[go: up one dir, main page]

JPH1160789A - Production of microporous film - Google Patents

Production of microporous film

Info

Publication number
JPH1160789A
JPH1160789A JP9214424A JP21442497A JPH1160789A JP H1160789 A JPH1160789 A JP H1160789A JP 9214424 A JP9214424 A JP 9214424A JP 21442497 A JP21442497 A JP 21442497A JP H1160789 A JPH1160789 A JP H1160789A
Authority
JP
Japan
Prior art keywords
stretching
temperature
microporous membrane
plasticizer
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9214424A
Other languages
Japanese (ja)
Other versions
JP3917721B2 (en
Inventor
Izumi Hojuyama
和泉 宝珠山
Takafumi Yamamizu
孝文 山水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP21442497A priority Critical patent/JP3917721B2/en
Publication of JPH1160789A publication Critical patent/JPH1160789A/en
Application granted granted Critical
Publication of JP3917721B2 publication Critical patent/JP3917721B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject film capable of regulating permeability without spoiling strengths, while excellent in dimensional stability at high temperatures and used for battery separators, etc., by using a pre-extraction drawing together with a post-extraction drawing and performing a heat treatment. SOLUTION: This production of microporous film is to melt and knead a composition comprising a polyolefin resin and a plasticizer, form the composition in a sheet form by extruding and cooling to solid, draw at least one time in at least one axial direction, extract the plasticizer, successively draw at least one time in at least one axial direction and perform a heat treatment. In the heat treatment, it is preferable to bring the temperature to equal to or higher than a temperature 50 deg.C lower than the melting point Tm of the obtained film to less than the Tm and heat relax the film by bringing the relaxing rate to 1-50%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば各種の円筒
型電池、角型電池、薄型電池、ボタン型電池、電解コン
デンサー等の電池材料に使用されるセパレーターを製造
するにあたって好適な手段を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a means suitable for producing separators used for battery materials such as various cylindrical batteries, prismatic batteries, thin batteries, button batteries, electrolytic capacitors and the like. Things.

【0002】[0002]

【従来の技術】微多孔膜は、浄水器等の濾材、通気性衣
料用途、電池用セパレーターや電解コンデンサー用セパ
レーター等の材料として従来より使用されてきた。近年
では、特にリチウムイオン2次電池用途の需要が伸びて
おり、電池の高エネルギー密度化に伴って、セパレータ
ーにも高性能が要求されるようになった。
2. Description of the Related Art Microporous membranes have been used as materials for filter media for water purifiers and the like, for breathable clothing, separators for batteries and separators for electrolytic capacitors. In recent years, demand for lithium-ion secondary battery applications has been particularly growing, and as the energy density of batteries has increased, high performance has also been required for separators.

【0003】リチウムイオン2次電池には、電解液や正
負極活物質等の薬剤が使用されているので、セパレータ
ーの材質は、耐薬品性を考慮して、ポリオレフィン系ポ
リマーが一般に使用されており、特に安価なポリエチレ
ンやポリプロピレンが使用されている。リチウムイオン
2次電池等の非水電解液系電池用途のセパレーターに対
しては、電極短絡防止機能、高イオン透過性、電池捲回
時の組立加工性、電池安全性、および信頼性等が従来よ
り基本性能として要求されてきた。更に近年では、多様
化する電池グレードのニーズに応えるべく、孔構造や気
孔率等の透過性能を自在に調節する技術や、高温におけ
る寸法安定性を調節できる技術の開発が急務となってい
る。
[0003] Since a lithium ion secondary battery uses chemicals such as an electrolytic solution and positive and negative electrode active materials, a polyolefin polymer is generally used for the material of the separator in consideration of chemical resistance. Particularly, inexpensive polyethylene and polypropylene are used. For separators for non-aqueous electrolyte batteries such as lithium ion secondary batteries, electrode short circuit prevention function, high ion permeability, assembly workability when winding the battery, battery safety, reliability, etc. It has been demanded as more basic performance. Furthermore, in recent years, in order to meet the needs of diversified battery grades, there is an urgent need to develop a technology for freely adjusting the permeation performance such as a pore structure and a porosity and a technology for adjusting the dimensional stability at high temperatures.

【0004】電極短絡防止機能とは、セパレーターが正
負両極間に介在して内部短絡を防止する隔壁の役割を果
たすことを意味する。内部短絡を防止するためには、セ
パレーターの高強度、小孔径、適当な膜厚が必要であ
る。2次電池は、充放電によって内部の電極が膨張する
ため、場合によっては、数十kg/cm2 もの圧力がセ
パレーターにかかってしまうことがある。また、電極表
面は平滑であるとは限らず、種々のサイズの活物質粒子
が突起物となっている。このような場合にも、破断しな
い高強度がセパレーターには要求されている。セパレー
ターが角型電池や薄型電池用途として使用される場合に
は、電極とセパレーターを積層捲回したコイルを圧縮し
てケーシングするため、高強度に対する要求は更に強い
と言える。
The function of preventing an electrode short-circuit means that a separator functions as a partition wall interposed between the positive and negative electrodes to prevent an internal short-circuit. In order to prevent an internal short circuit, the separator needs to have high strength, a small pore diameter, and an appropriate film thickness. In a secondary battery, an internal electrode expands due to charge and discharge, and in some cases, a pressure of several tens of kg / cm 2 may be applied to the separator. In addition, the electrode surface is not always smooth, and active material particles of various sizes are formed as projections. Even in such a case, the separator is required to have high strength that does not break. When the separator is used for a rectangular battery or a thin battery, the coil formed by laminating the electrode and the separator is compressed and casing, so that the demand for high strength can be said to be even stronger.

【0005】イオン透過性とは、セパレーターが、活物
質粒子は透過させず、イオンや電解液のみを透過させる
能力を意味する。一般には、オーム損を低減し放電効率
を高めるために、高気孔率、低透気度、低電気抵抗等の
性能が要求される。しかし近年では、大電流放電を必要
としない用途や、電池安全性に対する要求が特に高い用
途に対しては、前記高透過性とは対局をなすような緻密
なセパレーターが要求されるケースもある。したがっ
て、いかなる要求に対しても、透過性を自在に調節でき
る柔軟な成形技術を開発することが有用である。
[0005] The term "ion-permeable" means the ability of a separator to transmit only ions or an electrolytic solution without transmitting active material particles. Generally, in order to reduce ohmic loss and increase discharge efficiency, performance such as high porosity, low air permeability, and low electric resistance is required. However, in recent years, for applications that do not require a large current discharge or for applications that have particularly high demands on battery safety, there are cases where a dense separator that plays a role against the high permeability is required. Therefore, it is useful to develop a flexible molding technique that can freely adjust the permeability for any request.

【0006】組立加工性としては、セパレーターに、機
械方向に一定の張力をかけて電極とともに捲回する際、
セパレーターが機械方向に伸びないことや、巾方向に寸
法変化しないことが要求され、高弾性率が必要となる。
電池安全性とは、電池が外部短絡や過充電等のトラブル
により発熱昇温した際に、セパレーターが自動的に電流
を遮断して発熱を止めることにより、電池の暴走や爆発
を抑える機能のことを意味する。電池内部の温度が、セ
パレーターを構成する樹脂の融点近傍まで昇温すると、
セパレーターは、熱流動ないし熱変形や熱収縮により細
孔を閉塞するか、あるいは電極表面に樹脂が吸収されて
絶縁被膜を形成することにより、いわゆるシャットダウ
ン機能を発現する。この機能を発現する温度が低いほ
ど、低温で電流を遮断して発熱を抑える能力があるた
め、望ましい。また、シャットダウン状態にある温度領
域が広いほど、電流を遮断している時間が長くなるた
め、より激しい発熱による温度上昇にも耐えることがで
き望ましい。
[0006] Regarding the assembling processability, when a separator is wound with an electrode while applying a constant tension in the machine direction,
It is required that the separator does not extend in the machine direction and that the dimension does not change in the width direction, and a high elastic modulus is required.
Battery safety is a function to prevent battery runaway and explosion by automatically shutting off the current and stopping heat generation when the battery heats up due to external short circuit or overcharge, etc. Means When the temperature inside the battery rises to near the melting point of the resin that makes up the separator,
The separator exerts a so-called shutdown function by closing pores by heat flow, thermal deformation or heat shrinkage, or by absorbing resin on the electrode surface to form an insulating film. The lower the temperature at which this function is exhibited, the more desirable it is because it has the ability to cut off current at a low temperature and suppress heat generation. Further, the wider the temperature region in the shutdown state is, the longer the time during which the current is cut off is. Therefore, it is desirable to be able to withstand a temperature rise due to more intense heat generation.

【0007】高温における寸法安定性とは、電池製造時
の何らかの高温処理や、トラブルによって電池内部が昇
温した場合を想定して、セパレーターが熱収縮等により
寸法変形する程度を評価するものである。前者の場合に
セパレーターが幅方向に収縮変形すると電極が露出して
内部短絡し、また長手方向に収縮応力が作用すると捲き
締まりが起きたり破断したりして、いずれにせよ電池の
生産効率を低下させてしまう。後者の場合のように、電
池暴走時に寸法安定性が維持できないと、シャットダウ
ン機能さえ無意味となり、極めて深刻な問題である。こ
のように、シャットダウン機能を損なうことなく、かつ
高温における使用に耐えうるセパレーターを製造する技
術は確立されていない。
The dimensional stability at high temperature is to evaluate the degree of dimensional deformation of the separator due to thermal shrinkage or the like, assuming that some temperature treatment is performed during battery manufacture or that the inside of the battery is heated due to trouble. . In the former case, if the separator shrinks and deforms in the width direction, the electrodes will be exposed and short-circuited internally, and if shrinkage stress acts in the longitudinal direction, it will tighten or break, reducing the production efficiency of the battery in any case. Let me do it. If the dimensional stability cannot be maintained during the battery runaway as in the latter case, even the shutdown function becomes meaningless, which is a very serious problem. As described above, no technique has been established for producing a separator that does not impair the shutdown function and that can withstand use at high temperatures.

