[go: up one dir, main page]

JPH1147605A - Catalyst and method for purifying exhaust gas - Google Patents

Catalyst and method for purifying exhaust gas

Info

Publication number
JPH1147605A
JPH1147605A JP9222976A JP22297697A JPH1147605A JP H1147605 A JPH1147605 A JP H1147605A JP 9222976 A JP9222976 A JP 9222976A JP 22297697 A JP22297697 A JP 22297697A JP H1147605 A JPH1147605 A JP H1147605A
Authority
JP
Japan
Prior art keywords
catalyst
zeolite
exhaust gas
honeycomb
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9222976A
Other languages
Japanese (ja)
Inventor
Hiroshi Akama
弘 赤間
Masanori Kamikubo
真紀 上久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP9222976A priority Critical patent/JPH1147605A/en
Publication of JPH1147605A publication Critical patent/JPH1147605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for purifying exhaust gas, which exhibits excellent purifying activity against NOx under such exhaust gas conditions that temp. and HC/NOx ratio are relatively low by incorporating a zeolite catalyst containing platinum and an alkali metal, etc., with a zeolite catalyst containing copper and a catalyst containing a noble metal in a specific arrangement. SOLUTION: The exhaust gas which is obtained from the internal combustion engine operated at such lean area that the ratio of air to fuel is above 14.7:1, is purified by using a multi-stage purifying catalysts which comprises at least two catalysts and installed in series with such arrangement that a honeycomb monolithic catalyst A coated with β-type zeolite containing Pt-component and a component of alkali metal, etc., is installed at the upstream side in the exhaust line and a honeycomb monolithic catalyst B containing Pt and/or Pd is installed at the downstream side. A layer comprising β-zeolite and/or MFI-zeolite containing Cu-component may be laminated on the β-zeolite layer of the catalyst A. The purifying conditions during the lean-burn engine operation are such that the oxygen concentration is kept above 5% and HC/NOx ratio is adjusted to at most 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リーン領域で運転
される内燃機関、特に自動車用エンジンからの排ガスを
浄化する触媒及び方法に係り、更に詳細には、高浄化効
率を実現する直列多段式型排ガス浄化用触媒及びこれを
用いた排ガス浄化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst and a method for purifying exhaust gas from an internal combustion engine operated in a lean region, in particular, an automobile engine, and more particularly, to a series multistage type which realizes high purification efficiency. The present invention relates to an exhaust gas purifying catalyst and an exhaust gas purifying method using the same.

【0002】[0002]

【従来の技術】従来、自動車エンジンの排ガスを浄化す
るための触媒としては、3元触媒が幅広く用いられてい
る。かかる3元触媒では、Pt、Pd及びRh等の貴金
属成分及びセリア(CeO2)成分をはじめとする各種
成分を含有したアルミナを主成分とする触媒が主流であ
り、エンジンが理論空燃比の近傍で運転された場合の排
ガスに対して高い浄化効率を示す。
2. Description of the Related Art Conventionally, three-way catalysts have been widely used as catalysts for purifying exhaust gas from automobile engines. In such a three-way catalyst, a catalyst mainly containing alumina containing various components such as a noble metal component such as Pt, Pd and Rh and a ceria (CeO 2 ) component is mainly used, and an engine having a vicinity of the stoichiometric air-fuel ratio is used. It shows high purification efficiency for exhaust gas when operated at.

【0003】一方、近年、燃費向上、二酸化炭素の排出
量削減の観点から、理論空燃比より高い空燃比でも運転
するリーン・バーンエンジンが注目されている。このよ
うなエンジンの排ガス(以下、「リーン排ガス」とい
う。)は、理論空燃比近傍でのみ運転する従来エンジン
の排ガス(以下、「ストイキ排ガス」という。)に比較
して、酸素の含有率が高く、上記3元触媒では窒素酸化
物(NOx)浄化が不十分となる。そこで、幅広い空燃
比で運転するリーン・バーンエンジンに適用可能な新触
媒が望まれていた。
[0003] On the other hand, in recent years, from the viewpoint of improving fuel efficiency and reducing carbon dioxide emissions, a lean burn engine that operates even at an air-fuel ratio higher than the stoichiometric air-fuel ratio has attracted attention. The exhaust gas of such an engine (hereinafter, referred to as "lean exhaust gas") has an oxygen content lower than that of a conventional engine that operates only near the stoichiometric air-fuel ratio (hereinafter, referred to as "stoichiometric exhaust gas"). Highly, the three-way catalyst is insufficient in purifying nitrogen oxides (NOx). Therefore, a new catalyst applicable to a lean burn engine operating at a wide air-fuel ratio has been desired.

