JPH1150152A - Manufacturing method of grain-oriented electrical steel sheet with stable and extremely high magnetic flux density in the longitudinal direction of the coil - Google Patents
Manufacturing method of grain-oriented electrical steel sheet with stable and extremely high magnetic flux density in the longitudinal direction of the coilInfo
- Publication number
- JPH1150152A JPH1150152A JP20754697A JP20754697A JPH1150152A JP H1150152 A JPH1150152 A JP H1150152A JP 20754697 A JP20754697 A JP 20754697A JP 20754697 A JP20754697 A JP 20754697A JP H1150152 A JPH1150152 A JP H1150152A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- magnetic flux
- sheet
- flux density
- grain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Metal Rolling (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
(57)【要約】
【課題】 コイル長手方向の磁束密度が安定して極めて
高い方向性電磁鋼板の製造法を提供する。
【解決手段】 重量%で、0.010%≦C≦0.14
%、0.010%≦酸可溶性Al≦0.050%、0.
0030%≦N≦0.0150%を含有し、残部Feお
よび不可避的不純物からなるスラブを、加熱、熱延した
後、1回以上の冷延を行って最終板厚とし、脱炭焼鈍
後、Ac1 変態点以下の温度域で最終焼鈍する方向性電
磁鋼板の製造法であって、仕上熱間圧延を、下記(1)
式を満足する条件で行うとともに、最終冷延率を75%
超とすることを特徴とするコイル長手方向の磁束密度が
安定して極めて高い方向性電磁鋼板の製造方法。
【数1】
(57) [Problem] To provide a method for manufacturing a grain-oriented electrical steel sheet in which the magnetic flux density in the coil longitudinal direction is stable and extremely high. SOLUTION: In weight%, 0.010% ≦ C ≦ 0.14.
%, 0.010% ≦ acid-soluble Al ≦ 0.050%, 0.1%
A slab containing 0030% ≦ N ≦ 0.0150%, the balance being Fe and unavoidable impurities, is heated and hot-rolled, then cold-rolled one or more times to a final sheet thickness, and after decarburizing annealing, This is a method for producing a grain-oriented electrical steel sheet that is finally annealed in a temperature range not higher than the Ac 1 transformation point.
Perform under the condition that satisfies the formula, and set the final cold rolling reduction
A method for producing a grain-oriented electrical steel sheet having a very high magnetic flux density in a longitudinal direction of a coil, which is characterized by being made super. (Equation 1)
Description
【0001】[0001]
【産業上の利用分野】本発明は、コイル長手方向の磁束
密度が安定して極めて高い方向性電磁鋼板の製造法に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having a stable and high magnetic flux density in the longitudinal direction of a coil.
【0002】[0002]
【従来の技術】方向性電磁鋼板は二次再結晶により鋼板
の結晶粒を特定方位に高度に結晶粒を配向させた成品で
あることが特徴であり、圧延面に{110}面、圧延方
向に<100>軸を有するゴス方位を持つ結晶粒により
構成されている。また、方向性電磁鋼板の用途として
は、軟磁性材料として主にトランスその他の電気機器の
鉄心材料に使用されるもので、近年省エネルギー、省資
源への社会的要求がますます厳しくなっている事から、
一方向性電磁鋼板の鉄損低減、磁化特性改善への要求も
厳しくなってきている。このため磁気特性、特に良好な
励磁特性と鉄損特性が求められるようになってきてい
る。2. Description of the Related Art A grain-oriented electrical steel sheet is characterized in that it is a product in which the crystal grains of the steel sheet are highly oriented in a specific direction by secondary recrystallization, and the {110} plane is on the rolling surface and the rolling direction is And a crystal grain having a Goss orientation having a <100> axis. The applications of grain-oriented electrical steel sheets are mainly used as soft magnetic materials for core materials of transformers and other electrical equipment, and in recent years social demands for energy saving and resource saving have become increasingly severe. From
Demands for reduction of iron loss and improvement of magnetization characteristics of a grain-oriented electrical steel sheet have become strict. For this reason, magnetic characteristics, particularly good excitation characteristics and iron loss characteristics, have been required.
【0003】方向性電磁鋼板の励磁特性を示す指標とし
ては、通常磁束密度B8 (磁場の強さ800A/mにお
ける磁束密度)が用いられている。また鉄損特性を示す
指標としては、W17/50 (50Hzで1.7Tまで磁化
させたときの単位重量あたりの鉄損)等が用いられてい
る。鉄損は渦電流損とヒステリシス損からなり、渦電流
損は鋼板の電気抵抗率、板厚、結晶粒度、磁区の形態、
鋼板表面の皮膜張力等の因子により支配されている。一
方、ヒステリシス損は磁束密度を支配する鋼板の結晶方
位、純度、内部歪等により支配される。A magnetic flux density B 8 (magnetic flux density at a magnetic field strength of 800 A / m) is usually used as an index indicating the excitation characteristics of a grain-oriented electrical steel sheet. As an index indicating the iron loss characteristics, W 17/50 (iron loss per unit weight when magnetized to 1.7 T at 50 Hz) and the like are used. Iron loss consists of eddy current loss and hysteresis loss, and eddy current loss is the electrical resistivity, thickness, crystal grain size, magnetic domain form,
It is governed by factors such as film tension on the steel sheet surface. On the other hand, the hysteresis loss is governed by the crystal orientation, purity, internal strain and the like of the steel sheet that governs the magnetic flux density.
【0004】これらの因子を制御することによる鉄損を
低減させるために、鋼板の電気抵抗を大きくするために
Si含有量を高めることが行われてきた。しかしなが
ら、これに伴い飽和磁束密度が低下するため、これを従
来技術では二次再結晶方位の集積度を上昇させることで
補って高磁束密度方向性電磁鋼板を製造してきた。この
ために、従来技術では二次再結晶を安定して発現させる
とともにその方位集積度を高め、磁束密度を向上させる
因子として、インヒビターの役割が重要である。この目
的のため、従来技術ではMnS、AlN、MnSe等が
インヒビターとして用いられてきている。[0004] In order to reduce iron loss by controlling these factors, the Si content has been increased in order to increase the electrical resistance of the steel sheet. However, since the saturation magnetic flux density decreases with this, the prior art has compensated for this by increasing the degree of integration of the secondary recrystallization orientation to produce a high magnetic flux density grain-oriented electrical steel sheet. For this reason, in the prior art, the role of the inhibitor is important as a factor for stably expressing secondary recrystallization, increasing the degree of azimuthal integration, and improving magnetic flux density. For this purpose, MnS, AlN, MnSe and the like have been used as inhibitors in the prior art.