【0008】微多孔膜の製造技術において、ポリマーと
可塑剤よりなる組成物から、相分離プロセスにより微多
孔膜前駆体を形成せしめ、これに可塑剤抽出除去のプロ
セスや延伸薄膜化のプロセスを適用して微多孔膜とする
技術は公知である。このような公知技術の中で、延伸を
行う段階を抽出プロセスの前または後に実施するかによ
って、それぞれ抽出前延伸、または抽出後延伸と呼ぶも
のとする。
[0008] In the microporous membrane production technology, a microporous membrane precursor is formed by a phase separation process from a composition comprising a polymer and a plasticizer, and a plasticizer extraction / removal process or a stretched thinning process is applied thereto. A technique for forming a microporous film by using the method is known. In such known techniques, depending on whether the stretching step is performed before or after the extraction process, it will be referred to as pre-extraction stretching or post-extraction stretching, respectively.

【0009】特公平6−21177号公報および特開平
6−240036号公報は、超高分子量成分を含有する
ポリオレフィン微多孔膜の透過性能の向上や孔径制御を
目的として、抽出前延伸と抽出後延伸を組み合わせた技
術を開示しているが、高温における寸法安定性が優れた
微多孔膜を得るに至っていない。特開平6−33653
5号公報は、ポリエチレンとポリプロピレンの混合組成
物からなる微多孔膜に抽出前延伸と抽出後延伸を併用し
て、透過性能を向上し、かつ電池安全性を高める方法を
提案しているが、高温における微多孔膜の熱収縮には着
目しておらず、高温における寸法安定性が優れた微多孔
膜を得るに至っていない。
JP-B-6-21177 and JP-A-6-240036 disclose stretching before extraction and stretching after extraction for the purpose of improving the permeation performance and controlling the pore size of a microporous polyolefin membrane containing an ultrahigh molecular weight component. Are disclosed, but a microporous film having excellent dimensional stability at high temperatures has not yet been obtained. JP-A-6-33653
No. 5 proposes a method for improving the permeation performance and improving the battery safety by using both pre-extraction stretching and post-extraction stretching on a microporous membrane composed of a mixed composition of polyethylene and polypropylene. No attention has been paid to heat shrinkage of the microporous film at high temperatures, and a microporous film having excellent dimensional stability at high temperatures has not been obtained.

【0010】[0010]

【発明が解決しようとする課題】従来の微多孔膜の製造
技術においては、微多孔膜の強度を損なうことなく、透
過性能を自在に調節することは困難であった。すなわ
ち、抽出前延伸のみによるプロセスの場合、効率的に配
向を付与し強度を高めることが可能であるが、透過性能
の点で自由度がないという欠点があった。一方、抽出後
延伸のみによるプロセスの場合、延伸によって界面破壊
が支配的に進むので、透過性能が高い微多孔膜を得るこ
とはできるが、透過性能を調節することは困難であり、
また強度的にも低いという欠点があった。
In the conventional technique for producing a microporous membrane, it has been difficult to freely adjust the permeation performance without impairing the strength of the microporous membrane. That is, in the case of the process using only the stretching before extraction, it is possible to efficiently impart the orientation and increase the strength, but there is a disadvantage that there is no flexibility in terms of the transmission performance. On the other hand, in the case of the process using only the stretching after extraction, the interface breakdown predominantly proceeds by stretching, so that it is possible to obtain a microporous membrane having high permeability, but it is difficult to adjust the permeability.
There is also a disadvantage that the strength is low.

【0011】また、特公平6−21177号公報、特開
平6−240036号公報、および特開平6−3365
35号公報に開示されているように、抽出前延伸と抽出
後延伸を併用すれば透過性能を向上することは可能であ
るが、高温における寸法安定性を改良して、熱収縮しに
くい微多孔膜を得ることは難しい。かくして、当業界に
おいては、透過性能が比較的低い領域から高い領域まで
の広範囲に渡って調節でき、なおかつ高温における寸法
安定性に優れた微多孔膜を得る技術の確立が課題として
残されていた。
Further, Japanese Patent Publication No. 6-21177, Japanese Patent Application Laid-Open No. 6-240036, and Japanese Patent Application Laid-Open No. 6-3365.
As disclosed in Japanese Patent Publication No. 35, it is possible to improve the permeation performance by using the pre-extraction stretching and the post-extraction stretching together, but it improves the dimensional stability at high temperatures and makes the microporous hard to heat shrink. It is difficult to get a film. Thus, in the art, the establishment of a technique for obtaining a microporous membrane having a permeation performance that can be adjusted over a wide range from a relatively low region to a high region and that has excellent dimensional stability at high temperatures has been left as an issue. .

【0012】[0012]

【課題を解決するための手段】本発明者は、前記課題を
解決するために鋭意研究した結果、抽出前延伸と抽出後
延伸を併用し、更に熱処理を施すことにより、強度を損
なうことなく、自在に透過性能を調節でき、同時に高温
における寸法安定性に優れたポリオレフィン微多孔膜を
製造する方法を見出し、本発明をなすに至った。
Means for Solving the Problems The present inventor has conducted intensive studies in order to solve the above-mentioned problems, and as a result, by using both pre-extraction stretching and post-extraction stretching and further performing a heat treatment, without impairing the strength, The present inventors have found a method for producing a microporous polyolefin membrane that can freely adjust the permeability and at the same time have excellent dimensional stability at high temperatures, and have accomplished the present invention.

【0013】即ち、本発明は、(a)ポリオレフィン樹
脂と可塑剤からなる組成物を溶融混練し、押し出して冷
却固化させシート状に成形する工程、(b)前記工程a
の後に、少なくとも1軸方向に、少なくとも1回の延伸
を行う工程、(c)前記工程bの後に、前記可塑剤を抽
出する工程、(d)前記工程cの後に、少なくとも1軸
方向に、少なくとも1回の延伸を行う工程、(e)前記
工程dに続いて、または後に熱処理を施す工程を含むポ
リオレフィン微多孔膜の製造方法に関する。
That is, the present invention provides (a) a step of melt-kneading a composition comprising a polyolefin resin and a plasticizer, extruding, cooling and solidifying to form a sheet;
After the step of stretching at least one time in at least one axial direction, (c) a step of extracting the plasticizer after the step b, (d) at least a uniaxial direction after the step c, The present invention relates to a method for producing a microporous polyolefin membrane, comprising a step of performing stretching at least once, and (e) a step of performing a heat treatment following or after the step d.

【0014】また、上記製造方法の熱処理を施す工程に
おいて、温度をポリオレフィン微多孔膜の融点Tm ℃よ
り50℃低い温度以上Tm ℃未満とし、かつ、緩和率を
1〜50%とすることにより熱緩和させることは、本発
明の好ましい実施態様である。本発明の製造方法の
(a)の工程において、ポリオレフィン樹脂と可塑剤を
溶融混練する第一の方法は、ポリオレフィン樹脂を押出
機等の樹脂混練装置に投入し、樹脂を加熱溶融させなが
ら任意の比率で可塑剤を導入し、更に樹脂と可塑剤より
なる組成物を混練することにより、均一溶液を得る方法
である。投入するポリオレフィン樹脂の形態は、粉末
状、顆粒状、ペレット状の何れでも良い。また、このよ
うな方法によって混練する場合は、可塑剤の形態は常温
液体であることが好ましい。押出機としては、単軸スク
リュー式押出機、二軸異方向スクリュー式押出機、二軸
同方向スクリュー式押出機等が使用できる。
Further, in the heat treatment step of the above-mentioned production method, the temperature is set to a temperature not lower than 50 ° C. lower than the melting point T m ° C. of the polyolefin microporous membrane and lower than T m ° C., and the relaxation rate is set to 1 to 50%. Thermal relaxation is a preferred embodiment of the present invention. In the step (a) of the production method of the present invention, the first method of melt-kneading the polyolefin resin and the plasticizer is as follows. The polyolefin resin is charged into a resin kneading device such as an extruder, and the resin is heated and melted. In this method, a uniform solution is obtained by introducing a plasticizer in a ratio and kneading a composition comprising a resin and a plasticizer. The form of the polyolefin resin to be charged may be any of powder, granule, and pellet. When kneading by such a method, the form of the plasticizer is preferably a liquid at room temperature. As the extruder, a single screw type extruder, a twin screw different direction screw type extruder, a twin screw same direction screw type extruder, or the like can be used.

【0015】ポリオレフィン樹脂と可塑剤を溶融混練す
る第二の方法は、樹脂と可塑剤を予め常温にて混合して
分散させ、得られた混合組成物を押出機等の樹脂混練装
置に投入して混練することにより、均一溶液を得る方法
である。投入する混合組成物の形態については、可塑剤
が常温液体である場合はスラリー状とし、可塑剤が常温
固体である場合は粉末状等とすれば良い。第一、第二の
方法においては、何れもポリオレフィンと可塑剤とを押
出機等の混練装置内で混練し均一溶液を得るようにする
ことが肝要であり、これにより生産性を良くすることが
できる。
A second method of melt-kneading a polyolefin resin and a plasticizer is to mix and disperse the resin and the plasticizer in advance at ordinary temperature, and to put the obtained mixed composition into a resin kneading apparatus such as an extruder. This is a method of obtaining a uniform solution by kneading. The form of the mixed composition to be charged may be a slurry when the plasticizer is a liquid at room temperature, and may be a powder when the plasticizer is a solid at room temperature. In the first and second methods, it is important to knead the polyolefin and the plasticizer in a kneading apparatus such as an extruder to obtain a uniform solution, and thereby to improve productivity. it can.