【0004】かかる状況において、各種の金属成分をY
型、L型、モルデナイト、MFI等のゼオライトに担持
したゼオライト系触媒は、リーン排ガス中において炭化
水素類(HC)の共存下でNOxを比較的効率良く浄化
できる能力を有することが知られている。この金属成分
としては、銅(Cu)、コバルト(Co)、銀(A
g)、ニッケル(Ni)、鉄(Fe)等の遷移金属成分
が用いられ、貴金属成分では白金(Pt)も有効である
ことが認められているが、中でもCuを担持したCu−
ゼオライト系触媒が、高流速ガス条件下でも比較的優れ
たNOx浄化能を示し、自動車のような小型移動発生源
や定置型の自家発電用エンジン等の排ガス浄化への適用
に期待が掛けられている。
Under such circumstances, various metal components are converted to Y
It is known that zeolite-based catalysts supported on zeolites such as L-type, L-type, mordenite, and MFI have the ability to purify NOx relatively efficiently in lean exhaust gas in the presence of hydrocarbons (HC). . The metal component includes copper (Cu), cobalt (Co), silver (A
g), transition metal components such as nickel (Ni) and iron (Fe) are used, and platinum (Pt) has been recognized to be effective as a noble metal component.
Zeolite-based catalysts show relatively excellent NOx purification performance even under high flow gas conditions, and are expected to be applied to exhaust gas purification of small mobile sources such as automobiles and stationary type private power generation engines. I have.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
ような金属成分を担持したゼオライト系触媒には次の問
題点があるため、リーン条件で運転される自動車排ガス
浄化用触媒としては実用に至っていない。
However, zeolite-based catalysts supporting the above-mentioned metal components have the following problems, and have not been put to practical use as catalysts for purifying automobile exhaust gas operated under lean conditions. .

【0006】まず、NOxを比較的効率良く浄化できる
温度範囲が狭く、特に、150℃〜300℃の比較的低
い温度領域では十分なNOx浄化能力が得られない。こ
の問題点に対しては、例えば、Cu−ゼオライト系触媒
の下層に貴金属触媒層を設けることにより、貴金属触媒
層での反応熱を利用し、より低温から上層のCu−ゼオ
ライト系触媒を作動させることが既に提案されている
(特開平1−127044号公報、特開平5−6888
8号公報)。しかし、この場合は、下層の貴金属触媒層
における酸化反応熱のために、劣化が大きくなるという
課題が生ずる。更に、貴金属触媒層でHC類を酸化消費
するので、NOx浄化率の低下を招く。この影響は、C
u−ゼオライト系触媒層に貴金属成分を共存させる場合
(特開平1−31074号公報、特開平5−16893
9号公報)には特に大きい。
First, the temperature range in which NOx can be purified relatively efficiently is narrow, and in particular, a sufficient NOx purification capability cannot be obtained in a relatively low temperature range of 150 ° C. to 300 ° C. To solve this problem, for example, by providing a noble metal catalyst layer below the Cu-zeolite catalyst, the reaction heat in the noble metal catalyst layer is used to operate the upper Cu-zeolite catalyst from a lower temperature. Have already been proposed (Japanese Patent Laid-Open No. 1-127044, Japanese Patent Laid-Open No. 5-6888).
No. 8). However, in this case, there is a problem that deterioration is increased due to heat of oxidation reaction in the lower noble metal catalyst layer. Furthermore, since HCs are oxidized and consumed in the noble metal catalyst layer, the NOx purification rate is reduced. The effect is C
When a noble metal component is allowed to coexist in the u-zeolite catalyst layer (JP-A-1-31074, JP-A-5-16893)
No. 9).