【0005】従来の方向性電磁鋼板の製造法は、二次再
結晶方位制御に用いられるインヒビターの種類により大
きく3種類に大別される。まず第一に、M.F.Lit
tmannにより特公昭30−3651号公報に開示さ
れた製造法がある。この製造法はインヒビターにMnS
を用い、二回冷延法で製造することが特徴である。次
に、特公昭40−15644号公報に田口、坂倉らによ
り開示された、MnSに加えてAlNをインヒビターと
する製造方法である。このインヒビターにAlNを用い
る方法により、方向性電磁鋼板の磁束密度は1.870
T以上に向上し、磁気特性の改善による省エネルギーに
多大な貢献を果たした。第3に、特公昭51−1346
9号公報に今中等により開示されたMnSとSbもしく
はMnS、MnSeとSbを用い、二回冷延法により製
造する方法である。[0005] Conventional methods for producing grain-oriented electrical steel sheets are roughly classified into three types depending on the type of inhibitor used for controlling the secondary recrystallization orientation. First of all, M. F. Lite
There is a production method disclosed by Tmann in Japanese Patent Publication No. 30-3651. This production method uses MnS as an inhibitor.
It is characterized in that it is manufactured by cold rolling twice. Next, there is disclosed a production method disclosed in Japanese Patent Publication No. 40-15644 by Taguchi, Sakakura et al. Using AlN as an inhibitor in addition to MnS. The magnetic flux density of the grain-oriented electrical steel sheet is 1.870 by the method using AlN for this inhibitor.
T, and greatly contributed to energy saving by improving magnetic properties. Third, Japanese Patent Publication No. 51-1346
No. 9 discloses a method in which MnS and Sb or MnS or MnSe and Sb disclosed in Ichinaka et al. Are produced by a double cold rolling method.
【0006】これらの製造法においては本質的あるいは
良好な磁束密度を得るためにはインヒビターの析出制御
を目的として、高温スラブ加熱により一旦インヒビター
を構成する析出物を溶体化し、これを熱延工程あるいは
特公昭46−23820号公報に開示されているように
熱延板焼鈍時に微細に析出させることが必要である。こ
のように従来法では製鋼段階での成分調整と熱延の段階
でほぼ製品の特性が決定されるため、上工程での材質造
り込みの安定性確立が重要な課題であった。[0006] In these production methods, in order to obtain an essential or good magnetic flux density, for the purpose of controlling the precipitation of the inhibitor, the precipitate constituting the inhibitor is once dissolved by high-temperature slab heating, and this is subjected to a hot rolling step or As disclosed in JP-B-46-23820, it is necessary to precipitate finely during hot-rolled sheet annealing. As described above, in the conventional method, the properties of the product are almost determined at the stage of the component adjustment at the steel making stage and at the stage of hot rolling. Therefore, it is an important issue to establish the stability of the material building in the upper process.
【0007】この目的のために方向性電磁鋼板の熱延工
程においては析出物制御をより安定的に行う観点から、
粗圧延後のシートバーへの保熱カバー使用、ランアウト
テーブル上での冷却制御等の対策により、コイル長手方
向の析出物制御に多大の努力が払われてきた。しかしな
がら依然として方向性電磁鋼板の熱延条件の変動が製品
の磁気特性に与える影響は大きく、熱延条件の安定性、
歩留まりの点で課題を残していた。For this purpose, in the hot rolling process of grain-oriented electrical steel sheets, from the viewpoint of more stably controlling precipitates,
A great deal of effort has been put into controlling the precipitates in the longitudinal direction of the coil by taking measures such as using a heat retaining cover for the sheet bar after the rough rolling and cooling control on the run-out table. However, the variation of hot rolling conditions of grain-oriented electrical steel sheets still has a large effect on the magnetic properties of products, and the stability of hot rolling conditions,
There was a problem in terms of yield.
【0008】しかしながら近年では、ヨーク材料や、磁
気シールド材料のように、従来のトランス鉄心用途の方
向性電磁鋼板とは異なり、鉄損よりも高磁束密度を重視
する用途の方向性電磁鋼板の要求が高まってきており、
その製造技術の確立が急がれていた。高磁束密度を得る
ためには従来技術で重視されたように方位集積度を上げ
ることの他に、鉄そのものの材料中の含有量を高め、飽
和磁束密度を上げることが有効である。However, in recent years, unlike conventional directional magnetic steel sheets for transformer core applications, such as yoke materials and magnetic shield materials, there has been a demand for directional magnetic steel sheets for applications where higher magnetic flux density is more important than iron loss. Is increasing,
The establishment of the manufacturing technology was urgent. In order to obtain a high magnetic flux density, it is effective to increase the content of iron itself in the material to increase the saturation magnetic flux density in addition to increasing the degree of azimuth integration as emphasized in the prior art.
【0009】本発明者等は、この目的で、これまでに、
特公平7−122093号公報、特開平4−30105
3号公報等でその高磁束密度の方向性電磁鋼板製造法で
開示してきた。しかしながら、これらの製造法よる高磁
束密度方向性電磁鋼板によっても、ヨーク材料等に要求
されるような高磁場での磁束密度に対して、更に高い磁
束密度の要求が需要家から出ているのが現状であり、従
来技術の高磁束密度方向性電磁鋼板の特性を上回る製品
の開発が急がれていた。The present inventors have, for this purpose,
JP-B-7-122093, JP-A-4-30105
No. 3 discloses such a method of manufacturing a grain-oriented electrical steel sheet having a high magnetic flux density. However, even with the high magnetic flux density grain-oriented electrical steel sheets produced by these manufacturing methods, demands for higher magnetic flux densities have emerged from consumers with respect to magnetic flux densities at high magnetic fields required for yoke materials and the like. At present, the development of products that exceed the characteristics of the conventional high magnetic flux density grain-oriented electrical steel sheets has been urgently required.
【0010】[0010]
【発明が解決しようとする課題】本発明はこのような昨
今の市場の要請に応え、コイル長手方向の磁束密度が安
定して極めて高い方向性電磁鋼板の製造法を提供するこ
とを目的とするものである。SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of manufacturing a grain-oriented electrical steel sheet which has a stable and high magnetic flux density in the longitudinal direction of the coil in response to the demands of the market in recent years. Things.
【0011】[0011]
【課題を解決するための手段】本発明の要旨とするとこ
ろは以下の通りである。 (1) 重量%で、 0.010% ≦ C ≦0.14%、 0.010% ≦酸可溶性Al≦0.050%、 0.0030%≦ N ≦0.0150% を含有し、残部Feおよび不可避的不純物からなるスラ
ブを、加熱、熱延した後、1回以上の冷延を行って最終
板厚とし、脱炭焼鈍後、Ac1 変態点以下の温度域で最
終焼鈍する方向性電磁鋼板の製造法であって、仕上熱間
圧延を、下記(1)式を満足する条件で行うとともに、
最終冷延率を75%超とすることを特徴とするコイル長
手方向の磁束密度が安定して極めて高い方向性電磁鋼板
の製造方法。The gist of the present invention is as follows. (1) In% by weight, 0.010% ≦ C ≦ 0.14%, 0.010% ≦ acid-soluble Al ≦ 0.050%, 0.0030% ≦ N ≦ 0.0150%, and the balance Fe A directional slab that heats and hot-rolls a slab composed of unavoidable impurities, performs one or more cold-rollings to a final sheet thickness, decarburizes it, and finally anneals in a temperature range below the Ac 1 transformation point. A method for producing a steel sheet, wherein finishing hot rolling is performed under a condition satisfying the following expression (1).
