room temperature, so that there is no particular need to consider the temperature.
【0023】本発明の方法を適用する際の容器は、実使
用容器も調整用容器も共に特に限定されるものではな
い。例えばサービス缶と呼ばれる金属薄板製の缶、ボン
ベ、タンクローリー、アイソコンテナなどの移動用容
器、あるいは冷凍・空調機器に付属する冷媒タンク、製
品タンクなどの固定冷媒容器のいずれであってもよい。The containers used in applying the method of the present invention are not particularly limited, both for the containers actually used and the containers for adjustment. For example, it may be a metal thin plate can called a service can, a transfer container such as a cylinder, a tank lorry, or an iso-container, or a fixed refrigerant container such as a refrigerant tank attached to refrigeration / air-conditioning equipment or a product tank.
【0024】本発明の方法によれば、前記の容器から液
相の一部を抜き取った後に残留する組成変化した残留冷
媒を元組成に復元できるので、容器が空になるまで実質
的に組成が変わらない冷媒を抜き出すことができるよう
になるばかりでなく、この残留冷媒に新冷媒を補充する
場合にも組成の変動を抑制することができる。また、容
器が冷凍・空調機器に付属する冷媒タンクなどである場
合は、冷却運転中に冷媒の高揮発性成分の一部が漏洩し
て組成変化を起こしたときなどにも、成分調整のために
本発明の方法を適用することができる。According to the method of the present invention, the residual refrigerant having a changed composition remaining after extracting a part of the liquid phase from the container can be restored to the original composition, so that the composition is substantially reduced until the container becomes empty. In addition to being able to extract a refrigerant that does not change, it is possible to suppress a change in composition when replenishing the residual refrigerant with a new refrigerant. Also, if the container is a refrigerant tank attached to refrigeration / air-conditioning equipment, for example, when a part of the highly volatile component of the refrigerant leaks during the cooling operation and the composition changes, the components are adjusted. The method of the present invention can be applied to
【0025】[0025]
【実施例】以下に本発明の実施例を示す。各実施例にお
いて、組成割合は全て重量%である。 (実施例1) 下記の標準組成 HFC32/HFC125/HFC134a=25/1
5/60 を有する非共沸混合冷媒R407E(10kg)を所定の
容器(容量10リットル)に充填し、この液相を、残留
冷媒量が2kgとなるまで抜き出した。このときの残留冷
媒Rの組成は、ガスクロマトグラフィー測定の結果 HFC32/HFC125/HFC134a=24.2
/14.6/61.2 に変化していた。Examples of the present invention will be described below. In each of the examples, the composition ratios are all by weight. (Example 1) The following standard composition HFC32 / HFC125 / HFC134a = 25/1
A non-azeotropic mixed refrigerant R407E (10 kg) having a ratio of 5/60 was charged into a predetermined container (capacity: 10 liters), and the liquid phase was extracted until the residual refrigerant amount became 2 kg. At this time, the composition of the residual refrigerant R was determined by gas chromatography. HFC32 / HFC125 / HFC134a = 24.2
/14.6/61.2.
【0026】別の調整用容器にR407E(10kg)を
充填したものを用意し、これを調整用冷媒Hとした。こ
の調整用冷媒Hの量は、残留冷媒Rの量の5重量倍であ
った。またこの調整用冷媒Hの組成は、分析の結果、 HFC32/HFC125/HFC134a=25.2
/15.2/59.6 であり、標準組成に対して±0.5%の許容範囲内にあ
ることが確認された。Another container for adjustment was filled with R407E (10 kg), and this was used as adjustment refrigerant H. The amount of the adjusting refrigerant H was 5 times by weight the amount of the residual refrigerant R. As a result of analysis, the composition of the adjusting refrigerant H was HFC32 / HFC125 / HFC134a = 25.2.
/15.2/59.6, which is within the allowable range of ± 0.5% with respect to the standard composition.