【0007】また、Pt−ゼオライト系触媒を用いれ
ば、200〜250℃の比較的低温領域でNOx転化反
応を実現できるが、N2への転化に加えて、N2Oへの転
化も無視できず、環境上好ましくないので、単独では使
用できない状況にある。更には、Cu−ゼオライト系触
媒、あるいはPt−ゼオライト系触媒のいずれにおいて
も、HC/NOx比が低い排ガス条件では、NOx浄化
能が不十分となる。そこで、還元剤となるHC類、アル
コール類等を2次的に供給する必要性が生ずる。この場
合、還元剤のタンクを別に車載するか、燃料を直接還元
剤に利用することが考えられるが、いずれの場合でもエ
ンジンの燃費が犠牲になるという課題がある。
When a Pt-zeolite catalyst is used, a NOx conversion reaction can be realized in a relatively low temperature range of 200 to 250 ° C., but in addition to conversion to N 2 , conversion to N 2 O can be neglected. However, it is not environmentally friendly and cannot be used alone. Furthermore, in either the Cu-zeolite-based catalyst or the Pt-zeolite-based catalyst, the NOx purification ability becomes insufficient under the exhaust gas condition where the HC / NOx ratio is low. Therefore, it becomes necessary to supply HCs, alcohols, and the like as reducing agents in a secondary manner. In this case, it is conceivable to separately mount the reducing agent tank on the vehicle or to directly use the fuel as the reducing agent. However, in any case, there is a problem that the fuel efficiency of the engine is sacrificed.

【0008】本発明は、このような従来技術の有する課
題に鑑みてなされたものであり、リーンバーンエンジン
に好適に適用でき、特に低温度領域及び低HC/NOx
比の排ガス条件下であっても優れたNOx浄化能力を発
揮する排ガス浄化用触媒及び排ガス浄化方法を提供する
ことを目的とする。
The present invention has been made in view of such problems of the prior art, and can be suitably applied to a lean burn engine, particularly in a low temperature range and low HC / NOx.
It is an object of the present invention to provide an exhaust gas purifying catalyst and an exhaust gas purifying method that exhibit excellent NOx purifying performance even under specific exhaust gas conditions.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討を重ねた結果、白金とアルカリ金
属等を含むゼオライト系触媒、銅を含むゼオライト系触
媒及び貴金属成分を含む触媒を特定の配置構成で組み合
わせることにより、極めて優れたNOx浄化能を発揮さ
せ、上記課題が解決できることを見出し、本発明を完成
するに至った。
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a zeolite catalyst containing platinum and an alkali metal, a zeolite catalyst containing copper, and a noble metal component are contained. By combining the catalysts in a specific arrangement, it has been found that extremely excellent NOx purifying ability can be exhibited, and the above-mentioned problems can be solved. Thus, the present invention has been completed.

【0010】即ち、本発明の排ガス浄化用触媒は、空燃
比が14.7を超えるリーン領域で運転される内燃機関
の排気系に2個以上の触媒を直列配置して成る多段式排
ガス浄化用触媒であって、上記排気系の上流側に、Pt
成分を含み、且つアルカリ金属、アルカリ土類金属及び
希土類金属から成る群より選ばれた少なくとも1種の成
分を含むβゼオライトを塗布したハニカム状モノリス触
媒Aを配置し、その下流側に、Pt及び/又はPdを含
むハニカム状モノリス触媒Bを設置し、上記触媒Aにお
けるβゼオライト層の上層に、Cu成分を含むβゼオラ
イト及び/又はMFIゼオライトを含む層を設けて成る
触媒A’を形成して成ることを特徴とする。
That is, the exhaust gas purifying catalyst of the present invention is a multistage exhaust gas purifying catalyst comprising two or more catalysts arranged in series in an exhaust system of an internal combustion engine operated in a lean region where the air-fuel ratio exceeds 14.7. A Pt catalyst upstream of the exhaust system
Component, and a honeycomb-shaped monolith catalyst A coated with β zeolite containing at least one component selected from the group consisting of alkali metals, alkaline earth metals and rare earth metals, is disposed, and on the downstream side thereof, Pt and And / or a honeycomb-shaped monolith catalyst B containing Pd is provided, and a catalyst A ′ is formed by providing a layer containing a β zeolite containing a Cu component and / or an MFI zeolite on an upper layer of the β zeolite layer in the catalyst A. It is characterized by comprising.

【0011】また、本発明の排ガス浄化用触媒において
は、上記Cuを含むβゼオライト及び/又はMFIゼオ
ライトを含有する層をハニカム状モノリス担体に設けて
上記触媒Aとは別体の触媒A”を形成し、この触媒A”
を上記触媒Aと触媒Bとの間に配置して直列配置式3段
触媒の構成とすることも可能である。
In the exhaust gas purifying catalyst of the present invention, a layer containing Cu-containing β zeolite and / or MFI zeolite is provided on a honeycomb-shaped monolithic carrier, and a catalyst A ″ separate from the catalyst A is provided. Forming this catalyst A "
May be disposed between the catalyst A and the catalyst B to form a three-stage catalyst arranged in series.