A method for producing a grain-oriented electrical steel sheet having a stable and extremely high magnetic flux density in a longitudinal direction of a coil, wherein the final cold-rolling rate is more than 75%.
【数2】 (Equation 2)
【0012】(2) スラブを粗圧延して得られたシー
トバーの先端部を先行するシートバーの後端部と接合し
て複数のシートバーを一体とし、この一体とした複数の
シートバーを連続的に仕上熱延に供することを特徴とす
る前記(1)記載のコイル長手方向の磁束密度が安定し
て極めて高い方向性電磁鋼板の製造方法。(2) The leading end of the sheet bar obtained by roughly rolling the slab is joined to the trailing end of the preceding sheet bar to integrate a plurality of sheet bars. (1) The method for producing a grain-oriented electrical steel sheet according to the above (1), wherein the oriented magnetic steel sheet has a stable and extremely high magnetic flux density in a longitudinal direction of the coil.
【0013】本発明者らは、従来技術での検討の主眼と
されたインヒビター制御技術以外の製造プロセス上の検
討課題として、熱延条件を制御し熱延板の造り込みによ
るコイル長手方向の磁束密度が安定して極めて高い方向
性電磁鋼板の製造法について鋭意検討した結果、仕上熱
延時に仕上圧延時の歪み速度が成品の磁気特性に密接な
影響を及ぼすことを見出し、これを一定の範囲内の変動
に押さえることでコイル長手方向の磁気特性が安定し、
かつ磁束密度の高い方向性電磁鋼板を製造することが可
能であることを見出した。[0013] The inventors of the present invention have studied the manufacturing process other than the inhibitor control technique, which was the main focus of the study in the prior art, as the control of the hot rolling conditions and the magnetic flux in the longitudinal direction of the coil due to the formation of the hot rolled sheet. As a result of intensive studies on the manufacturing method of grain-oriented electrical steel sheets with stable and high density, we found that the strain rate during finish rolling had a close effect on the magnetic properties of finished products during finish hot rolling. The magnetic properties in the longitudinal direction of the coil are stabilized by suppressing
Further, it has been found that it is possible to manufacture a grain-oriented electrical steel sheet having a high magnetic flux density.
【0014】また、さらにこのような仕上圧延中の歪み
速度の変動を抑制するために、粗圧延後のシートバーを
先行するシートバーに接合し、2本以上のシートバーを
連続して仕上熱延に供することが好ましいことも見いだ
した。Further, in order to suppress such a variation in the strain rate during the finish rolling, the sheet bar after the rough rolling is joined to the preceding sheet bar, and two or more sheet bars are continuously connected to the finishing heat. It has also been found that it is preferable to provide it.
【0015】[0015]
【発明の実施の形態】以下に本発明を詳細に説明する。
まず、成分について説明する。Cはその含有量が0.0
10%未満になると二次再結晶が不安定となり、磁束密
度が著しく低下するので0.010%以上とする。一
方、0.14%を超えると、脱炭焼鈍に要する時間が長
くなりすぎ、不経済であるので0.14%以下とする。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
First, the components will be described. C has a content of 0.0
If it is less than 10%, secondary recrystallization becomes unstable and the magnetic flux density is remarkably reduced. On the other hand, if it exceeds 0.14%, the time required for decarburization annealing becomes too long, which is uneconomical.
【0016】酸可溶性AlはNと化合してインヒビター
であるAlNを形成する。その含有量が0.010%未
満であるとインヒビター析出量が不足し二次再結晶が不
安定となるので0.010%以上とする。一方、その含
有量が0.050%超となると析出状態が粗大化し、イ
ンヒビター効果が損なわれ磁束密度が低下するので、
0.050%以下とする。The acid-soluble Al combines with N to form AlN, an inhibitor. If the content is less than 0.010%, the amount of inhibitor deposited becomes insufficient and secondary recrystallization becomes unstable. Therefore, the content is set to 0.010% or more. On the other hand, if the content exceeds 0.050%, the precipitation state becomes coarse, the inhibitor effect is impaired, and the magnetic flux density is reduced.
0.050% or less.
【0017】Nは0.0030%以上0.0150%以
下にする必要がある。0.0150%を超えるとブリス
ターと呼ばれる鋼板表面の膨れが発生するとともに、一
次再結晶組織の調整が困難となるので0.0150%以
下とする。一方、N含有量が0.0030%未満である
と、インヒビターであるAlNの形成が不足し二次再結
晶の発現が困難になるのでN含有量は0.0030%以
上とする。N must be not less than 0.0030% and not more than 0.0150%. If it exceeds 0.0150%, blisters called “blisters” occur on the steel sheet surface, and it becomes difficult to adjust the primary recrystallization structure. On the other hand, if the N content is less than 0.0030%, the formation of AlN, which is an inhibitor, becomes insufficient and secondary recrystallization becomes difficult, so the N content is made 0.0030% or more.
【0018】次に、本発明のプロセスについて説明す
る。本発明の電磁鋼スラブは、転炉または電気炉等の溶
解炉で鋼を溶製し、必要に応じて真空脱ガス処理し、次
いで連続鋳造により、あるいは造塊後分塊圧延すること
によって得られる。その後、熱間圧延に先立ちスラブ加
熱が行われる。本発明のプロセスにおいては、スラブの
加熱温度は適切に制御して主要インヒビターであるAl
Nを鋼中に再固溶させることが肝要である。このスラブ
を熱延して所定の厚みの熱延板とする。Next, the process of the present invention will be described. The electromagnetic steel slab of the present invention is obtained by melting steel in a melting furnace such as a converter or an electric furnace, subjecting the steel to vacuum degassing if necessary, and then performing continuous casting or ingot rolling after ingot casting. Can be Thereafter, slab heating is performed prior to hot rolling. In the process of the present invention, the heating temperature of the slab is appropriately controlled so that the main inhibitor, Al
It is important to re-dissolve N in steel. This slab is hot-rolled into a hot-rolled sheet having a predetermined thickness.
【0019】仕上熱延時の歪速度の変動がコイル長手方
向の成品磁気特性に与える影響を調査するため下記の様
な実験を行った。表1に示す成分の鋼を溶製し、連鋳機
により200mm厚みのスラブとした。次にこれを粗圧延
により板厚70mmのシートバーとし、その後コイル状に
巻き取った。巻取り実施時のシートバーの温度は100
0℃であった。The following experiment was conducted to investigate the effect of the variation in strain rate during hot rolling on the finished product in the longitudinal direction of the coil. Steels having the components shown in Table 1 were melted and made into slabs having a thickness of 200 mm by a continuous casting machine. Next, this was rough-rolled into a sheet bar having a thickness of 70 mm, and then wound into a coil shape. The temperature of the sheet bar at the time of winding is 100
It was 0 ° C.