【0027】次に、図1に示すように、実使用容器1の
頂部と調整用容器3の頂部とを導通管(フレキシブルホ
ース)4で連結し、それぞれの容器頂部の弁7,8を閉
じたまま、側管の弁9を開いて導通管4内を排気し、排
気後に弁7,8を開き、双方の容器の気相部を導通させ
た。この状態で双方の容器を一定温度の室内に約16時
間静置し、内部の冷媒温度を安定化させた。安定化後の
それぞれの容器の表面温度は室温と一致していた。Next, as shown in FIG. 1, the top of the actually used container 1 and the top of the adjusting container 3 are connected by a conducting tube (flexible hose) 4, and the valves 7 and 8 at the top of each container are closed. The valve 9 of the side pipe was opened to evacuate the inside of the conduit 4 after opening, and after evacuation, the valves 7 and 8 were opened to conduct the gas phase of both vessels. In this state, both containers were allowed to stand in a room at a constant temperature for about 16 hours to stabilize the internal refrigerant temperature. The surface temperature of each container after stabilization was consistent with room temperature.
【0028】この段階で、実使用容器1の頂部の弁7を
閉じ、液相抜出弁10を開いて液相を採取し、組成を分
析した。結果は、 HFC32/HFC125/HFC134a=25.0
/15.1/59.9 であり、±0.5重量%の許容範囲内で標準組成に復元
していた。この処理による残留冷媒Rの重量の増加は僅
少であった。この処理の結果、残留冷媒Rは所定組成の
冷媒として実使用容器1内の全量を使い切ることができ
た。At this stage, the valve 7 at the top of the actually used container 1 was closed, and the liquid phase extraction valve 10 was opened to collect the liquid phase and analyze the composition. The result is: HFC32 / HFC125 / HFC134a = 25.0
/15.1/59.9, and was restored to the standard composition within an allowable range of ± 0.5% by weight. The increase in the weight of the residual refrigerant R due to this treatment was small. As a result of this processing, the entire amount of the residual refrigerant R in the actually used container 1 could be used up as a refrigerant having a predetermined composition.
【0029】(実施例2)図3に示すように、容量がそ
れぞれ10,10,20,20及び100リットル)の
5本の実使用容器V1 ,V2 ,V3 ,V4 及びV5 を用
意し、これらに下記の標準組成 HFC32/HFC125/HFC134a=23/2
5/52 を有する非共沸混合冷媒R407Cを、それぞれ10k
g,10kg,20kg,20kg及び100kg充填し、これ
らの液相を、残留冷媒量がそれぞれ2kg,4kg,5kg,
6kg及び15kgとなるまで抜き出した。このとき、残留
冷媒R1 ,R2 ,R 3 、R4 及びR5 の組成は、ガスク
ロマトグラフィー測定の結果、それぞれHFC32/H
FC125/HFC134aの順に、 R1 : 22.3/24.4/53.3 R2 : 22.4/24.5/53.1 R3 : 22.1/24.2/53.7 R4 : 22.3/24.4/53.3 及び R5 : 22.3/24.2/53.5 に変化していた。(Embodiment 2) As shown in FIG.
10, 10, 20, 20, and 100 liters respectively)
5 actual containers V1, VTwo, VThree, VFourAnd VFiveFor
The following standard composition HFC32 / HFC125 / HFC134a = 23/2
The non-azeotropic refrigerant mixture R407C having 5/52
g, 10 kg, 20 kg, 20 kg and 100 kg
These liquid phases were separated by 2kg, 4kg, 5kg,
It was extracted until it reached 6 kg and 15 kg. At this time,
Refrigerant R1, RTwo, R Three, RFourAnd RFiveThe composition of the gask
As a result of the chromatographic measurement, HFC32 / H
R in the order of FC125 / HFC134a1: 22.3 / 24.4 / 53.3 RTwo: 22.4 / 24.5 / 53.1 RThree: 22.1 / 24.2 / 53.7 RFour: 22.3 / 24.4 / 53.3 and RFive: 22.3 / 24.2 / 53.5.
【0030】別に、容量100リットルの調整用容器3
にR407C(100kg)を充填したものを用意し、こ
れを調整用冷媒Hとした。この調整用冷媒Hの量は、残
留冷媒R1 ,R2 ,R3 、R4 及びR5 の総量の約3重
量倍であった。またこの調整用冷媒Hの組成は、分析の
結果、 HFC32/HFC125/HFC134a=23.3
/25.2/51.5 であり、標準組成に対して±0.5%の許容範囲内にあ
ることが確認された。Separately, an adjustment container 3 having a capacity of 100 liters
Was filled with R407C (100 kg), and this was used as refrigerant H for adjustment. The amount of the adjusting refrigerant H was about 3 times the total amount of the residual refrigerants R 1 , R 2 , R 3 , R 4 and R 5 . As a result of the analysis, the composition of the adjusting refrigerant H was HFC32 / HFC125 / HFC134a = 23.3.