【0012】更に、本発明の排ガス浄化方法は、上述の
排ガス浄化用触媒を用いた排ガス浄化方法であって、上
記直列配置式多段触媒に、酸素濃度5%以上、HC/N
Ox比10以下の条件下で排ガスを流通、接触させるこ
とを特徴とする。
Further, an exhaust gas purifying method of the present invention is an exhaust gas purifying method using the above-mentioned exhaust gas purifying catalyst, wherein the series-arranged multi-stage catalyst has an oxygen concentration of 5% or more and HC / N
It is characterized in that exhaust gas is circulated and brought into contact under conditions of an Ox ratio of 10 or less.

【0013】[0013]

【作用】本発明の触媒の代表例においては、白金とアル
カリ金属等、更には銅を含むゼオライト系触媒(触媒
A’)と、貴金属を含むゼオライト系触媒(触媒B)と
を排気系の上流から順次直列に配置した。あるいはま
た、白金とアルカリ金属等を含むゼオライト系触媒(触
媒A)と銅を含むゼオライト系触媒(触媒A”)、及び
貴金属を含む触媒(触媒B)とを排気系の上流側から順
次直列に配置した。
In a typical example of the catalyst of the present invention, a zeolite-based catalyst containing platinum and an alkali metal or the like and further containing copper (catalyst A ') and a zeolite-based catalyst containing a noble metal (catalyst B) are arranged upstream of the exhaust system. And arranged in series. Alternatively, a zeolite catalyst containing platinum and an alkali metal (catalyst A), a zeolite catalyst containing copper (catalyst A ″), and a catalyst containing a noble metal (catalyst B) are sequentially connected in series from the upstream side of the exhaust system. Placed.

【0014】ここで、触媒A又は触媒A’における白金
とアルカリ金属等は、銅を含むゼオライト系触媒との組
み合わせによりNOxとHC類を濃縮し、NOx−HC
反応の頻度を高める機能を有する。更に、白金とアルカ
リ金属等との組み合わせは、低温からのNOx吸着も実
現するものであり、この場合、アルカリ金属等の成分
は、Ptの酸化能を抑制し、且つNOx還元浄化に必要
なNOxの濃縮により上記反応を促進する役割も担う。
Here, platinum and alkali metal in the catalyst A or the catalyst A 'are used to concentrate NOx and HCs in combination with a zeolite-based catalyst containing copper, and to form NOx-HC
Has the function of increasing the frequency of reaction. Further, the combination of platinum and an alkali metal or the like also realizes NOx adsorption from a low temperature. In this case, the component such as the alkali metal suppresses the oxidizing ability of Pt and NOx required for NOx reduction purification. It also plays a role in accelerating the above-mentioned reaction by concentrating the compound.

【0015】上述のように、本発明の特徴の1つは、極
めて強い吸着力を有するβゼオライトと白金及びアルカ
リ金属等を組み合わせたことにあり、この組み合わせに
より、特異的に高い浄化効果を実現するものである。ま
た、触媒Bは、触媒Aと触媒A’において未処理のHC
類及びCOを酸化浄化する機能を有する。
As described above, one of the features of the present invention resides in the combination of β zeolite, which has an extremely strong adsorptive power, with platinum, an alkali metal, etc., and realizes a specifically high purification effect by this combination. Is what you do. Further, the catalyst B is composed of untreated HC in the catalyst A and the catalyst A '
It has the function of oxidizing and purifying substances and CO.

【0016】[0016]