【0020】[0020]
【表1】 [Table 1]
【0021】その後このシートバーを巻きほどいて先行
するシートバーに押圧力を加え溶接し、粗圧延を連続し
て仕上げ熱延を行い、途中歪速度を変更して得られた成
品板の磁気特性と歪速度との関係を調べた。Thereafter, the sheet bar is unwound, and a pressing force is applied to the preceding sheet bar and welded, rough rolling is continuously performed, hot rolling is performed, and the magnetic properties of the product sheet obtained by changing the strain rate in the middle are obtained. The relationship between strain and strain rate was investigated.
【0022】熱延終了温度は900℃とし、2.50mm
に仕上げ、仕上熱延最終スタンド通過後、冷却し、55
0℃で巻き取った。なお、この仕上圧延の最終スタンド
の最大歪速度は370s-1とした。The hot rolling end temperature is 900 ° C. and is 2.50 mm
After passing through the final hot rolling final stand, cool and
Wound at 0 ° C. The maximum strain rate of the final stand of this finish rolling was 370 s -1 .
【0023】得られた熱延板に825℃2分の熱延板焼
鈍を施し、その後酸洗し冷延率84.0%の圧延により
0.40mmまで冷延し、次いで830℃5分の脱炭焼鈍
を湿水素雰囲気中で実施した。その後890℃×10時
間の仕上焼鈍を行った。得られた製品からエプスタイン
試料を切り出し、歪取り焼鈍を施した後、磁界強度10
000A/mでの磁束密度の値を測定した。仕上げ熱延
中の最終スタンドの歪速度の変動と製品磁束密度の関係
について図1に示す。The obtained hot-rolled sheet is subjected to hot-rolled sheet annealing at 825 ° C. for 2 minutes, then pickled, cold rolled to 0.40 mm by rolling at a cold rolling rate of 84.0%, and then at 830 ° C. for 5 minutes. The decarburization annealing was performed in a wet hydrogen atmosphere. Thereafter, finish annealing at 890 ° C. × 10 hours was performed. An Epstein sample was cut out from the obtained product, subjected to strain relief annealing, and then subjected to a magnetic field strength of 10%.
The value of the magnetic flux density at 000 A / m was measured. FIG. 1 shows the relationship between the variation of the strain rate of the final stand during the finishing hot rolling and the product magnetic flux density.
【0024】図1によれば、歪速度の変動を下記式
(1)の範囲内、すなわち最大歪速度に対する歪速度の
変動量を25%以内にすることにより、磁束密度の変動
が抑制されていることが分かる。さらに、歪速度の変動
を下記式(2)の範囲内、すなわち最大歪速度に対する
歪速度の変動量を20%以内にすることにより、磁束密
度の変動をより小さい範囲に抑制できることが分かる。According to FIG. 1, the variation of the magnetic flux density is suppressed by keeping the variation of the strain rate within the range of the following equation (1), that is, the variation of the strain rate with respect to the maximum strain rate is within 25%. You can see that there is. Further, it can be seen that the variation of the magnetic flux density can be suppressed to a smaller range by setting the variation of the strain rate within the range of the following equation (2), that is, by setting the variation of the strain rate with respect to the maximum strain rate within 20%.
【数3】 (Equation 3)
【数4】 (Equation 4)
【0025】以上のように、仕上熱延における歪速度の
変動量を一定範囲内することで、鋼板の磁束密度の変動
を抑制できる。したがって、粗圧延後のシートバーの仕
上熱延において、歪速度の変動量を一定範囲内とすれ
ば、コイル長手方向の製品の磁気特性を安定させること
が可能である。As described above, the variation of the magnetic flux density of the steel sheet can be suppressed by keeping the variation of the strain rate in the hot-rolling within a certain range. Therefore, in the finishing hot rolling of the sheet bar after the rough rolling, if the variation of the strain rate is within a certain range, it is possible to stabilize the magnetic properties of the product in the coil longitudinal direction.
【0026】仕上熱間圧延の歪速度を制御する方法とし
ては、タンデムスタンドの各圧下率配分を調整し、同時
に圧延速度を調節することや、シートバーの厚み、仕上
熱延における熱延板の板厚を適切に採るなどの方法によ
り本発明の実施が可能となる。また、スタンドのロール
径を変更することによっても歪速度を調整することが可
能である。As a method of controlling the strain rate in the finishing hot rolling, the distribution of the rolling reduction of the tandem stand is adjusted, and simultaneously the rolling rate is adjusted, the thickness of the sheet bar, the thickness of the hot rolled sheet in the finishing hot rolling are adjusted. The present invention can be implemented by a method such as appropriately setting the plate thickness. Also, the strain rate can be adjusted by changing the roll diameter of the stand.
【0027】また、コイル長手方向の製品の磁気特性を
さらに安定させる観点からは、スラブを粗圧延して得ら
れたシートバーの先端部を先行するシートバーの後端部
と接合して複数のシートバーを一体とし、一体とした複
数のシートバーを連続的に仕上熱延に供することが好ま
しい。仕上熱延の噛み込み時及び尻抜け時の圧延安定性
の確保のために、仕上熱延最終スタンドの歪速度を一定
以内に制御することは困難であるが、上記のようにシー
トバーを接続して連続的に仕上熱延を施せば、歪速度制
御が容易となるためである。From the viewpoint of further stabilizing the magnetic properties of the product in the longitudinal direction of the coil, the front end of the sheet bar obtained by roughly rolling the slab is joined to the rear end of the preceding sheet bar to form a plurality of sheets. It is preferable that the sheet bars are integrated and a plurality of integrated sheet bars are continuously subjected to hot rolling for finishing. It is difficult to control the strain rate of the final hot-rolling final stand within a certain range in order to secure rolling stability during biting of the hot-rolled steel and slippage of the tail, but the sheet bar is connected as described above. This is because if the hot rolling is continuously performed, the strain rate can be easily controlled.
【0028】先行シートバーと後行シートバーを接合す
る方法としては、先行シートバーの後端部と後行シート
バーの先端とを突き合わせ、突合せ部を溶接する方法
や、突合せ部に押圧力を加えて圧接する方法や、突合せ
部を溶接した後に圧接する方法等がある。また、突合せ
部に押圧力を加えつつ溶接するようにしてもよい。な
お、突合せ部を溶接する方法としては、例えばレーザ溶
接法、誘導加熱による方法等があげられる。As a method of joining the preceding sheet bar and the succeeding sheet bar, a method of welding the leading end of the preceding sheet bar to the leading end of the succeeding sheet bar and welding the butted portion, or a method of applying a pressing force to the butted portion is used. In addition, there is a method of performing pressure contact, a method of performing pressure contact after welding a butt portion, and the like. Also, welding may be performed while applying a pressing force to the butted portion. In addition, as a method of welding the butt portion, for example, a laser welding method, a method by induction heating, and the like can be mentioned.