/25.2/51.5, which was within the allowable range of ± 0.5% with respect to the standard composition.
【0031】次に、各実使用容器V1 ,V2 ,V3 ,V
4 及びV5 を、それぞれの頂部の弁を介して相互に連結
管(フレキシブルホース)5で連結し、この連結管5と
調整用容器3とを、その頂部の弁を介して導通管(フレ
キシブルホース)6で連結した。それぞれの容器の頂部
弁を閉じたまま、導通管6に設けた側管の弁を開いて導
通管6及び連結管5内を排気し、排気後に容器頂部の弁
を全て開き、全ての容器の気相部を導通させた。この状
態で全ての容器を一定温度の室内に約16時間静置し、
内部の冷媒温度を安定化させた。安定化後のそれぞれの
容器の表面温度は室温と一致していた。Next, each of the actually used containers V 1 , V 2 , V 3 , V
4 and V 5, and connected by a connecting pipe (flexible hose) 5 to each other through the valve of the respective top and this connection pipe 5 and the regulating container 3, the conduit through the valve of the top (flexible Hose 6). While the top valves of the containers are closed, the valves of the side pipes provided in the conduits 6 are opened to evacuate the conduits 6 and the connecting pipes 5. The gas phase was conducted. In this state, all containers are allowed to stand in a room at a constant temperature for about 16 hours,
The internal refrigerant temperature was stabilized. The surface temperature of each container after stabilization was consistent with room temperature.
【0032】この段階で、実使用容器V1 ,V2 ,
V3 ,V4 及びV5 の頂部弁を閉じ、それぞれの容器の
液相抜出管の弁を開いて液相を採取し、組成をガスクロ
マトグラフィーにより分析した。結果は、残留冷媒
R1 ,R2 ,R3 、R4 及びR5 について、ほぼ一致し
た測定値が得られ、 HFC32/HFC125/HFC134a=23.1
/24.9/52.0 であり、何れも±0.5重量%の許容範囲内で標準組成
に復元していた。この処理による残留冷媒の重量の増加
は僅少であった。この一括処理の結果、全ての残留冷媒
R1 ,R2 ,R3 、R4 及びR5 は、所定組成の冷媒と
して全量を使い切ることができた。At this stage, the actually used containers V 1 , V 2 ,
The top valves of V 3 , V 4 and V 5 were closed, the valves of the liquid phase extraction pipes of the respective containers were opened, and the liquid phase was collected, and the composition was analyzed by gas chromatography. As a result, the measured values of the residual refrigerants R 1 , R 2 , R 3 , R 4 and R 5 were almost the same, and HFC32 / HFC125 / HFC134a = 23.1.
/24.9/52.0, and all were restored to the standard composition within an allowable range of ± 0.5% by weight. The increase in the weight of the residual refrigerant due to this treatment was small. As a result of this batch processing, all of the residual refrigerants R 1 , R 2 , R 3 , R 4 and R 5 could be used up as a refrigerant of a predetermined composition.
【0033】(実施例3) 下記の標準組成 HFC32/HFC134a=30/70 を有する非共沸混合冷媒R900JA(0.8kg)を所
定の容器(容量1リットル)に充填し、この液相を、残
留冷媒量が0.4kgとなるまで抜き出して使用した。こ
のときの残留冷媒Rの組成はガスクロマトグラフィー測
定の結果 HFC32/HFC134a=29.0/71.0 に変化していた。Example 3 A non-azeotropic mixed refrigerant R900JA (0.8 kg) having the following standard composition HFC32 / HFC134a = 30/70 was charged into a predetermined container (1 liter capacity), and this liquid phase was It was extracted and used until the residual refrigerant amount became 0.4 kg. At this time, the composition of the residual refrigerant R was changed to HFC32 / HFC134a = 29.0 / 71.0 as a result of gas chromatography measurement.