【0016】本発明の製造方法の(a)の工程におい
て、押し出して冷却固化させシート状の微多孔膜前駆体
を製造する第一の方法は、樹脂と可塑剤の均一溶液をT
ダイ等を介してシート状に押し出し、熱伝導体に接触さ
せて樹脂の結晶化温度より充分に低い温度まで冷却する
ことにより行う。用いられる熱伝導体としては、金属、
水、空気、あるいは可塑剤自身が使用できるが、特に金
属製のロールに接触させて冷却する方法が最も熱伝導の
効率が高く好ましい。また、金属製のロールに接触させ
る際に、ロール間で挟み込む等してカレンダー成形また
は熱間圧延を施すと、更に熱伝導の効率が高まり、シー
トの表面平滑性も向上するため好ましい。
In the step (a) of the production method of the present invention, the first method for producing a sheet-like microporous membrane precursor by extruding and cooling and solidifying is to prepare a homogeneous solution of a resin and a plasticizer with T
This is performed by extruding a sheet through a die or the like, contacting with a heat conductor, and cooling the resin to a temperature sufficiently lower than the crystallization temperature of the resin. The heat conductor used is metal,
Water, air, or the plasticizer itself can be used, but a method of cooling by contacting with a metal roll is particularly preferred because it has the highest heat conduction efficiency. Further, when the sheet is brought into contact with a metal roll, it is preferable to carry out calendering or hot rolling by sandwiching between the rolls, for example, because the efficiency of heat conduction is further increased and the surface smoothness of the sheet is also improved.

【0017】シート状の微多孔膜前駆体を製造する第二
の方法は、樹脂と可塑剤の均一溶液をサーキュラーダイ
等を介して筒状に押し出し、続いてシート状に加工する
方法である。本発明の製造方法の(c)の工程におい
て、可塑剤を抽出する第一の方法は、抽出溶剤が入った
容器中に所定の大きさに切り取った微多孔膜を浸漬し充
分に洗浄した後に、付着した溶剤を風乾させるか、また
は熱風によって乾燥させることにより行う。この際、浸
漬の操作や洗浄の操作を多数回繰り返して行うと、微多
孔膜中に残留する可塑剤が減少するので好ましい。ま
た、浸漬、洗浄、乾燥の一連の操作中に微多孔膜の収縮
を抑えるために、微多孔膜の端部を拘束すると好まし
い。
A second method for producing a sheet-like microporous membrane precursor is a method in which a homogeneous solution of a resin and a plasticizer is extruded into a cylindrical shape through a circular die or the like, and then processed into a sheet-like shape. In the step (c) of the production method of the present invention, the first method of extracting a plasticizer is to immerse a microporous membrane cut into a predetermined size in a container containing an extraction solvent and sufficiently wash the membrane. The drying is performed by air drying of the attached solvent or drying by hot air. At this time, it is preferable to repeat the immersion operation and the washing operation many times, since the plasticizer remaining in the microporous membrane is reduced. In order to suppress shrinkage of the microporous membrane during a series of operations such as immersion, washing, and drying, it is preferable to restrict the end of the microporous membrane.

【0018】可塑剤を抽出する第二の方法は、抽出溶剤
で満たされた槽の中に連続的に微多孔膜を送り込み、可
塑剤を除去するのに充分な時間をかけて槽中に浸漬し、
しかる後に付着した溶剤を乾燥させることにより行う。
この際、槽内部を多段分割することにより濃度差がつい
た各槽に順次微多孔膜を送り込む多段法や、微多孔膜の
走行方向に対し逆方向から抽出溶剤を供給して濃度勾配
をつけるための向流法のような公知の手段を適用する
と、抽出効率が高められ好ましい。第一、第二の方法に
おいては、何れも、可塑剤を微多孔膜から実質的に除去
することが肝要である。また、抽出溶剤の温度を、溶剤
の沸点未満の範囲内で加温すると、可塑剤と溶剤との拡
散を促進することができるので抽出効率を高められ更に
好ましい。
A second method for extracting the plasticizer is to continuously feed the microporous membrane into a tank filled with an extraction solvent and immerse the tank in the tank for a sufficient time to remove the plasticizer. And
The drying is then performed by drying the solvent that has adhered.
At this time, a multistage method in which the microporous membrane is sequentially fed to each tank having a concentration difference by dividing the inside of the tank into multiple stages, or a concentration gradient is provided by supplying an extraction solvent from a direction opposite to the running direction of the microporous membrane. It is preferable to apply a known means such as a countercurrent method for increasing the extraction efficiency. In both the first and second methods, it is important to substantially remove the plasticizer from the microporous membrane. Heating the temperature of the extraction solvent within a range lower than the boiling point of the solvent is preferable because the diffusion of the plasticizer and the solvent can be promoted, thereby increasing the extraction efficiency.

【0019】本発明の製造方法においては、抽出工程の
前に行う延伸を抽出前延伸[(b)工程]と呼び、少なく
とも1軸方向に、少なくとも1回の延伸操作が必須であ
る。少なくとも1軸方向とは、機械方向1軸延伸、幅方
向1軸延伸、同時2軸延伸、及び逐次2軸延伸を指すも
のである。また、少なくとも1回とは、1段延伸、多段
延伸、多数回延伸のことを指す。
In the production method of the present invention, the stretching performed before the extraction step is referred to as “pre-extraction stretching (step (b)”), and at least one stretching operation in at least one axial direction is essential. At least the uniaxial direction refers to uniaxial stretching in the machine direction, uniaxial stretching in the width direction, simultaneous biaxial stretching, and sequential biaxial stretching. The term “at least once” refers to one-stage stretching, multi-stage stretching, and multiple-time stretching.

【0020】本発明における抽出前延伸は、可塑剤が微
多孔膜の微孔内部、結晶間隙、及び非晶部に高次に分散
された状態で延伸するので、可塑化効果により延伸性が
良くなるとともに、微多孔膜の気孔率の増大を抑制する
効果があり、高倍率延伸が実現できるため高強度化が可
能である。さらに高強度を実現するためには2軸延伸が
好ましく、特に同時2軸延伸が工程の簡略化ができるの
で最も好ましい。
In the stretching before extraction in the present invention, since the plasticizer is stretched in a state of being dispersed in a high order inside the micropores, crystal gaps, and amorphous portions of the microporous membrane, the stretchability is improved due to the plasticizing effect. At the same time, it has the effect of suppressing an increase in the porosity of the microporous film, and high-stretching can be realized, so that high strength can be achieved. Biaxial stretching is preferable in order to further achieve high strength, and simultaneous biaxial stretching is most preferable because the process can be simplified.

【0021】延伸温度は、ポリオレフィン微多孔膜の融
点Tm ℃より50℃低い温度以上T m ℃未満が好まし
く、更に好ましくはポリオレフィン微多孔膜の融点Tm
℃より40℃低い温度以上Tm ℃より5℃低い温度未満
で行う。延伸温度がTm ℃より50℃低い温度未満であ
ると延伸性が悪くなり、また、延伸後の歪み成分が残
り、高温における寸法安定性が低下するので好ましくな
い。延伸温度がTm ℃以上であると、微多孔膜が融解し
透過性能を損なうので好ましくない。延伸倍率は任意の
倍率に設定できるが、1軸方向の倍率で好ましくは2〜
20倍、さらに好ましくは4〜10倍、また、2軸方向
の面積倍率で好ましくは2〜400倍、さらに好ましく
は4〜100倍である。
The stretching temperature depends on the melting temperature of the microporous polyolefin membrane.
Point TmT above 50 ℃ lower than 50 ℃ mLess than ° C is preferred
And more preferably the melting point T of the microporous polyolefin membrane.m
Over 40 ° C lower than TmLess than 5 ℃ lower than 5 ℃
Do with. Stretching temperature is TmLess than 50 ℃ lower than 50 ℃
When stretched, the stretchability deteriorates, and the strain component after stretching remains.
Dimensional stability at high temperatures
No. Stretching temperature is TmAbove ℃, the microporous membrane melts
It is not preferable because the transmission performance is impaired. Any stretching ratio
Magnification can be set, but preferably 2 to 1 in the axial direction.
20 times, more preferably 4 to 10 times, and biaxial direction
The area magnification is preferably 2 to 400 times, more preferably
Is 4 to 100 times.

【0022】本発明の製造方法においては、抽出工程の
後に行う延伸を抽出後延伸[(d)工程]と呼び、少なく
とも1軸方向に、少なくとも1回の延伸操作が必須であ
る。抽出後延伸は、可塑剤を微多孔膜から実質的に除去
した状態で延伸するので、延伸に伴ってポリマー界面の
破壊が支配的に生じ、微多孔膜の気孔率を増大させる効
果がある。したがって、本発明において必須である抽出
前延伸を行わずして抽出後延伸のみを行うと、いたずら
に気孔率の過度の増大を来たし、延伸配向を微多孔膜に
付与できず、結果、低強度となってしまう。
In the production method of the present invention, the stretching performed after the extraction step is referred to as post-extraction stretching (step (d)), and at least one stretching operation in at least one axial direction is essential. Since the stretching after the extraction is performed in a state where the plasticizer is substantially removed from the microporous membrane, destruction of the polymer interface predominantly occurs with the stretching, and has an effect of increasing the porosity of the microporous membrane. Therefore, if only stretching after extraction is performed without performing stretching before extraction, which is essential in the present invention, the porosity unnecessarily increases, and stretching orientation cannot be imparted to the microporous membrane, resulting in low strength. Will be.