【0029】なお、歪速度の計算は下記の式によって行
う。ここで、rは圧下率%/100、nはロールの回転
数(rpm)、Rは圧延ロール半径(mm)、H0 は圧延
前の板厚(mm)である。 歪速度=(2πn/(60r0.5 ))(R/H0 )0.5 ln
(1/(1−r))The strain rate is calculated by the following equation. Here, r is the rolling reduction% / 100, n is the number of revolutions of the roll (rpm), R is the radius of the rolling roll (mm), and H 0 is the thickness (mm) before rolling. Strain rate = (2πn / (60r 0.5 )) (R / H 0 ) 0.5 ln
(1 / (1-r))
【0030】接合前のシートバーは圧延を連続的に実行
するためにコイル上に巻き取って待機しても良い。この
際、巻き取ったシートバーは外面部分の温度低下を抑制
するために保熱カバーに装入して保温や加熱を行っても
良い。また、シートバーを直接コイルボックス内に巻取
り保熱しても良い。巻き取ったシートバーの保持時間に
ついては特に規定しないが、本成分系の方向性電磁鋼板
の場合は、巻き取ったシートバーの保持時間が過度に長
くなるとインヒビターが粗大析出し、仕上焼鈍時の二次
再結晶が不安定になるので、180秒以内であることが
好ましい。生産性と製品の磁気特性のかねあいからさら
に好ましいシートバー巻取り時間は、30秒以上120
秒以内である。そして、巻き取ったシートバーのディレ
イ中の仕上熱延停止を避け、仕上熱延の生産性を確保す
るために、シートバーのコイルボックスを複数設置し、
順次巻取ったシートバーを格納しディレイを行い、ディ
レイ終了後また順次これを巻きほどいて仕上げ熱延に供
することが好ましい。The sheet bar before joining may be wound up on a coil and stand by in order to continuously perform rolling. At this time, the wound sheet bar may be inserted into a heat retaining cover to keep the temperature or the temperature in order to suppress a decrease in the temperature of the outer surface portion. Further, the sheet bar may be wound directly into the coil box to keep the heat. Although the holding time of the wound sheet bar is not particularly specified, in the case of a grain-oriented electrical steel sheet of the present component system, if the holding time of the wound sheet bar becomes excessively long, the inhibitor coarsely precipitates and the finish annealing time is reduced. Since the secondary recrystallization becomes unstable, the time is preferably within 180 seconds. A more preferable sheet bar winding time is 30 seconds or more and 120 seconds in consideration of productivity and magnetic properties of the product.
Within seconds. And, in order to avoid the stop of hot rolling during the delay of the wound sheet bar and to ensure the productivity of the hot rolling, a plurality of sheet bar coil boxes are installed,
It is preferable to store the sequentially wound sheet bar and perform a delay, and after the delay is completed, unwind the sheet bar and apply it to finish hot rolling.
【0031】式(1)、式(2)の規定が製品長手方向
の磁気特性を安定させることについてその詳細な理由は
定かでないが、仕上圧延中の歪み速度の変化が熱延鋼板
中のAlNの析出状態に影響を与え、鋼板長手方向全体
にわたって二次再結晶粒の核となる方位選択性が向上す
ることがその原因ではないかと推測される。Although it is not clear why the provisions of the formulas (1) and (2) stabilize the magnetic properties in the longitudinal direction of the product, the change in the strain rate during the finish rolling is caused by the change in the AlN content in the hot-rolled steel sheet. It is presumed that the cause is that the precipitation state is affected, and the orientation selectivity serving as a nucleus of secondary recrystallized grains is improved over the entire longitudinal direction of the steel sheet.
【0032】熱延以降の行程については、析出物制御を
目的として熱延板焼鈍を行っても良い。酸洗後、1回若
しくは中間焼鈍を含む2回以上の冷間圧延により最終板
厚とする。In the process after the hot rolling, the hot rolled sheet may be annealed for the purpose of controlling precipitates. After pickling, the final thickness is obtained by cold rolling once or twice or more including intermediate annealing.
【0033】本発明では、高磁束密度を得るために最終
冷延の圧下率は75%超とする。75%以下では本発明
が目的とする超高磁束密度が得られないので、最終冷延
率は75%超と定める。In the present invention, in order to obtain a high magnetic flux density, the rolling reduction of the final cold rolling is set to more than 75%. If it is less than 75%, the ultra-high magnetic flux density aimed at by the present invention cannot be obtained, so the final cold rolling reduction is determined to be more than 75%.
【0034】次に湿水素雰囲気などの雰囲気中で脱炭焼
鈍をする。次いで焼鈍分離材を塗布し仕上げ焼鈍を行
い、二次再結晶および引き続いて純化を行う。本発明の
鋼はαγ変態を有するため、良好な二次再結晶方位を維
持するために仕上げ焼鈍温度はαγ変態点以下で行う。
二次再結晶完了後の純化焼鈍は水素雰囲気中で実施す
る。Next, decarburization annealing is performed in an atmosphere such as a wet hydrogen atmosphere. Next, an annealing separator is applied and finish annealing is performed, and secondary recrystallization and subsequent purification are performed. Since the steel of the present invention has an αγ transformation, the finish annealing temperature is set to be lower than the αγ transformation point in order to maintain a good secondary recrystallization orientation.
The purification annealing after the completion of the secondary recrystallization is performed in a hydrogen atmosphere.
【0035】[0035]
[実施例1]表2の成分を含有し、残部Feおよび不可
避的不純物からなるスラブを加熱後、粗圧延機により7
0mm厚のシートバーとした。その後、このシートバーを
仕上圧延機により2.50mmの厚みの熱延板とした。Example 1 After heating a slab containing the components shown in Table 2 and the balance of Fe and unavoidable impurities, the slab was heated by a roughing mill to obtain a slab.
The sheet bar had a thickness of 0 mm. Thereafter, the sheet bar was formed into a hot-rolled sheet having a thickness of 2.50 mm by a finishing mill.
【0036】[0036]
【表2】 [Table 2]
【0037】その際、仕上げ熱延中の歪み速度の変動を
抑制するために、粗圧延後のシートバーを先行するシー
トバーに接合し、連続して仕上げ熱延を行った。中間の
シートバーの仕上熱間圧延最終スタンドの最大歪速度を
360s-1とし、かつ、圧延時の最終スタンドの歪み速
度が最大歪速度の80%を下回らないように仕上圧延を
行った。パススケジュールは圧延中一定とし、熱延最終
スタンドの圧下率は20%とした。歪速度が本発明の範
囲内に入るように、圧延速度を制御して仕上熱間圧延を
行った。At that time, in order to suppress the fluctuation of the strain rate during the finishing hot rolling, the sheet bar after the rough rolling was joined to the preceding sheet bar, and the finishing hot rolling was continuously performed. Finish rolling was performed so that the maximum strain rate of the final hot rolling final stand of the intermediate sheet bar was 360 s -1 and the distortion rate of the final stand during rolling did not fall below 80% of the maximum strain rate. The pass schedule was constant during rolling, and the rolling reduction of the final hot rolling stand was 20%. Finish hot rolling was performed while controlling the rolling speed so that the strain rate was within the range of the present invention.