【0034】別に、同容量の調整用容器にR900JA
(0.8kg)を充填したものを用意し、これを調整用冷
媒Hとした。この調整用冷媒Hの量は、残留冷媒Rの量
の2重量倍であった。またこの調整用冷媒Hの組成は、
分析の結果、 HFC32/HFC134a=30.4/69.6 であり、標準組成に対して±0.5%の許容範囲内にあ
ることが確認された。Separately, R900JA is used for an adjustment container of the same capacity.
(0.8 kg) was prepared, and this was used as refrigerant H for adjustment. The amount of the adjusting refrigerant H was twice as much as the amount of the residual refrigerant R. The composition of the adjusting refrigerant H is
As a result of the analysis, HFC32 / HFC134a was 30.4 / 69.6, and it was confirmed that the difference was within the allowable range of ± 0.5% with respect to the standard composition.
【0035】次に、図2に示すように、実使用容器1の
延長管11の外部端末に装着された弁7と調整用容器3
の頂部弁8とを導通管(フレキシブルホース)4で連結
し、それぞれの弁7,8を閉じたまま導通管4に設けた
側管の弁9を開いて導通管4内を排気し、排気後に弁9
を閉じ弁7,8を開き実使用容器1内の残留冷媒R(液
相)と調整用容器3内の調整用冷媒の気相とを導通させ
た。この状態で双方の容器を一定温度の室内に約24時
間静置し、内部の冷媒温度を安定化させた。安定化後の
それぞれの容器の表面温度は室温と一致していた。Next, as shown in FIG. 2, the valve 7 attached to the external terminal of the extension pipe 11 of the actual use container 1 and the adjusting container 3
Is connected to the top valve 8 by a conductive pipe (flexible hose) 4, and while the valves 7 and 8 are closed, the side pipe valve 9 provided in the conductive pipe 4 is opened to exhaust the inside of the conductive pipe 4, Later valve 9
Is closed and the valves 7 and 8 are opened to allow the residual refrigerant R (liquid phase) in the actual use container 1 to communicate with the gas phase of the adjustment refrigerant in the adjustment container 3. In this state, both containers were allowed to stand in a room at a constant temperature for about 24 hours to stabilize the internal refrigerant temperature. The surface temperature of each container after stabilization was consistent with room temperature.
【0036】この段階で、実使用容器1の頂部の弁7を
閉じ、液相抜出弁10を開いて液相を採取し、組成を分
析した。結果は、 HFC32/HFC134a=29.9/70.1 であり、±0.5重量%の許容範囲内で標準組成に復元
していた。この処理による残留冷媒Rの重量の増加は僅
少であった。この処理の結果、残留冷媒Rは所定組成の
冷媒として実使用容器1内の全量を使い切ることができ
た。At this stage, the valve 7 at the top of the actually used container 1 was closed, and the liquid phase extraction valve 10 was opened to collect the liquid phase and analyze the composition. The result was HFC32 / HFC134a = 29.9 / 70.1, and the composition was restored to the standard composition within the allowable range of ± 0.5% by weight. The increase in the weight of the residual refrigerant R due to this treatment was small. As a result of this processing, the entire amount of the residual refrigerant R in the actually used container 1 could be used up as a refrigerant having a predetermined composition.
【0037】(実施例4) 下記の標準組成 HC290/HCFC22/FC218=5/56/3
9 を有する非共沸混合冷媒R403B(10kg)を所定の
容器(容量10リットル)に充填し、この液相を、残留
冷媒量が2.5kgとなるまで抜き出して使用した。この
ときの残留冷媒Rの組成はガスクロマトグラフィー測定
の結果 HC290/HCFC22/FC218=4.8/5
7.0/38.2 に変化していた。(Example 4) The following standard composition HC290 / HCFC22 / FC218 = 5/56/3
A non-azeotropic mixed refrigerant R403B (10 kg) having the following formula 9 was charged into a predetermined container (capacity: 10 liters), and this liquid phase was extracted and used until the residual refrigerant amount became 2.5 kg. At this time, the composition of the residual refrigerant R was determined by gas chromatography as follows: HC290 / HCFC22 / FC218 = 4.8 / 5
7.0 / 38.2.