【0023】これに比して、抽出前延伸及び抽出後延伸
を併用した本発明の製造方法の場合、微多孔膜の強度を
損なうことなく、気孔率を増加させることができるので
有用である。延伸温度は、ポリオレフィン微多孔膜の融
点Tm ℃より50℃低い温度以上Tm ℃未満が好まし
く、更に好ましくはポリオレフィン微多孔膜の融点Tm
℃より40℃低い温度以上Tm ℃より5℃低い温度未満
で行う。延伸温度がTm℃より50℃低い温度未満であ
ると延伸性が悪くなり、また延伸後の歪み成分が残り、
高温における寸法安定性が低下するので好ましくない。
延伸温度がTm ℃以上であると、微多孔膜が融解し透過
性能を損なうので好ましくない。延伸倍率は任意の倍率
に設定できるが、1軸方向の倍率で5倍以内、2軸方向
の面積倍率で20倍以内が好ましい。
On the other hand, the production method of the present invention in which stretching before extraction and stretching after extraction are used together is useful because the porosity can be increased without impairing the strength of the microporous membrane. The stretching temperature is preferably T m lower than ° C. 50 ° C. temperature lower or higher than the melting point T m ° C. microporous polyolefin membrane, more preferably a melting point T m of a polyolefin microporous membrane
The process is performed at a temperature lower than 40 ° C. and lower than T m 5 ° C. by 5 ° C. or lower. If the stretching temperature is lower than the temperature lower by 50 ° C. than T m ° C., the stretchability deteriorates, and a strain component after stretching remains,
It is not preferable because dimensional stability at high temperature is reduced.
If the stretching temperature is higher than T m ° C, the microporous membrane is melted and the permeability is impaired, which is not preferred. The stretching ratio can be set to any ratio, but is preferably within 5 times in uniaxial direction and within 20 times in biaxial direction.

【0024】本発明の製造方法において、熱処理
[(e)工程]は、抽出後延伸に引き続いて、または抽
出後延伸の後に行うものであり、熱固定または熱緩和の
何れかを指すものである。熱固定とは、抽出後延伸時の
設定延伸倍率を維持するか、または拘束したまま緊張状
態にて熱処理を行う工程を意味し、(A)これに比し
て、熱緩和とは、緩和状態にて熱処理を行う工程を意味
する。熱固定及び熱緩和は、何れも延伸時に発生すると
考えられる残留応力や歪み成分を除去して、高温におけ
る寸法安定性を高めるとともに、気孔率や透気度に代表
される透過性能を調節する機能を有するものである。熱
処理の第一の実施の形態は、抽出後延伸に引き続いて連
続で行うものであり、例えばテンターのような1軸また
は2軸延伸機で延伸を行った後に、延伸時の最大設定延
伸倍率を維持したまま、または最大設定延伸倍率より小
さい倍率に設定して緩和させながら、所定時間の熱処理
を行う方法である。熱処理の第二の実施の形態は、抽出
後延伸を行った後に断続的に行うものであり、例えばス
トレッチャーのような試験2軸延伸機で延伸を行った後
に、再び微多孔膜を拘束して所定時間の熱処理を行う
か、または拘束時の設定倍率より小さい倍率に設定して
緩和させながら熱処理を行う方法である。
In the production method of the present invention, the heat treatment (step (e)) is performed subsequent to or subsequent to the stretching after extraction, and refers to either heat setting or thermal relaxation. . The heat setting means a step of maintaining a set stretching ratio at the time of stretching after extraction or performing a heat treatment in a tensioned state while being restrained. (A) On the other hand, the thermal relaxation refers to a state of relaxation. Means a step of performing a heat treatment. Both heat fixation and thermal relaxation remove residual stress and strain components that are considered to occur during stretching, increase dimensional stability at high temperatures, and adjust permeability performance represented by porosity and air permeability. It has. The first embodiment of the heat treatment is performed continuously after the extraction and subsequent to the stretching. For example, after performing stretching with a uniaxial or biaxial stretching machine such as a tenter, the maximum set stretching ratio at the time of stretching is set. This is a method in which a heat treatment is performed for a predetermined time while maintaining the temperature or relaxing the film by setting a magnification smaller than the maximum set stretching magnification. The second embodiment of the heat treatment is performed intermittently after stretching after extraction, for example, after stretching with a test biaxial stretching machine such as a stretcher, the microporous membrane is restrained again. In this method, the heat treatment is performed for a predetermined period of time, or the heat treatment is performed while relaxing the temperature by setting the magnification to a value smaller than the set magnification at the time of restraint.

【0025】本発明の製造方法でいう緩和率とは、熱処
理の工程の際に設定する熱緩和の割合を意味するもので
あり、好ましくは1〜50%、さらに好ましくは10〜
40%である。緩和率が1%未満、特に0%の場合を、
本発明では熱固定と呼ぶが、この場合には微多孔膜の高
温における寸法安定性が相対的に悪くなる傾向にあり、
長時間の熱処理が必要となり生産効率が低下してしまう
畏れがある。また、緩和率が50%を越えると、しわや
膜厚分布を生む原因となる畏れがある。したがって、本
発明においては、1〜50%の範囲内で緩和率を設定
し、熱緩和することが好ましい。
The relaxation rate in the production method of the present invention means a rate of thermal relaxation set in the heat treatment step, preferably 1 to 50%, more preferably 10 to 50%.
40%. If the relaxation rate is less than 1%, especially 0%,
In the present invention, referred to as heat fixing, in this case, the dimensional stability at high temperatures of the microporous membrane tends to be relatively poor,
There is a fear that a long heat treatment is required and production efficiency is reduced. On the other hand, if the relaxation rate exceeds 50%, there is a fear that wrinkles and film thickness distribution may be caused. Therefore, in the present invention, it is preferable to set the relaxation rate within the range of 1 to 50% and to relax the heat.

【0026】本発明の製造方法においては、本発明の利
点を害さない範囲内で、すなわち、高温における寸法安
定性の改良や透過性能の調節を行う上で、これを損なわ
ない程度であれば、後処理を行っても良い。後処理とし
ては、例えば、界面活性剤等による親水化処理、および
電離性放射線等による架橋処理が挙げられる。本発明に
おいて使用するポリオレフィン樹脂とは、通常の押出、
射出、インフレーション、及びブロー成形に使用する樹
脂を指し、エチレン、プロピレン、1−ブテン、4−メ
チル−1−ペンテン、1−ヘキセン、及び1−オクテン
のホモ重合体及び共重合体を使用することができる。ま
た、これらのホモ重合体及び共重合体の群から選んだポ
リオレフィンを混合して使用することもできる。前記重
合体の代表例としては、低密度ポリエチレン、線状低密
度ポリエチレン、中密度ポリエチレン、高密度ポリエチ
レン、超高分子量ポリエチレン、アイソタクティックポ
リプロピレン、アタクティックポリプロピレン、ポリブ
テン、エチレンプロピレンラバー等が挙げられる。本発
明の製造方法によって得られた微多孔膜を電池セパレー
ターとして使用する場合、低融点樹脂であり、かつ高強
度の要求性能から、特に高密度ポリエチレンを主成分と
する樹脂を使用することが好ましい。
In the production method of the present invention, as long as the advantages of the present invention are not impaired, that is, in order to improve the dimensional stability at a high temperature and to adjust the permeation performance, the degree is not impaired. Post-processing may be performed. Examples of the post-treatment include a hydrophilic treatment with a surfactant or the like and a cross-linking treatment with ionizing radiation or the like. Polyolefin resin used in the present invention, the usual extrusion,
Refers to resin used for injection, inflation, and blow molding, and uses homopolymers and copolymers of ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and 1-octene. Can be. Further, a polyolefin selected from the group of these homopolymers and copolymers can be used as a mixture. Representative examples of the polymer include low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, ultra high molecular weight polyethylene, isotactic polypropylene, atactic polypropylene, polybutene, ethylene propylene rubber, and the like. . When the microporous membrane obtained by the production method of the present invention is used as a battery separator, it is a low-melting resin, and from the performance required for high strength, it is particularly preferable to use a resin mainly composed of high-density polyethylene. .

【0027】本発明において使用するポリオレフィン樹
脂の平均分子量は、5万以上100万未満が好ましく、
さらに好ましくは10万以上70万未満、そして最も好
ましくは20万以上50万未満である。この平均分子量
は、GPC(ゲルパーミエーションクロマトグラフィ
ー)測定等により得られる重量平均分子量を指すもので
あるが、一般に平均分子量が100万を越えるような樹
脂については、正確なGPC測定が困難であるので、そ
の代用として粘度法による粘度平均分子量をあてること
ができる。平均分子量が5万より小さいと、溶融成形の
際のメルトテンションが無くなり成形性が悪くなった
り、また延伸性が悪くなり低強度となったりするので好
ましくない。平均分子量が100万を越えると、均一な
樹脂組成物を得難くなる傾向があるので、使用しない方
が好ましい。
The average molecular weight of the polyolefin resin used in the present invention is preferably from 50,000 to less than 1,000,000,
More preferably, it is 100,000 or more and less than 700,000, and most preferably 200,000 or more and less than 500,000. The average molecular weight refers to a weight average molecular weight obtained by GPC (gel permeation chromatography) measurement or the like, but it is generally difficult to accurately measure a resin having an average molecular weight exceeding 1,000,000. Therefore, a viscosity average molecular weight by a viscosity method can be used as a substitute. If the average molecular weight is smaller than 50,000, the melt tension during melt molding is lost and moldability is deteriorated, and stretchability is deteriorated and strength is unfavorably lowered. If the average molecular weight exceeds 1,000,000, it tends to be difficult to obtain a uniform resin composition.