【0038】比較材は粗圧延後のシートバーを単独で仕
上げ熱延に供した。この際、パススケジュールは圧延中
一定としたが、シートバーの咬み込みを安定させるた
め、仕上圧延開始時には最終スタンドの歪速度が234
s-1とし、その後加速して定常状態では360s-1で仕
上げ熱延を行い、シートバー最後端部分の歪速度は28
1s-1とした。As a comparative material, the sheet bar after the rough rolling was subjected to finishing hot rolling alone. At this time, the pass schedule was constant during the rolling, but the strain rate of the final stand was 234 at the start of the finish rolling to stabilize the bite of the sheet bar.
and s -1, then accelerated to perform finish hot rolled at 360s -1 in the steady state, the strain rate of the sheet bar rearmost end portion 28
It was set to 1 s -1 .
【0039】得られた熱延板に825℃2分の熱延板焼
鈍を施し、その後酸洗し冷延率84.0%の圧延により
0.40mmまで冷延し、次いで830℃5分の脱炭焼鈍
を湿水素雰囲気中で実施した。その後890℃×10時
間の仕上焼鈍を行った。The obtained hot-rolled sheet was subjected to hot-rolled sheet annealing at 825 ° C. for 2 minutes, then pickled, cold rolled to 0.40 mm by rolling at a cold rolling rate of 84.0%, and then at 830 ° C. for 5 minutes. The decarburization annealing was performed in a wet hydrogen atmosphere. Thereafter, finish annealing at 890 ° C. × 10 hours was performed.
【0040】エプスタイン試料は一本のシートバーの先
端部にあたる製品コイルの端部から100mの場所で採
取したものをT試料、製品コイル長手方向中心部で測定
したものをM試料、熱延終端側から100mの場所で採
取したものをB試料とし、本発明例では中間のシートバ
ーより、比較例では1本のシートバーの各部より採取し
た。切り出したエプスタイン試料に歪取り焼鈍を施した
後、磁界強度10000A/mでの磁束密度の値B100
を測定した。The Epstein sample was a T sample taken at a location 100 m from the end of the product coil corresponding to the tip of one sheet bar, an M sample measured at the center of the product coil in the longitudinal direction, and a hot rolled end side. A sample taken at a distance of 100 m from the sample was taken as a B sample, which was sampled from an intermediate sheet bar in the example of the present invention and from each part of one sheet bar in the comparative example. After performing the strain relief annealing on the cut out Epstein sample, the value of the magnetic flux density at a magnetic field intensity of 10,000 A / m B100
Was measured.
【0041】各試料の磁束密度測定結果と、試料採取位
置での熱延最終スタンドの歪み速度の最大値に対する比
を併せて表3に示す。表3より、仕上熱延時の歪み速度
の変動を抑制した事により、コイル長手方向の磁気特性
の変動の少ない方向性電磁鋼板を得る事が可能であるこ
とがわかる。Table 3 shows the results of measuring the magnetic flux density of each sample and the ratio of the strain rate of the final stand at the sample collection position to the maximum value of the strain rate. From Table 3, it can be seen that by suppressing the variation in the strain rate during hot rolling, it is possible to obtain a grain-oriented electrical steel sheet with little variation in the magnetic properties in the coil longitudinal direction.
【0042】[0042]
【表3】 [Table 3]
【0043】[実施例2]表4の成分を含有し、残部F
eおよび不可避的不純物からなるスラブを加熱後、粗圧
延機により70mm厚のシートバーとした。その後、この
シートバーを仕上圧延機により2.50mmの厚みの熱延
板とした。本実施例では本発明例、比較例とも単独のシ
ートバーで仕上圧延を行い、シートバーの接合による連
続仕上げ熱延は実施しなかった。Example 2 The components shown in Table 4 were contained and the balance F
After heating the slab consisting of e and inevitable impurities, a 70 mm thick sheet bar was formed by a rough rolling mill. Thereafter, the sheet bar was formed into a hot-rolled sheet having a thickness of 2.50 mm by a finishing mill. In this example, finish rolling was performed using a single sheet bar in both the present invention example and the comparative example, and continuous finishing hot rolling by joining the sheet bars was not performed.
【0044】[0044]
【表4】 [Table 4]
【0045】その際、本発明例として仕上げ熱延中の歪
み速度の変動を、式(1)に従って抑制しながらシート
バーの仕上げ熱延を行った。仕上げ熱延の最終スタンド
での最大歪速度は375s-1とした。パススケジュール
は圧延中一定とした。At this time, as an example of the present invention, the sheet bar was subjected to the finish hot rolling while suppressing the fluctuation of the strain rate during the finish hot rolling according to the formula (1). The maximum strain rate at the final stand of the finish hot rolling was 375 s -1 . The pass schedule was constant during rolling.
【0046】比較材は本発明例とパススケジュールを同
一とし、かつ仕上げ熱延中一定としたが、シートバーの
咬み込みを安定させるため、仕上圧延開始時には最終ス
タンドの歪速度を255s-1とし、その後加速して定常
状態では375s-1で仕上げ熱延を行い、シートバー最
後端部分の歪速度は296s-1とした。熱延仕上げ温度
はいずれも900℃とし、水冷して550℃で巻き取っ
た。In the comparative material, the pass schedule was the same as that of the example of the present invention, and was constant during the hot rolling. However, in order to stabilize the bite of the sheet bar, the strain rate of the final stand was set to 255 s -1 at the start of the finish rolling. performs finishing hot rolling at 375S -1 in a steady state and then accelerated, the strain rate of the sheet bar rearmost portion was 296s -1. The hot-rolling finishing temperature was 900 ° C., water-cooled and wound at 550 ° C.
【0047】得られた熱延板に825℃2分の熱延板焼
鈍を施し、その後酸洗し冷延率84.0%の圧延により
0.40mmまで冷延し、次いで830℃5分の脱炭焼鈍
を湿水素雰囲気中で実施した。その後890℃×10時
間の仕上焼鈍を行った。The obtained hot-rolled sheet was subjected to hot-rolled sheet annealing at 825 ° C. for 2 minutes, then pickled, cold-rolled to 0.40 mm by rolling at a cold rolling rate of 84.0%, and then at 830 ° C. for 5 minutes. The decarburization annealing was performed in a wet hydrogen atmosphere. Thereafter, finish annealing at 890 ° C. × 10 hours was performed.