【0038】別に、同容量の調整用容器にR403B
(10kg)を充填したものを用意し、これを調整用冷媒
Hとした。この調整用冷媒Hの量は、残留冷媒Rの量の
4重量倍であった。またこの調整用冷媒Hの組成は、分
析の結果、 HC290/HCFC22/FC218=5.1/5
5.6/39.3 であり、標準組成に対して±0.5%の許容範囲内にあ
ることが確認された。Separately, an R403B
(10 kg) was prepared, and this was used as refrigerant H for adjustment. The amount of the adjusting refrigerant H was 4 times the weight of the amount of the residual refrigerant R. As a result of analysis, the composition of the adjusting refrigerant H was determined to be HC290 / HCFC22 / FC218 = 5.1 / 5.
5.6 / 39.3, which was confirmed to be within the allowable range of ± 0.5% with respect to the standard composition.
【0039】次に、図1に示すように、実使用容器1の
頂部と調整用容器3の頂部とを導通管(フレキシブルホ
ース)4で連結し、それぞれの容器頂部の弁7,8を閉
じたまま側管の弁9を開いて導通管4内を排気し、排気
後に弁7,8を開き双方の容器の気相部を導通させた。
この状態で双方の容器を一定温度の室内に約16時間静
置し、内部の冷媒温度を安定化させた。安定化後のそれ
ぞれの容器の表面温度は室温と一致していた。Next, as shown in FIG. 1, the top of the actually used container 1 and the top of the adjusting container 3 are connected by a conductive tube (flexible hose) 4, and the valves 7, 8 at the top of each container are closed. While the valve 9 of the side pipe was opened, the inside of the conduit 4 was evacuated. After the evacuation, the valves 7 and 8 were opened to conduct the gas phase of both vessels.
In this state, both containers were allowed to stand in a room at a constant temperature for about 16 hours to stabilize the internal refrigerant temperature. The surface temperature of each container after stabilization was consistent with room temperature.
【0040】この段階で、実使用容器1の頂部の弁7を
閉じ、液相抜出弁10を開いて液相を採取し、組成を分
析した。結果は、 HC290/HCFC22/FC218=5.0/5
5.9/39.1 であり、±0.5重量%の許容範囲内で標準組成に復元
していた。この処理による残留冷媒Rの重量の増加は僅
少であった。この処理の結果、残留冷媒Rは所定組成の
冷媒として実使用容器1内の全量を使い切ることができ
た。At this stage, the valve 7 at the top of the actually used container 1 was closed, and the liquid phase extraction valve 10 was opened to collect the liquid phase and analyze the composition. The result is: HC290 / HCFC22 / FC218 = 5.0 / 5
5.9 / 39.1, and was restored to the standard composition within an allowable range of ± 0.5% by weight. The increase in the weight of the residual refrigerant R due to this treatment was small. As a result of this processing, the entire amount of the residual refrigerant R in the actually used container 1 could be used up as a refrigerant having a predetermined composition.
【0041】[0041]
【発明の効果】本発明の残留冷媒の再生方法は、非共沸
混合冷媒の残留冷媒の気相又は液相を、これと等重量以
上の、実質的に元組成を有する調整用冷媒の気相と導通
させ、この導通状態を、残留冷媒の組成が±1重量%の
許容範囲内で復元するまで保持するものであるので、き
わめて簡単な手段で、しかも複数の容器に様々な残量で
含まれ様々に組成変化した残留冷媒をも、容器から取り
出すことなく一括して実質的な元組成に復元することが
でき、実使用容器内の冷媒を、元組成を保ちながら全量
使い切ることができるようになる。また残留冷媒を含む
実使用容器に元組成の混合冷媒を補充する場合も、本発
明の再生方法を適用すれば容器内の冷媒組成が復元され
ているので、充填作業が大幅に簡略化される。更に、冷
却運転中に冷媒の高揮発性成分の一部が漏洩して冷却性
能が劣化した冷凍・空調機器に対して、付属する冷媒タ
ンクに本発明の方法を適用すれば、冷媒の入れ替えなし
に機能を復活させることができる。According to the method for regenerating the residual refrigerant of the present invention, the gaseous phase or the liquid phase of the residual refrigerant of the non-azeotropic mixed refrigerant is converted into the vapor of the conditioning refrigerant having substantially the same original composition as that of the residual refrigerant. Phase and maintain this state of conduction until the composition of the residual refrigerant is restored within the allowable range of ± 1% by weight. Residual refrigerants that have been varied in composition can also be restored to the original original composition at once without removing them from the container, and the entire amount of the refrigerant in the actual use container can be used up while maintaining the original composition. Become like In addition, when the mixed refrigerant having the original composition is replenished to the actually used container including the residual refrigerant, the refrigerant composition in the container is restored by applying the regeneration method of the present invention, so that the filling operation is greatly simplified. . Furthermore, if the method of the present invention is applied to an attached refrigerant tank for refrigeration / air-conditioning equipment in which a part of highly volatile components of the refrigerant leaks during the cooling operation and the cooling performance is deteriorated, the refrigerant does not need to be replaced. Function can be restored.