【0028】本発明において使用するポリオレフィン樹
脂の分子量分布は、1以上10未満が好ましく、さらに
好ましくは2以上9未満、そして最も好ましくは3以上
8未満である。該分子量分布は、GPC測定により得ら
れる重量平均分子量(Mw )と数平均分子量(Mn )の
比(Mw /Mn )で表す。分子量分布が10を越える
と、延伸性が悪くなる傾向があり、膜厚の局部的な分布
や強度低下を来す恐れがある。
The molecular weight distribution of the polyolefin resin used in the present invention is preferably 1 or more and less than 10, more preferably 2 or more and less than 9, and most preferably 3 or more and less than 8. The molecular weight distribution is represented by the ratio ( Mw / Mn ) between the weight average molecular weight ( Mw ) and the number average molecular weight ( Mn ) obtained by GPC measurement. If the molecular weight distribution exceeds 10, the stretchability tends to be poor, and there is a possibility that the local distribution of the film thickness or the strength may be reduced.

【0029】本発明において使用する可塑剤としては、
ポリオレフィン樹脂と混合した際にポリオレフィン樹脂
の融点以上において均一溶液を形成しうる不揮発性溶媒
であれば良い。例えば、流動パラフィンやパラフィンワ
ックス等の炭化水素類、フタル酸ジオクチルやフタル酸
ジブチル等のエステル類、オレイルアルコールやステア
リルアルコール等の高級アルコールが挙げられる。
As the plasticizer used in the present invention,
Any non-volatile solvent that can form a uniform solution at a temperature equal to or higher than the melting point of the polyolefin resin when mixed with the polyolefin resin may be used. Examples include hydrocarbons such as liquid paraffin and paraffin wax, esters such as dioctyl phthalate and dibutyl phthalate, and higher alcohols such as oleyl alcohol and stearyl alcohol.

【0030】本発明において使用するポリオレフィン樹
脂と可塑剤の比率については、ミクロ相分離を生じせし
め、シート状の微多孔膜前駆体を形成しうるのに充分な
比率であり、かつ生産性を損なわない程度であれば良
い。具体的には、ポリオレフィン樹脂と可塑剤からなる
組成物中に占めるポリオレフィン樹脂の重量分率は、好
ましくは20〜70%、更に好ましくは30〜60%で
ある。ポリオレフィン樹脂の重量分率が20%より小さ
いと、溶融成形時のメルトテンションが不足し、成形性
に劣るものとなる。ポリオレフィン樹脂の重量分率を2
0%より小さい比率で実施することも可能であるが、こ
の場合、メルトテンションを高めるために、超高分子量
ポリオレフィンを大量に混合する必要が生じてしまい、
均一分散性が低下するので好ましくない。
The ratio of the polyolefin resin to the plasticizer used in the present invention is a ratio sufficient to cause microphase separation and to form a sheet-like microporous membrane precursor, and impair productivity. If it is not enough. Specifically, the weight fraction of the polyolefin resin in the composition comprising the polyolefin resin and the plasticizer is preferably 20 to 70%, and more preferably 30 to 60%. If the weight fraction of the polyolefin resin is less than 20%, the melt tension at the time of melt molding becomes insufficient, resulting in poor moldability. Weight fraction of polyolefin resin is 2
It is also possible to carry out at a ratio of less than 0%, but in this case, in order to increase the melt tension, it becomes necessary to mix a large amount of ultrahigh molecular weight polyolefin,
It is not preferable because the uniform dispersibility decreases.

【0031】本発明において使用する抽出溶剤は、ポリ
オレフィンに対して貧溶媒であり、かつ可塑剤に対して
良溶媒であり、沸点がポリオレフィン微多孔膜の融点よ
り低いことが望ましい。このような抽出溶剤としては、
例えば、n−ヘキサンやシクロヘキサン等の炭化水素
類、塩化メチレンや1,1,1−トリクロロエタン等の
ハロゲン化炭化水素類、エタノールやイソプロパノール
等のアルコール類、ジエチルエーテルやテトラヒドロフ
ラン等のエーテル類、アセトンや2−ブタノン等のケト
ン類が挙げられる。さらに、環境適応性、安全性、衛生
性を考慮すると、前記溶剤の中でもアルコール類および
ケトン類が好適である。
The extraction solvent used in the present invention is preferably a poor solvent for the polyolefin and a good solvent for the plasticizer, and has a boiling point lower than the melting point of the microporous polyolefin membrane. As such an extraction solvent,
For example, hydrocarbons such as n-hexane and cyclohexane, halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane, alcohols such as ethanol and isopropanol, ethers such as diethyl ether and tetrahydrofuran, acetone, Ketones such as 2-butanone are exemplified. Further, in consideration of environmental adaptability, safety and hygiene, alcohols and ketones are preferable among the solvents.

【0032】本発明において使用する組成物には、さら
に目的に応じて、酸化防止剤、結晶核剤、帯電防止剤、
難燃剤、滑剤、紫外線吸収剤等の添加剤を混合しても差
し支えない。本発明の微多孔膜とは、実質的にポリオレ
フィンから構成される多孔体シートまたはフィルムを指
し、例えば、セパレーター等の電池材料として使用され
るものである。電池の形態は特に限定されず、例えば円
筒型電池をはじめとして、角型電池、薄型電池、ボタン
型電池、電解コンデンサー等への用途に適するものであ
る。
The composition used in the present invention may further contain an antioxidant, a nucleating agent, an antistatic agent,
Additives such as a flame retardant, a lubricant, and an ultraviolet absorber may be mixed. The microporous membrane of the present invention refers to a porous sheet or film substantially composed of polyolefin, and is used, for example, as a battery material for a separator or the like. The form of the battery is not particularly limited, and is suitable for use in, for example, a cylindrical battery, a square battery, a thin battery, a button battery, an electrolytic capacitor, and the like.

【0033】本発明の製造方法を用いて微多孔膜を製造
する場合、微多孔膜の膜厚は、1〜500μmとするの
が好ましく、10〜100μmとするのがさらに好まし
い。膜厚が1μmより小さいと機械強度が不十分とな
り、また、500μmより大きいとセパレーターの占有
体積が増えるため、電池の高容量化の点において不利と
なり好ましくない。
When a microporous membrane is produced by using the production method of the present invention, the thickness of the microporous membrane is preferably from 1 to 500 μm, more preferably from 10 to 100 μm. If the film thickness is smaller than 1 μm, the mechanical strength becomes insufficient, and if it is larger than 500 μm, the volume occupied by the separator increases, which is disadvantageous in increasing the capacity of the battery, which is not preferable.

【0034】本発明の製造方法を用いて微多孔膜を製造
する場合、微多孔膜の透気度は、3000秒/100c
c/25μm以下とするのが好ましく、1000秒/1
00cc/25μm以下とするのがさらに好ましい。該
透気度は、透気時間と膜厚との比によって定義される。
透気度が3000秒/100cc/25μmより大きい
とイオン透過性が悪くなるか、または孔径が極めて小さ
くなるので、透過性能上、いずれにしても好ましくな
い。
When a microporous membrane is manufactured using the manufacturing method of the present invention, the air permeability of the microporous membrane is 3000 seconds / 100 c
c / 25 μm or less, 1000 sec / 1
More preferably, it is not more than 00 cc / 25 μm. The air permeability is defined by the ratio between the air transmission time and the film thickness.
If the air permeability is more than 3000 seconds / 100 cc / 25 μm, the ion permeability deteriorates or the pore size becomes extremely small, which is not preferable from the viewpoint of permeability.

【0035】本発明の製造方法を用いて微多孔膜を製造
する場合、微多孔膜の気孔率は、20〜80%とするの
が好ましく、30〜60%とするのがさらに好ましい。
気孔率が20%より小さいと、透気度や電気抵抗に代表
されるイオン透過性が不十分となり、80%より大きい
と、突き刺し強度や引張強度に代表される強度が不十分
となる。
When a microporous membrane is produced by using the production method of the present invention, the porosity of the microporous membrane is preferably from 20 to 80%, more preferably from 30 to 60%.
If the porosity is less than 20%, ion permeability such as air permeability and electric resistance becomes insufficient, and if it is more than 80%, strength such as piercing strength and tensile strength becomes insufficient.

【0036】本発明の製造方法を用いて微多孔膜を製造
する場合、微多孔膜の突き刺し強度は、300g/25
μm以上とすることが好ましく、400g/25μm以
上とすることがさらに好ましい。突き刺し強度は、突き
刺し試験における最大荷重と膜厚の比によって定義され
る。突き刺し強度が300g/25μmより小さいと、
電池を捲回する際に短絡不良等の欠陥が増加するため好
ましくない。
When a microporous membrane is produced by the production method of the present invention, the piercing strength of the microporous membrane is 300 g / 25.
μm or more, more preferably 400 g / 25 μm or more. The piercing strength is defined by the ratio between the maximum load and the film thickness in the piercing test. If the piercing strength is less than 300 g / 25 μm,
When winding the battery, defects such as short-circuit failure increase, which is not preferable.

【0037】本発明の製造方法を用いて微多孔膜を製造
する場合、微多孔膜の熱収縮率は、微多孔膜の高温にお
ける寸法安定性を評価する指標であり、微多孔膜の機械
方向または幅方向について、好ましくは20%以下、さ
らに好ましくは10%以下、そして最も好ましくは5%
以下とすることが好ましい。熱収縮率が20%を越える
と電池内部での短絡等の安全上のトラブルが発生する原
因となるので好ましくない。
When a microporous film is manufactured by using the manufacturing method of the present invention, the heat shrinkage of the microporous film is an index for evaluating the dimensional stability of the microporous film at a high temperature, and is measured in the machine direction of the microporous film. Or, in the width direction, preferably 20% or less, more preferably 10% or less, and most preferably 5% or less.
It is preferable to set the following. If the heat shrinkage exceeds 20%, it may cause a safety trouble such as a short circuit inside the battery, which is not preferable.