【0048】これからエプスタイン試料を切り出して磁
気特性を測定した。エプスタイン試料は一本のシートバ
ーの先端部にあたるコイルの端部から100mの場所で
採取したものをT試料、コイル長手方向中心部で測定し
たものをM試料、熱延終端側から100mの場所で採取
したものをB試料とし、本発明例では中間のシートバー
より、比較例では1本のシートバーの各部より採取し
た。From this, an Epstein sample was cut out and its magnetic properties were measured. The Epstein sample was a T sample taken at a position 100 m from the end of the coil corresponding to the tip of one sheet bar, an M sample measured at the center of the coil in the longitudinal direction, and a M sample at a position 100 m from the end of hot rolling. The sample was taken as a B sample, which was sampled from an intermediate sheet bar in the present invention, and from each part of one sheet bar in the comparative example.
【0049】各試料の磁束密度測定結果と、試料採取位
置での熱延最終スタンドの歪速度の最大値に対する比を
併せて表5に示す。この様に仕上熱延時の歪み速度の変
動を抑制したことにより、コイル長手方向の磁気特性の
変動の少ない方向性電磁鋼板を得ることが可能である。Table 5 shows the results of measuring the magnetic flux density of each sample and the ratio of the strain rate to the maximum value of the strain at the final stand at the sample collection position. As described above, by suppressing the variation in the strain rate during the hot rolling in the finish, it is possible to obtain a grain-oriented electrical steel sheet with little variation in the magnetic properties in the coil longitudinal direction.
【0050】[0050]
【表5】 [Table 5]
【0051】[実施例3]表6の成分を含有し、残部F
eおよび不可避的不純物からなるスラブを加熱後、粗圧
延機により70mm厚のシートバーとした。その後、この
シートバーを仕上圧延機により3.00mmの厚みの熱延
板とした。Example 3 The components shown in Table 6 were contained and the balance F
After heating the slab consisting of e and inevitable impurities, a 70 mm thick sheet bar was formed by a rough rolling mill. Thereafter, the sheet bar was formed into a hot-rolled sheet having a thickness of 3.00 mm by a finishing mill.
【0052】[0052]
【表6】 [Table 6]
【0053】その際、仕上げ熱延中の歪み速度の変動を
抑制するために、粗圧延後のシートバーを先行するシー
トバーに接合し、連続して仕上げ熱延を行った。中間の
シートバーの最大歪速度は仕上げ熱延最終スタンドで3
80s-1とし、かつ、式(2)を満たすように圧延時の
最終スタンドの歪み速度が最大歪速度の80%を下回ら
ないように仕上圧延を行った。パススケジュールは圧延
中一定とし、熱延最終スタンドで圧下率20%で圧延を
行った。At that time, in order to suppress the variation of the strain rate during the finishing hot rolling, the sheet bar after the rough rolling was joined to the preceding sheet bar, and the finishing hot rolling was continuously performed. The maximum strain rate of the intermediate sheet bar is 3 at the final hot-rolled final stand.
Finish rolling was performed so that the strain rate of the final stand at the time of rolling did not fall below 80% of the maximum strain rate so as to be 80 s -1 and satisfy the formula (2). The pass schedule was constant during rolling, and rolling was performed at a final rolling stand at a rolling reduction of 20%.
【0054】得られた熱延板に825℃2分の熱延板焼
鈍を施し、その後酸洗し一回の冷延を施し、最終板厚に
し、次いで脱炭焼鈍を湿水素雰囲気中で実施した。その
後890℃×10時間の仕上焼鈍を行った。The obtained hot-rolled sheet is subjected to hot-rolled sheet annealing at 825 ° C. for 2 minutes, followed by pickling and cold-rolling once to obtain a final sheet thickness, and then decarburizing annealing in a wet hydrogen atmosphere. did. Thereafter, finish annealing at 890 ° C. × 10 hours was performed.
【0055】エプスタイン試料は連続して圧延した中間
の一本のシートバーの製品コイル長手方向中心部で採取
し、切り出したエプスタイン試料に歪取り焼鈍を施した
後、磁界強度10000A/mでの磁束密度の値B100
を測定した。The Epstein sample was sampled at the center of the product coil in the longitudinal direction of a single sheet bar in the middle of continuous rolling, subjected to strain relief annealing on the cut Epstein sample, and then subjected to a magnetic flux at a magnetic field strength of 10,000 A / m. Density value B100
Was measured.
【0056】最終冷延率と仕上焼鈍後の磁気特性との関
係を表7に示す。表7より、最終冷延率が75%超の範
囲において高磁場での磁束密度B100 の値が2.10T
以上と高くなっていることがわかる。Table 7 shows the relationship between the final cold rolling ratio and the magnetic properties after the finish annealing. According to Table 7, the value of the magnetic flux density B100 in a high magnetic field is 2.10 T in the range where the final cold rolling reduction exceeds 75%.
It turns out that it is high above.
【0057】[0057]
【表7】 [Table 7]
【0058】[実施例4]表8の成分を含有し、残部F
eおよび不可避的不純物からなるスラブを加熱後、粗圧
延機により60mm厚のシートバーとした。その後、この
シートバーを仕上圧延機により1.80mmの厚みの熱延
板とした。Example 4 The components shown in Table 8 were contained and the balance F
After heating the slab consisting of e and the unavoidable impurities, a sheet bar having a thickness of 60 mm was formed by a rough rolling mill. Thereafter, the sheet bar was formed into a hot rolled sheet having a thickness of 1.80 mm by a finish rolling mill.
【0059】[0059]
【表8】 [Table 8]
【0060】その際、仕上げ熱延中の歪み速度の変動を
抑制するために、粗圧延後のシートバーを先行するシー
トバーに接合し、連続して仕上げ熱延を行った。中間の
シートバーの最大歪速度は仕上げ熱延最終スタンドで3
80s-1とし、かつ、式(2)を満たすように圧延時の
最終スタンドの歪み速度が最大歪速度の80%を下回ら
ないように仕上圧延を行った。パススケジュールは圧延
中一定とし、熱延最終スタンドで圧下率20%で圧延を
行った。At that time, in order to suppress the fluctuation of the strain rate during the finishing hot rolling, the sheet bar after the rough rolling was joined to the preceding sheet bar, and the finishing hot rolling was continuously performed. The maximum strain rate of the intermediate sheet bar is 3 at the final hot-rolled final stand.
Finish rolling was performed so that the strain rate of the final stand at the time of rolling did not fall below 80% of the maximum strain rate so as to be 80 s -1 and satisfy the formula (2). The pass schedule was constant during rolling, and rolling was performed at a final rolling stand at a rolling reduction of 20%.