【図1】 本発明の一実施形態を示す結合図。FIG. 1 is a combined diagram showing an embodiment of the present invention.
【図2】 本発明の他の一実施形態を示す結合図。FIG. 2 is a combined view showing another embodiment of the present invention.
【図3】 本発明の更に他の一実施形態を示す結合図。FIG. 3 is a connection diagram showing still another embodiment of the present invention.
【図4】 液相抜き出し率と液相組成との関係を示すグ
ラフ。FIG. 4 is a graph showing a relationship between a liquid phase extraction rate and a liquid phase composition.
1…実使用容器 2…液相抜出管 3…調整用容器 4…導通管 5…連結管 6…導通管 7,8…容器頂部の弁 9…側管の弁 10…液相抜出弁 11…延長管 R…残留冷媒 H…調整用冷媒 R1 ,R2 ,R3 ,Rn …残留冷媒 V1 ,V2 ,V3 ,Vn …実使用容器DESCRIPTION OF SYMBOLS 1 ... Actual use container 2 ... Liquid phase extraction pipe 3 ... Adjustment container 4 ... Conducting pipe 5 ... Connecting pipe 6 ... Conducting pipe 7, 8 ... Valve at the top of container 9 ... Valve of side pipe 10 ... Liquid phase extraction valve 11 ... extension pipe R ... residual refrigerant H ... adjusting refrigerant R 1, R 2, R 3 , R n ... residual refrigerant V 1, V 2, V 3 , V n ... actual use containers
Claims (5)
冷媒の気相又は液相を、これと等重量以上の、この残留
冷媒の元の組成と実質的に同等な組成を有する調整用冷
媒の気相と導通させ、この導通状態を、残留冷媒の組成
が±1重量%の許容範囲内で復元するまで保持すること
を特徴とする残留冷媒の再生方法。1. A method of adjusting a gaseous phase or a liquid phase of a non-azeotropic mixed refrigerant remaining in a container and having a changed composition to have an equivalent weight or more of a composition substantially equivalent to the original composition of the residual refrigerant. A method for regenerating a residual refrigerant, wherein the residual refrigerant is conducted until the composition of the residual refrigerant is restored within a permissible range of ± 1% by weight.
量倍以上であることを特徴とする請求項1に記載の残留
冷媒の再生方法。2. The method for regenerating a residual refrigerant according to claim 1, wherein the amount of the adjusting refrigerant is at least 2 times the weight of the residual refrigerant.
0.5重量%の許容範囲内で復元するまで保持すること
を特徴とする請求項1に記載の残留冷媒の再生方法。3. The method according to claim 1, wherein the composition of the residual refrigerant is ±
The method for regenerating residual refrigerant according to claim 1, wherein the residual refrigerant is held until it is restored within an allowable range of 0.5% by weight.
ロフルオロカーボン、ハイドロフルオロカーボン、ハイ
ドロカーボン、フルオロカーボン、ハイドロフルオロエ
ーテル、フルオロエーテル、及びフルオロヨードカーボ
ンの群から選ばれた2種以上からなる非共沸混合物であ
ることを特徴とする請求項1に記載の残留冷媒の再生方
法。4. The non-azeotropic mixed refrigerant according to claim 1, wherein the non-azeotropic mixed refrigerant comprises two or more selected from the group consisting of hydrochlorofluorocarbon, hydrofluorocarbon, hydrocarbon, fluorocarbon, hydrofluoroether, fluoroether, and fluoroiodocarbon. The method for regenerating a residual refrigerant according to claim 1, wherein the method is a boiling mixture.