【0038】[0038]

【発明の実施の形態】以下、実施例により本発明を詳細
に説明する。実施例において示される試験方法は次の通
りである。 (1)膜厚 ダイヤルゲージ(尾崎製作所製PEACOCK NO.
25)にて測定した。 (2)気孔率 20cm角の試料を微多孔膜から切り取り、該試料の体
積(cm3 )と重量(g)を測定し、得られた結果から
次式を用いて、気孔率(%)を計算した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to examples. The test method shown in the examples is as follows. (1) Film thickness dial gauge (PEACOCK NO.
25). (2) Porosity A 20 cm square sample was cut from the microporous membrane, and the volume (cm 3 ) and weight (g) of the sample were measured. From the obtained results, the porosity (%) was calculated using the following equation. Calculated.

【0039】 気孔率=100×(1−重量÷(樹脂の密度×体積)) (3)透気度 JIS P−8117に準拠し、ガーレー式透気度計に
て測定して求めた透気時間(秒/100cc)、および
膜厚(μm)より、次式の通りに膜厚換算し、透気度
(秒/100cc/25μm)とした。
Porosity = 100 × (1−weight ÷ (density of resin × volume)) (3) Air permeability Air permeability measured by a Gurley air permeability meter according to JIS P-8117. From the time (seconds / 100 cc) and the film thickness (μm), the film thickness was converted according to the following equation to obtain the air permeability (seconds / 100 cc / 25 μm).

【0040】透気度=透気時間×25÷膜厚 (4)突き刺し強度 圧縮試験機(カトーテック製KES−G5)を用いて、
針先端の曲率半径0.5mm、突き刺し速度2mm/秒
の条件で突き刺し試験を行い、最大突き刺し荷重(g)
および膜厚(μm)より次式の通りに膜厚換算し、突き
刺し強度(g/25μm)とした。
Air permeability = air permeability time × 25 ÷ film thickness (4) Piercing strength Using a compression tester (KES-G5 manufactured by Kato Tech),
A piercing test is performed under the conditions of a radius of curvature of the needle tip of 0.5 mm and a piercing speed of 2 mm / sec, and a maximum piercing load (g).
The film thickness was converted from the film thickness and the film thickness (μm) according to the following formula to obtain the piercing strength (g / 25 μm).

【0041】 突き刺し強度=最大突き刺し荷重×25÷膜厚 (5)熱収縮率 20cm角の試料を微多孔膜から切り取り、該試料の四
方を拘束しない状態で100℃に加熱された熱風循環式
オーブン中に入れ、2時間の加熱処理を行った。微多孔
膜の機械方向および幅方向の寸法を、加熱の前後におい
て計測し、次式の通りに熱収縮率(%)を計算した。
Puncture strength = maximum puncture load × 25 ÷ film thickness (5) Thermal shrinkage A sample of 20 cm square is cut from the microporous membrane, and the hot air circulation oven heated to 100 ° C. without restraining all sides of the sample. And heat-treated for 2 hours. The dimensions in the machine direction and the width direction of the microporous membrane were measured before and after heating, and the heat shrinkage (%) was calculated according to the following equation.

【0042】熱収縮率=100×(1−(加熱後の寸法
÷加熱前の寸法)) (6)平均分子量および分子量分布 次の条件により、GPC(ゲルパーミエーションクロマ
トグラフィー)測定を行い、重量平均分子量(Mw )お
よび数平均分子量(Mn )を求め、平均分子量にはMw
を、また分子量分布にはMw /Mn をあてた。 機器:WATERS 150−GPC 温度:140℃ 溶媒:1,2,4−トリクロロベンゼン 濃度:0.05%(インジェクション量:500μl) カラム:Shodex GPC AT−807/S 1
本、Tosoh TSK−GELGMH6 −HT 2本 溶解条件:160℃、2.5時間 キャリブレーションカーブ:ポリスチレン標準試料に対
してポリエチレン換算定数0.48を用い3次で計算 (7)融点 (株)セイコー電子工業製、示差走査熱量計DSC−2
10を用い、試料約7mgを窒素気流下に置き、室温か
ら速度10℃/分の割合で昇温した時の吸熱ピーク温度
より評価した。 (8)緩和率 抽出後延伸の前の微多孔膜の寸法に対して、抽出後延伸
時の設定倍率と、熱処理時の設定倍率の差から、次式の
ように緩和率(%)を定義した。
Heat shrinkage = 100 × (1- (dimension after heating / dimension before heating)) (6) Average molecular weight and molecular weight distribution GPC (gel permeation chromatography) was measured under the following conditions, and the weight was measured. The average molecular weight (M w ) and number average molecular weight (M n ) were determined, and the average molecular weight was M w
And Mw / Mn for molecular weight distribution. Equipment: WATERS 150-GPC Temperature: 140 ° C Solvent: 1,2,4-trichlorobenzene Concentration: 0.05% (injection volume: 500 μl) Column: Shodex GPC AT-807 / S 1
This, Tosoh TSK-GELGMH 6 -HT 2 pieces Dissolution condition: 160 ° C., 2.5 hours Calibration curve: Calculated in third order using a polyethylene conversion constant of 0.48 for a polystyrene standard sample (7) Melting point Seiko Denshi Kogyo, Differential Scanning Calorimeter DSC-2
Using the sample No. 10, about 7 mg of the sample was placed under a nitrogen stream and evaluated from the endothermic peak temperature when the temperature was raised from room temperature at a rate of 10 ° C./min. (8) Relaxation rate The relaxation rate (%) is defined as the following equation based on the difference between the set magnification at the time of stretching after extraction and the set magnification at the time of heat treatment with respect to the dimensions of the microporous membrane before extraction and stretching. did.

【0043】緩和率=100×(抽出後延伸設定倍率−
熱処理設定倍率)
Relaxation rate = 100 × (stretching setting ratio after extraction−
Heat treatment setting magnification)

【0044】[0044]

【実施例1】高密度ポリエチレン(重量平均分子量25
万、分子量分布7、密度0.956)および該ポリエチ
レンに対して0.3重量部の2,6−ジ−t−ブチル−
p−クレゾールをヘンシェルミキサーを用いてドライブ
レンドし、35mm二軸押出機に投入した。さらに、押
出機に流動パラフィン(37.78℃における動粘度7
5.9cSt)を注入して200℃で溶融混練し、コー
トハンガーダイを経て表面温度40℃に制御された冷却
ロール上に押出キャストすることにより、厚み1.8m
mのシートを得た。ここで組成物の比率は、ポリエチレ
ン45重量部に対して、流動パラフィン55重量部とな
るように調節した。得られたシートを同時2軸テンター
延伸機を用いて抽出前延伸し、続いて塩化メチレン中に
浸漬して流動パラフィンを抽出除去し、その後付着した
塩化メチレンを乾燥除去した。さらにテンター延伸機を
用いて幅方向に抽出後延伸し、続いて幅方向に緩和させ
つつ熱処理した。成形条件を表1に、また、得られた微
多孔膜の物性を表2に記載した。尚、得られた微多孔膜
の融点は、133.9℃であった。
Example 1 High-density polyethylene (weight average molecular weight 25
, Molecular weight distribution 7, density 0.956) and 0.3 parts by weight of 2,6-di-t-butyl-
p-Cresol was dry-blended using a Henschel mixer and charged into a 35 mm twin screw extruder. Further, liquid paraffin (a kinematic viscosity at 37.78 ° C. of 7
5.9 cSt), melt-kneaded at 200 ° C., and extruded through a coat hanger die onto a cooling roll controlled at a surface temperature of 40 ° C. to obtain a thickness of 1.8 m.
m of sheets were obtained. Here, the composition ratio was adjusted such that liquid paraffin was 55 parts by weight with respect to 45 parts by weight of polyethylene. The obtained sheet was stretched before extraction using a simultaneous biaxial tenter stretching machine, then immersed in methylene chloride to extract and remove the liquid paraffin, and then the attached methylene chloride was dried and removed. Further, the film was extracted and stretched in the width direction using a tenter stretching machine, and then heat-treated while relaxing in the width direction. The molding conditions are shown in Table 1, and the physical properties of the obtained microporous membrane are shown in Table 2. The melting point of the obtained microporous membrane was 133.9 ° C.

【0045】[0045]

【実施例2】熱処理の条件を表1に記載した条件に変更
したこと以外は、実施例1と同様にして微多孔膜を得
た。得られた微多孔膜の物性を表2に記載した。
Example 2 A microporous film was obtained in the same manner as in Example 1 except that the conditions of the heat treatment were changed to the conditions shown in Table 1. Table 2 shows the physical properties of the obtained microporous membrane.

【0046】[0046]

【実施例3】抽出後延伸、及び熱処理の条件を表1に記
載した条件に変更したこと以外は、実施例1と同様にし
て微多孔膜を得た。得られた微多孔膜の物性を表2に記
載した。
Example 3 A microporous membrane was obtained in the same manner as in Example 1 except that the conditions of stretching after extraction and heat treatment were changed to those shown in Table 1. Table 2 shows the physical properties of the obtained microporous membrane.

【0047】[0047]

【比較例1】熱処理を施さなかったこと以外は、実施例
1と同様にして微多孔膜を得た。得られた微多孔膜の物
性を表2に記載した。
Comparative Example 1 A microporous film was obtained in the same manner as in Example 1 except that no heat treatment was performed. Table 2 shows the physical properties of the obtained microporous membrane.