【0061】得られた熱延板に825℃2分の熱延板焼
鈍を施し、その後酸洗し一回の冷延を施し、最終板厚に
し、次いで脱炭焼鈍を湿水素雰囲気中で実施した。その
後890℃×10時間の仕上焼鈍を行った。The obtained hot-rolled sheet is subjected to hot-rolled sheet annealing at 825 ° C. for 2 minutes, then pickled, cold-rolled once to obtain a final sheet thickness, and then decarburized annealing is performed in a wet hydrogen atmosphere. did. Thereafter, finish annealing at 890 ° C. × 10 hours was performed.
【0062】エプスタイン試料は連続して圧延した中間
の一本のシートバーの製品コイル長手方向中心部で採取
し、切り出したエプスタイン試料に歪取り焼鈍を施した
後、磁界強度10000A/mでの磁束密度の値B100
を測定した。The Epstein sample was sampled at the center of the product coil in the longitudinal direction of the product coil of a single sheet bar that was continuously rolled. After the cut Epstein sample was subjected to strain relief annealing, the magnetic flux at a magnetic field strength of 10,000 A / m was obtained. Density value B100
Was measured.
【0063】最終冷延率と仕上焼鈍後の磁気特性との関
係を表9に示す。表9より、最終冷延率が75%超の範
囲において高磁場での磁束密度B100 の値が2.10T
以上と高くなっていることがわかる。Table 9 shows the relationship between the final cold rolling ratio and the magnetic properties after the finish annealing. According to Table 9, the value of the magnetic flux density B100 at a high magnetic field was 2.10 T when the final cold rolling reduction was over 75%.
It turns out that it is high above.
【0064】[0064]
【表9】 [Table 9]
【0065】[0065]
【発明の効果】このように本発明によれば、コイル長手
方向の磁束密度が安定して極めて高い方向性電磁鋼板を
製造することが可能である。As described above, according to the present invention, it is possible to manufacture a grain-oriented electrical steel sheet in which the magnetic flux density in the longitudinal direction of the coil is stable and extremely high.
【図1】仕上熱延時の最終スタンドにおける最大歪み速
度に対するそれぞれの圧延位置での歪み速度の比と、製
品の磁束密度の関係を示すものである。FIG. 1 shows the relationship between the ratio of the strain rate at each rolling position to the maximum strain rate at the final stand at the time of finishing hot rolling and the magnetic flux density of a product.
Claims (2)
ブを、加熱、熱延した後、1回以上の冷延を行って最終
板厚とし、脱炭焼鈍後、Ac1 変態点以下の温度域で最
終焼鈍する方向性電磁鋼板の製造法であって、仕上熱間
圧延を、下記(1)式を満足する条件で行うとともに、
最終冷延率を75%超とすることを特徴とするコイル長
手方向の磁束密度が安定して極めて高い方向性電磁鋼板
の製造方法。 【数1】 1. The composition according to claim 1, comprising 0.010% ≦ C ≦ 0.14%, 0.010% ≦ acid-soluble Al ≦ 0.050%, 0.0030% ≦ N ≦ 0.0150% by weight. the slab and the balance Fe and unavoidable impurities, heating, after hot rolled, by performing the above cold-rolled once to a final thickness, after the decarburization annealing, the direction of final annealing at Ac 1 transformation point of the temperature range A hot-rolling finish under conditions satisfying the following formula (1):
A method for producing a grain-oriented electrical steel sheet having a stable and extremely high magnetic flux density in a longitudinal direction of a coil, wherein the final cold-rolling rate is more than 75%. (Equation 1)
の先端部を先行するシートバーの後端部と接合して複数
のシートバーを一体とし、この一体とした複数のシート
バーを連続的に仕上熱延に供することを特徴とする請求
項1記載のコイル長手方向の磁束密度が安定して極めて
高い方向性電磁鋼板の製造方法。2. A front end of a sheet bar obtained by roughly rolling a slab is joined to a rear end of a preceding sheet bar to integrate a plurality of sheet bars, and the integrated plurality of sheet bars are continuously connected. 2. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the magnetic flux density is stabilized and extremely high in the longitudinal direction of the coil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20754697A JPH1150152A (en) | 1997-08-01 | 1997-08-01 | Manufacturing method of grain-oriented electrical steel sheet with stable and extremely high magnetic flux density in the longitudinal direction of the coil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20754697A JPH1150152A (en) | 1997-08-01 | 1997-08-01 | Manufacturing method of grain-oriented electrical steel sheet with stable and extremely high magnetic flux density in the longitudinal direction of the coil |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1150152A true JPH1150152A (en) | 1999-02-23 |
Family
ID=16541531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20754697A Withdrawn JPH1150152A (en) | 1997-08-01 | 1997-08-01 | Manufacturing method of grain-oriented electrical steel sheet with stable and extremely high magnetic flux density in the longitudinal direction of the coil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1150152A (en) |
-
1997
- 1997-08-01 JP JP20754697A patent/JPH1150152A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014013615A1 (en) | Process for producing grain-oriented electrical steel sheet | |
JPS6250529B2 (en) | ||
JPS6160896B2 (en) | ||
JP2000017334A (en) | Method for producing grain-oriented and non-oriented electrical steel sheets having low iron loss and high magnetic flux density and continuous annealing equipment | |
JPH0567683B2 (en) | ||
WO1999046416A1 (en) | Unidirectional magnetic steel sheet and method of its manufacture | |
JP3392664B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JP4317305B2 (en) | Cold rolling method for obtaining a unidirectional electrical steel sheet with small fluctuation in magnetic properties in the cold rolling direction | |
JPH10273726A (en) | Manufacturing method of grain-oriented electrical steel sheet with stable magnetic properties in the longitudinal direction of coil | |
JPH1150153A (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely high magnetic flux density | |
JPH10306318A (en) | Manufacturing method of grain-oriented electrical steel sheet with stable and extremely high magnetic flux density in the longitudinal direction of the coil | |
JPH1150152A (en) | Manufacturing method of grain-oriented electrical steel sheet with stable and extremely high magnetic flux density in the longitudinal direction of the coil | |
JP7578188B2 (en) | Aging treatment method and manufacturing method of grain-oriented electrical steel sheet | |
JP2784661B2 (en) | Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet | |
JPH0351770B2 (en) | ||
JPH1161357A (en) | Electromagnetic steel hot rolled sheet excellent in magnetic properties in the rolling direction and method for producing the same | |
JP4191806B2 (en) | Method for producing non-oriented electrical steel sheet | |
JPH04341518A (en) | Production of extra thin grain-oriented silicon steel sheet having high magnetic flux density and reduced in iron loss | |
JP3324044B2 (en) | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet | |
JPH10306319A (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely high magnetic flux density | |
JP3369371B2 (en) | Manufacturing method of high magnetic flux density unidirectional electrical steel sheet | |
JPH10280039A (en) | Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density and low iron loss | |
JPH0798976B2 (en) | Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss | |
JP3348827B2 (en) | Method for manufacturing non-oriented electrical steel sheet with high magnetic flux density and low iron loss | |
JP2000096145A (en) | Manufacturing method of non-oriented electrical steel sheet with uniform magnetic properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20041005 |