【発明の実施の形態】以下、本発明の直列配置式多段触
媒について詳細に説明する。まず、各種成分・要素につ
き説明する。上述のように、本触媒は、A/F=14.
7を超えるリーン領域で運転されるエンジン排気に適用
できる触媒であって、白金を含み、アルカリ金属、アル
カリ土類金属及び希土類金属から成る群より選ばれた少
なくとも1種の成分を含むβゼオライトを塗布し、更に
その上層に銅を含むβゼオライト及び/又はMFIゼオ
ライトを含有する層を設けたハニカム状モノリス触媒
A’と、白金及び/又はパラジウムを含むハニカム状モ
ノリス触媒B、又は、白金を含み、アルカリ金属、アル
カリ土類金属及び希土類金属から成る群より選ばれた少
なくとも1種の成分を含むβゼオライトを塗布したハニ
カム状モノリス触媒Aと、銅を含むβゼオライト及び/
又はMFIゼオライトを含有する層をハニカム状モノリ
ス担体に形成した触媒A”と、白金及び/又はパラジウ
ムを含むハニカム状モノリス触媒Bとを有する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the in-line multistage catalyst of the present invention will be described in detail. First, various components and elements will be described. As described above, the present catalyst has A / F = 14.
A catalyst applicable to an engine exhaust operated in a lean region of more than 7, comprising platinum and a β zeolite containing at least one component selected from the group consisting of alkali metals, alkaline earth metals and rare earth metals. A honeycomb monolith catalyst A ′ coated and further provided with a layer containing β zeolite containing copper and / or MFI zeolite as an upper layer, and a honeycomb monolith catalyst B containing platinum and / or palladium, or containing platinum Monolithic catalyst A coated with β zeolite containing at least one component selected from the group consisting of alkali metals, alkaline earth metals and rare earth metals, β zeolite containing copper and / or
Alternatively, there is provided a catalyst A ″ in which a layer containing MFI zeolite is formed on a honeycomb monolith carrier, and a honeycomb monolith catalyst B containing platinum and / or palladium.

【0017】ここで、触媒A又は触媒A’に含有させる
アルカリ金属、アルカリ土類金属及び希土類金属から成
る群より選ばれた少なくとも1種の成分としては、カル
シウム(Ca)、カリウム(K)、バリウム(Ba)、
セシウム(Cs)及びランタン(La)から成る群より
選ばれた少なくとも1種のものであり、その含有量はハ
ニカム状モノリス触媒1L当たり0.2〜0.6モルと
することが好ましい。0.2モル未満では、NOxの吸
着、濃縮効果が不十分となり、且つ白金の酸化能が強い
ため、低温活性の向上効果が得られないばかりでなく、
NOx還元能に悪影響を与えることがある。一方、0.
6モルを超えると、被覆効果により白金の特性が失わ
れ、NOxの吸着、濃縮効果が得られなくなることがあ
る。
Here, at least one component selected from the group consisting of an alkali metal, an alkaline earth metal and a rare earth metal contained in the catalyst A or the catalyst A 'is calcium (Ca), potassium (K), Barium (Ba),
It is at least one selected from the group consisting of cesium (Cs) and lanthanum (La), and its content is preferably 0.2 to 0.6 mol per liter of the honeycomb-shaped monolith catalyst. If it is less than 0.2 mol, the effect of adsorbing and concentrating NOx becomes insufficient and the oxidizing power of platinum is strong, so that not only the effect of improving the low-temperature activity is not obtained,
NOx reduction ability may be adversely affected. On the other hand, 0.
If it exceeds 6 mol, the properties of platinum may be lost due to the coating effect, and the effect of adsorbing and concentrating NOx may not be obtained.

【0018】次に、白金を含み、アルカリ金属、アルカ
リ土類金属及び希土類金属から成る群より選ばれた少な
くとも1種の成分を含むβゼオライトとしては、シリカ
/アルミナ比(SiO2/Al23モル比)が20〜1
30のものが好ましく、また、銅を担持するβゼオライ
ト及び/又はMFIゼオライトとしては、シリカ/アル
ミナ比が25〜80のものが好ましく、このようにシリ
カ/アルミナ比を制御することにより、特にNOxを効
果的に浄化することができる。
The β zeolite containing platinum and containing at least one component selected from the group consisting of alkali metals, alkaline earth metals and rare earth metals is a silica / alumina ratio (SiO 2 / Al 2 O). (3 mole ratio) 20-1
Preferably, the β-zeolite and / or MFI zeolite supporting copper has a silica / alumina ratio of 25 to 80. By controlling the silica / alumina ratio in this manner, particularly NOx Can be effectively purified.

【0019】前者の条件は、安定なゼオライト構造を保
証する上で必要であり、後者でシリカ/アルミナ比が2
5未満になると、ゼオライトの熱安定性が不十分とな
り、触媒の耐熱性や耐久性が低下することがある。逆
に、シリカ/アルミナ比が80を超えると、活性金属成
分の担持量が少なくなり、活性点が減少して所期の触媒
活性が得られなくなることがある。
The former condition is necessary to ensure a stable zeolite structure, and the latter condition is that the silica / alumina ratio is 2
If it is less than 5, the thermal stability of the zeolite will be insufficient, and the heat resistance and durability of the catalyst may decrease. Conversely, if the silica / alumina ratio exceeds 80, the amount of the active metal component carried is reduced, and the active sites are reduced, so that the desired catalytic activity may not be obtained.