【0048】[0048]

【実施例4】実施例1において、抽出後延伸を施した後
の微多孔膜を四角形に切り抜き、あらためて枠に固定し
て、表3の条件で1分間の熱固定を施し微多孔膜を得
た。得られた微多孔膜の物性を表4に記載した。
Example 4 In Example 1, the microporous membrane after stretching after extraction was cut into a square, fixed to a frame again, and heat-fixed for 1 minute under the conditions shown in Table 3 to obtain a microporous membrane. Was. Table 4 shows the physical properties of the obtained microporous membrane.

【0049】[0049]

【実施例5】実施例1と同様の方法で得られたシートに
ついて、試験2軸延伸機を用いて、延伸温度120℃
で、機械方向に7倍、幅方向に7倍の逐次2軸延伸を行
った。続いて塩化メチレン中に浸漬して流動パラフィン
を抽出除去し、その後付着した塩化メチレンを乾燥除去
した。さらに延伸温度115℃で幅方向に1.5倍の抽
出後延伸を行い、熱処理温度120℃、緩和率10%で
幅方向に緩和させつつ熱処理を行った。得られた微多孔
膜の幅方向の熱収縮率は8%であった。
Example 5 A sheet obtained in the same manner as in Example 1 was stretched at a stretching temperature of 120 ° C. using a test biaxial stretching machine.
, A sequential biaxial stretching of 7 times in the machine direction and 7 times in the width direction was performed. Subsequently, it was immersed in methylene chloride to extract and remove the liquid paraffin, and then the attached methylene chloride was dried and removed. Further, stretching was performed after extraction 1.5 times in the width direction at a stretching temperature of 115 ° C., and heat treatment was performed while relaxing in the width direction at a heat treatment temperature of 120 ° C. and a relaxation rate of 10%. The heat shrinkage in the width direction of the obtained microporous film was 8%.

【0050】[0050]

【実施例6】実施例1において使用した高密度ポリエチ
レン34重量部、線状共重合ポリエチレン(メルトイン
デックス0.017、密度0.929、プロピレン含有
量1.6モル%)6重量部、流動パラフィン60重量
部、および該ポリエチレンに対して0.3重量部の2,
6−ジ−t−ブチル−p−クレゾールを混合し、(株)
東洋精機製作所社製ラボプラストミルに投入し、200
℃で溶融混練した。続いて200℃に加熱した圧縮成形
機を用いてシート状に成形した後、水冷式の圧縮成形機
を用いて冷却固化させ、厚み1.3mmのシートを得
た。得られたシートについて、試験2軸延伸機を用い
て、延伸温度120℃で、4×4倍の同時2軸延伸を行
った。続いて2−ブタノン中に浸漬して流動パラフィン
を抽出除去し、その後付着した2−ブタノンを乾燥除去
した。さらに延伸温度115℃で、2×2倍の同時2軸
延伸を行い、熱処理温度120℃、緩和率10%で幅方
向に緩和させつつ熱処理を行った。得られた微多孔膜の
融点は、130.7℃であった。また、微多孔膜の物性
は、膜厚40μm、気孔率64%、透気度100秒とな
り、高い透過性能を有していた。
Example 6 34 parts by weight of high-density polyethylene used in Example 1, 6 parts by weight of linear copolymerized polyethylene (melt index 0.017, density 0.929, propylene content 1.6 mol%), liquid paraffin 60 parts by weight, and 0.3 parts by weight of 2,
6-Di-t-butyl-p-cresol was mixed,
Injected into Toyo Seiki Labo Plast Mill, 200
The mixture was melt-kneaded at ℃. Subsequently, after forming into a sheet using a compression molding machine heated to 200 ° C., the mixture was cooled and solidified using a water-cooled compression molding machine to obtain a sheet having a thickness of 1.3 mm. The obtained sheet was simultaneously biaxially stretched 4 × 4 times at a stretching temperature of 120 ° C. using a test biaxial stretching machine. Subsequently, it was immersed in 2-butanone to extract and remove liquid paraffin, and then attached 2-butanone was dried and removed. Further, 2 × 2 simultaneous biaxial stretching was performed at a stretching temperature of 115 ° C., and a heat treatment was performed while relaxing in the width direction at a heat treatment temperature of 120 ° C. and a relaxation rate of 10%. The melting point of the obtained microporous membrane was 130.7 ° C. The physical properties of the microporous film were 40 μm in film thickness, porosity was 64%, and air permeability was 100 seconds.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【表3】 [Table 3]

【0054】[0054]

【表4】 [Table 4]

【0055】[0055]

【発明の効果】本発明のポリオレフィン微多孔膜の製造
方法によれば、高温における寸法安定性を向上すること
ができ、また同時に透過性能を自在に調節することがで
きる柔軟な側面をも有する。その他、微多孔膜のしわ、
弛み、膜厚分布等の品位を下落させるような不良の発生
を防止することができる。かくして、本発明によって製
造された微多孔膜が、特に電池セパレーターとして使用
される場合には、高い電池安全性を持ち、また、多様化
する電池ニーズに応えるべく、様々な透過性能を持つ微
多孔膜を製造することができる。
According to the method for producing a microporous polyolefin membrane of the present invention, dimensional stability at a high temperature can be improved, and at the same time, there is a flexible aspect in which permeability can be freely adjusted. In addition, wrinkles of the microporous membrane,
It is possible to prevent defects such as looseness and film thickness distribution from deteriorating the quality. Thus, the microporous membrane produced by the present invention has high battery safety, especially when used as a battery separator, and also has various permeability properties to meet diversifying battery needs. A membrane can be manufactured.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 2/16 H01M 2/16 P // B29K 23:00 105:04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01M 2/16 H01M 2/16 P // B29K 23:00 105: 04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (a)ポリオレフィン樹脂と可塑剤から
なる組成物を溶融混練し、押し出して冷却固化させシー
ト状に成形する工程、(b)前記工程aの後に、少なく
とも1軸方向に、少なくとも1回の延伸を行う工程、
(c)前記工程bの後に、前記可塑剤を抽出する工程、
(d)前記工程cの後に、少なくとも1軸方向に、少な
くとも1回の延伸を行う工程、(e)前記工程dに続い
て、または後に熱処理を施す工程を含むポリオレフィン
微多孔膜の製造方法。
(A) a step of melt-kneading a composition comprising a polyolefin resin and a plasticizer, extruding, cooling and solidifying to form a sheet, and (b) at least one axial direction after the step (a). A step of performing one stretching,
(C) a step of extracting the plasticizer after the step b;
(D) A method for producing a microporous polyolefin membrane, comprising a step of performing at least one stretching in at least one axial direction after the step c, and a step of performing a heat treatment following or after the step d.
【請求項2】 熱処理を施す工程において、温度をポリ
オレフィン微多孔膜の融点Tm ℃より50℃低い温度以
上Tm ℃未満とし、かつ、緩和率を1〜50%とするこ
とにより熱緩和させることを特徴とする、請求項1に記
載のポリオレフィン微多孔膜の製造方法。
2. In the heat treatment step, heat is relaxed by setting the temperature to a temperature not lower than T m ° C. which is 50 ° C. lower than the melting point T m ° C. of the polyolefin microporous membrane and a relaxation rate of 1 to 50%. The method for producing a microporous polyolefin membrane according to claim 1, wherein:
JP21442497A 1997-08-08 1997-08-08 Method for producing microporous membrane Expired - Lifetime JP3917721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21442497A JP3917721B2 (en) 1997-08-08 1997-08-08 Method for producing microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21442497A JP3917721B2 (en) 1997-08-08 1997-08-08 Method for producing microporous membrane

Publications (2)

Publication Number Publication Date
JPH1160789A true JPH1160789A (en) 1999-03-05
JP3917721B2 JP3917721B2 (en) 2007-05-23

Family

ID=16655569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21442497A Expired - Lifetime JP3917721B2 (en) 1997-08-08 1997-08-08 Method for producing microporous membrane

Country Status (1)