タン、ペンタフルオロエタン及び1,1,1,2−テト
ラフルオロエタンの群から選ばれた2種以上からなる非
共沸混合物であることを特徴とする請求項1に記載の残
留冷媒の再生方法。5. The non-azeotropic mixture refrigerant is a non-azeotropic mixture of two or more selected from the group consisting of difluoromethane, pentafluoroethane and 1,1,1,2-tetrafluoroethane. The method for regenerating a residual refrigerant according to claim 1, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9221807A JPH1161110A (en) | 1997-08-18 | 1997-08-18 | Regeneration of residual refrigerant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9221807A JPH1161110A (en) | 1997-08-18 | 1997-08-18 | Regeneration of residual refrigerant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1161110A true JPH1161110A (en) | 1999-03-05 |
Family
ID=16772514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9221807A Pending JPH1161110A (en) | 1997-08-18 | 1997-08-18 | Regeneration of residual refrigerant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1161110A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1325857C (en) * | 2004-05-28 | 2007-07-11 | 爱信精机株式会社 | Refrigerant supplying device and supplying method |
US20140174111A1 (en) * | 2007-12-07 | 2014-06-26 | Bosch Automotive Service Solutions Llc | Background tank fill based on refrigerant composition |
CN112888755A (en) * | 2018-10-15 | 2021-06-01 | 霍尼韦尔国际公司 | Azeotrope or azeotrope-like composition of trifluoroiodomethane (CF3I) and 1,1,1,2,2,3, 3-heptafluoropropane (HFC-227ca) |
-
1997
- 1997-08-18 JP JP9221807A patent/JPH1161110A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1325857C (en) * | 2004-05-28 | 2007-07-11 | 爱信精机株式会社 | Refrigerant supplying device and supplying method |
US20140174111A1 (en) * | 2007-12-07 | 2014-06-26 | Bosch Automotive Service Solutions Llc | Background tank fill based on refrigerant composition |
CN112888755A (en) * | 2018-10-15 | 2021-06-01 | 霍尼韦尔国际公司 | Azeotrope or azeotrope-like composition of trifluoroiodomethane (CF3I) and 1,1,1,2,2,3, 3-heptafluoropropane (HFC-227ca) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6000230A (en) | Method for dividing and charging of non-azeotropic mixed refrigerant | |
CA2105565C (en) | Non-azeotropic refrigerant compositions comprising difluoromethane; 1,1,1-trifluoroethane; or propane | |
US5711158A (en) | Apparatus and method for charging three-component mixed refrigerant | |
DE69130072T2 (en) | FLUORINE HYDROCARBONS WITH A CONSTANT BOILING POINT | |
AU732822B2 (en) | Method for transfer-filling of liquefied gases | |
JPWO2017126447A1 (en) | Method for charging mixed refrigerant containing trifluoroethylene | |
US6018952A (en) | Method for charging refrigerant blend | |
JP2698319B2 (en) | Non-azeotropic mixtures containing difluoromethane and 1,1,1,2-tetrafluoroethane and their application as refrigerant liquids in air conditioning | |
EP0483573A1 (en) | Azeotropic and/or azeotropelike mixtures and refrigeration or air conditioning systems using them as working fluids | |
AU722935B2 (en) | Method for charging refrigerant blend | |
US20070187638A1 (en) | Hydrofluorocarbon-based composition and use thereof | |
JPH1161110A (en) | Regeneration of residual refrigerant | |
EP0620839A1 (en) | Compositions useful as refrigerants | |
EP3521397B1 (en) | Method for transfer-filling refrigerant composition | |
JPH11124569A (en) | Method for subdividing and filling non-axeotropic refrigerant | |
US5709093A (en) | Process for minimizing compositional changes | |
JP3589247B2 (en) | Liquefied gas filling method | |
JP3575089B2 (en) | Method for forming a non-azeotropic mixed refrigerant | |
WO2017126446A1 (en) | Filling method for mixed refrigerant including trifluoroethylene | |
US20020000534A1 (en) | Non-azeotropic refrigerant compositions comprising difluoromethane or 1,1,1,-trifluorethane | |
US1986959A (en) | Refrigerant composition | |
AU728403B2 (en) | Refrigerant compositions | |
EP0979855A1 (en) | Method for filling mixed refrigerant | |
MacNeill et al. | Charging And Recovery Techniques For Low GWP Refrigerant Blends | |
Singh et al. | Some Issues in the Use of Refrigerant Mixtures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050118 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050524 |