Country Link
JP (1) JP3917721B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093498A (en) * 1999-09-24 2001-04-06 Nippon Muki Co Ltd Separator for nonaqueous electrolyte solution battery
JP2001192487A (en) * 2000-01-13 2001-07-17 Tonen Chem Corp Microporous polyolefin film and method for producing the same
JP2001229907A (en) * 2000-02-15 2001-08-24 Tonen Chem Corp Polyolefin fine porous film and manufacturing method thereof
JP2004352863A (en) * 2003-05-29 2004-12-16 Nitto Denko Corp Porous film
WO2005113657A1 (en) * 2004-05-20 2005-12-01 Asahi Kasei Chemicals Corporation Microporous membrane made of polyolefins
WO2006104165A1 (en) * 2005-03-29 2006-10-05 Tonen Chemical Corporation Process for producing microporous polyolefin film and microporous polyolefin film
WO2006106783A1 (en) * 2005-03-31 2006-10-12 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
WO2006106786A1 (en) * 2005-03-31 2006-10-12 Tonen Chemical Corporation Method for producing polyolefin microporous film and microporous film
US7271209B2 (en) 2002-08-12 2007-09-18 Exxonmobil Chemical Patents Inc. Fibers and nonwovens from plasticized polyolefin compositions
JP2007250405A (en) * 2006-03-17 2007-09-27 Nissan Motor Co Ltd Bipolar secondary battery
JP2008501847A (en) * 2004-06-11 2008-01-24 エスケーコーポレイション Polyethylene microporous membrane and method for producing the same
JP2008088392A (en) * 2006-09-29 2008-04-17 Toray Saehan Inc Method for producing polyolefin microporous film
WO2008069216A1 (en) * 2006-12-04 2008-06-12 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane
JP2008540795A (en) * 2005-05-16 2008-11-20 エスケー エナジー シーオー., エルティーディー. Polyethylene microporous membrane produced by liquid-liquid phase separation and method for producing the same
US7531594B2 (en) 2002-08-12 2009-05-12 Exxonmobil Chemical Patents Inc. Articles from plasticized polyolefin compositions
US7619026B2 (en) 2002-08-12 2009-11-17 Exxonmobil Chemical Patents Inc. Plasticized polyolefin compositions
US7622523B2 (en) 2002-08-12 2009-11-24 Exxonmobil Chemical Patents Inc. Plasticized polyolefin compositions
JP2011042805A (en) * 2006-09-29 2011-03-03 Toray Advanced Materials Korea Inc Method for producing polyolefin microporous film
JP2011080078A (en) * 2010-11-25 2011-04-21 Tonen Chem Corp Polyolefin microporous film
US7947752B2 (en) * 2004-06-11 2011-05-24 Sk Energy Co., Ltd. Method of producing microporous high density polyethylene film
JP2013515368A (en) * 2009-12-21 2013-05-02 ボロール Separator film, manufacturing method thereof, super capacitor, battery and capacitor provided with the film
WO2018078698A1 (en) * 2016-10-24 2018-05-03 住友化学株式会社 Separator, and secondary battery containing separator
KR20180101240A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Conveyer device and method for producing film
KR20180101245A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Kneading apparatus and method of producing kneaded material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101295525B1 (en) * 2011-06-17 2013-08-12 (주)이쎌텍 Apparatus and Method for manufacturing microporous film for a separator of battery

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093498A (en) * 1999-09-24 2001-04-06 Nippon Muki Co Ltd Separator for nonaqueous electrolyte solution battery
JP2001192487A (en) * 2000-01-13 2001-07-17 Tonen Chem Corp Microporous polyolefin film and method for producing the same
JP2001229907A (en) * 2000-02-15 2001-08-24 Tonen Chem Corp Polyolefin fine porous film and manufacturing method thereof
JP4682347B2 (en) * 2000-02-15 2011-05-11 東レ東燃機能膜合同会社 Method for producing polyolefin microporous membrane
US7632887B2 (en) 2002-08-12 2009-12-15 Exxonmobil Chemical Patents Inc. Plasticized polyolefin compositions
US7531594B2 (en) 2002-08-12 2009-05-12 Exxonmobil Chemical Patents Inc. Articles from plasticized polyolefin compositions
US7619026B2 (en) 2002-08-12 2009-11-17 Exxonmobil Chemical Patents Inc. Plasticized polyolefin compositions
US7622523B2 (en) 2002-08-12 2009-11-24 Exxonmobil Chemical Patents Inc. Plasticized polyolefin compositions
US7271209B2 (en) 2002-08-12 2007-09-18 Exxonmobil Chemical Patents Inc. Fibers and nonwovens from plasticized polyolefin compositions
JP2004352863A (en) * 2003-05-29 2004-12-16 Nitto Denko Corp Porous film
US8104625B2 (en) 2004-05-20 2012-01-31 Asahi Kasei Chemicals Corporation Microporous membrane made of polyolefins
JP5046640B2 (en) * 2004-05-20 2012-10-10 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
JPWO2005113657A1 (en) * 2004-05-20 2008-03-27 旭化成ケミカルズ株式会社 Polyolefin microporous membrane
WO2005113657A1 (en) * 2004-05-20 2005-12-01 Asahi Kasei Chemicals Corporation Microporous membrane made of polyolefins
JP2008501847A (en) * 2004-06-11 2008-01-24 エスケーコーポレイション Polyethylene microporous membrane and method for producing the same
US7947752B2 (en) * 2004-06-11 2011-05-24 Sk Energy Co., Ltd. Method of producing microporous high density polyethylene film
JP4829233B2 (en) * 2004-06-11 2011-12-07 エスケー エナジー カンパニー リミテッド Production method of polyethylene microporous membrane
JP2011208144A (en) * 2004-06-11 2011-10-20 Sk Energy Co Ltd Polyethylene microporous film
TWI403549B (en) * 2005-03-29 2013-08-01 Method for preparing a microporous polyolefin membrane and the microporous polyolefin membrane
WO2006104165A1 (en) * 2005-03-29 2006-10-05 Tonen Chemical Corporation Process for producing microporous polyolefin film and microporous polyolefin film
JP5021461B2 (en) * 2005-03-29 2012-09-05 東レバッテリーセパレータフィルム合同会社 Method for producing polyolefin microporous membrane and microporous membrane
WO2006106786A1 (en) * 2005-03-31 2006-10-12 Tonen Chemical Corporation Method for producing polyolefin microporous film and microporous film
TWI414417B (en) * 2005-03-31 2013-11-11 Method for preparing a microporous polyolefin membrane and the microporous polyolefin membrane
WO2006106783A1 (en) * 2005-03-31 2006-10-12 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
EP1873194A1 (en) * 2005-03-31 2008-01-02 Tonen Chemical Corporation Method for producing polyolefin microporous film and microporous film
KR101231752B1 (en) 2005-03-31 2013-02-08 도레이 배터리 세퍼레이터 필름 주식회사 Method for producing polyolefin microporous film and microporous film
KR101231748B1 (en) * 2005-03-31 2013-02-08 도레이 배터리 세퍼레이터 필름 주식회사 Microporous polyolefin film and process for producing the same
EP1873194A4 (en) * 2005-03-31 2014-07-30 Toray Battery Separator Film Method for producing polyolefin microporous film and microporous film
JP5342775B2 (en) * 2005-03-31 2013-11-13 東レバッテリーセパレータフィルム株式会社 Method for producing polyolefin microporous membrane and microporous membrane
JP2008540795A (en) * 2005-05-16 2008-11-20 エスケー エナジー シーオー., エルティーディー. Polyethylene microporous membrane produced by liquid-liquid phase separation and method for producing the same
JP2007250405A (en) * 2006-03-17 2007-09-27 Nissan Motor Co Ltd Bipolar secondary battery
JP4713441B2 (en) * 2006-09-29 2011-06-29 トーレ アドバンスト マテリアルズ コリア インク. Method for producing polyolefin microporous membrane
JP2011042805A (en) * 2006-09-29 2011-03-03 Toray Advanced Materials Korea Inc Method for producing polyolefin microporous film
JP2008088392A (en) * 2006-09-29 2008-04-17 Toray Saehan Inc Method for producing polyolefin microporous film
JP5586152B2 (en) * 2006-12-04 2014-09-10 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
WO2008069216A1 (en) * 2006-12-04 2008-06-12 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane
JP2013515368A (en) * 2009-12-21 2013-05-02 ボロール Separator film, manufacturing method thereof, super capacitor, battery and capacitor provided with the film
US9461288B2 (en) 2009-12-21 2016-10-04 Bollore Separator film, its fabrication method, supercapacitor, battery and capacitor provided with said film
JP2011080078A (en) * 2010-11-25 2011-04-21 Tonen Chem Corp Polyolefin microporous film
WO2018078698A1 (en) * 2016-10-24 2018-05-03 住友化学株式会社 Separator, and secondary battery containing separator
CN109891629A (en) * 2016-10-24 2019-06-14 住友化学株式会社 Spacer and secondary cell comprising spacer
US10573866B2 (en) 2016-10-24 2020-02-25 Sumitomo Chemical Company, Limited Separator and secondary battery including the separator
KR20180101240A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Conveyer device and method for producing film
KR20180101245A (en) 2017-03-03 2018-09-12 스미또모 가가꾸 가부시키가이샤 Kneading apparatus and method of producing kneaded material
KR20190039895A (en) 2017-03-03 2019-04-16 스미또모 가가꾸 가부시키가이샤 Conveyer device and method for producing film

Also Published As

Publication number Publication date
JP3917721B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
JP3917721B2 (en) Method for producing microporous membrane
JP4397121B2 (en) Polyolefin microporous membrane
JP4753446B2 (en) Polyolefin microporous membrane
JP5216327B2 (en) Polyolefin microporous membrane
JP5497635B2 (en) Polyolefin microporous membrane, method for producing the same, battery separator and battery
KR101347460B1 (en) Microporous membranes and methods for making and using such membranes
JP4470248B2 (en) Battery separator
KR101723275B1 (en) Polyolefin microporous membrane
JP6895570B2 (en) Polyolefin microporous membrane and method for producing polyolefin microporous membrane
JPWO2009123015A1 (en) Polyolefin microporous membrane and wound product
JP2011515512A (en) Microporous membrane, battery separator and battery
WO2009136648A1 (en) Separator for high power density lithium‑ion secondary cell
JP2000017100A (en) Preparation of polyethylene micro-porous membrane
JP5171012B2 (en) Method for producing polyolefin microporous membrane
JP4220329B2 (en) Polyolefin microporous membrane and method for producing the same
JP2009084300A (en) Microporous polyolefin membrane, separator for battery, and battery
JPH11297297A (en) Method for producing porous film and porous film
JP4713441B2 (en) Method for producing polyolefin microporous membrane
JP2009149710A (en) Polyolefin microporous membrane
JP2012072263A (en) Polyolefin microporous film
JPH1067870A (en) Microporous polyethylene film and its production
JP6596270B2 (en) Method for producing polyolefin microporous membrane
JP7532843B2 (en) Polyolefin microporous membrane, battery separator, and secondary battery
JPH04212265A (en) Polyethylene poromeric film for cell separator
JPH1067871A (en) Production of microporous polyethylene film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040803

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term