【0020】なお、本発明において、上述のゼオライト
は、そのまま無処理で用いることもできるが、水熱処理
や再合成などによって結晶性を高めると、より安定化
し、耐熱性、耐久性の高い触媒が得られるので、かかる
処理を施したゼオライトを用いるのが好ましい。
In the present invention, the above-mentioned zeolite can be used without treatment. However, if the crystallinity is increased by hydrothermal treatment or resynthesis, the catalyst becomes more stable, and a catalyst having high heat resistance and high durability can be obtained. It is preferable to use a zeolite that has been subjected to such treatment because it can be obtained.

【0021】また、本発明の触媒は、多層化のためハニ
カム形状で使用する必要があり、この場合、ハニカム状
モノリス担体に、上述のゼオライト系触媒や貴金属成分
などを塗布することにより、上記触媒A、A’、A”及
びBを形成する。このハニカム担体としては、一般にコ
ージェライト質のものが広く用いられているが、これに
限定されるものではなく、金属材料から成るハニカム担
体も有効であるし、触媒成分粉末そのものをハニカム状
に成形することもできる。
Further, the catalyst of the present invention must be used in a honeycomb shape for multilayering. In this case, the above-mentioned catalyst is applied by coating the above-mentioned zeolite-based catalyst or a noble metal component on a honeycomb-shaped monolithic carrier. A, A ', A "and B are formed. As the honeycomb carrier, cordierite-based one is generally widely used, but is not limited thereto, and a honeycomb carrier made of a metal material is also effective. However, the catalyst component powder itself can be formed into a honeycomb shape.

【0022】上述のように、触媒の形状をハニカム状と
することにより、触媒と排ガスとの接触面積を大きくで
き、圧力損失も抑えられるため、振動を伴い、且つ限定
された空間内で多量の排ガスを処理することが要求され
る自動車用触媒に対しては特に有効となる。
As described above, by making the shape of the catalyst into a honeycomb shape, the contact area between the catalyst and the exhaust gas can be increased and the pressure loss can be suppressed, so that a large amount of vibration occurs in a limited space. This is particularly effective for automotive catalysts that require exhaust gas treatment.

【0023】次に、本発明の触媒の配置構成につき説明
する。本発明の触媒は、上述のように、触媒A、触媒
A’、触媒A”及び触媒Bを構成要素とするが、その配
置としては、排ガス流の上流から触媒A+触媒Bの順、
あるいはまた、触媒A+触媒A’及び触媒Bの順で直列
に並べた構成を挙げることができる。
Next, the arrangement of the catalyst of the present invention will be described. As described above, the catalyst of the present invention includes the catalyst A, the catalyst A ′, the catalyst A ″, and the catalyst B as components.
Alternatively, there may be mentioned a configuration in which catalyst A + catalyst A ′ and catalyst B are arranged in series in this order.

【0024】なお、上述の触媒A’においては、白金及
びアルカリ金属等を含むβゼオライト層を下層とし、そ
の上層として銅を含むβゼオライト及び/又はMFIゼ
オライト層を配置することが好ましい。この層構造を逆
にすると、未浄化のまま排出されるNOxが多くなり、
非効率となる。
In the above-mentioned catalyst A ', it is preferable that a β zeolite layer containing platinum, an alkali metal and the like be a lower layer, and a β zeolite and / or MFI zeolite layer containing copper be disposed as an upper layer. When this layer structure is reversed, the amount of NOx that is discharged without purification increases,
Inefficient.

【0025】以上のような配置構成において、触媒A
は、触媒A’又はその活性成分たるCu−β及び/又は
MFIゼオライトとの組み合わせにより、NOxとHC
類を濃縮し、NOx−HC間の反応頻度を向上する役割
を果たす。この場合、βゼオライトはHC類の吸着容量
が大きく、且つ吸着速度も高いが、これは比較的大きい
細孔径に由来するものと考えられる。
In the above arrangement, the catalyst A
Is NOx and HC by the combination of catalyst A 'or its active component Cu-β and / or MFI zeolite.
And condensate them to increase the frequency of the NOx-HC reaction. In this case, the β zeolite has a large adsorption capacity for HCs and a high adsorption speed, which is considered to be derived from a relatively large pore diameter.

【0026】このように、本発明の特徴の1つは、βゼ
オライトとPt、アルカリ金属、アルカリ土類金属を組
み合わせたことにあり、この組み合わせにより特異的に
高い浄化効果を実現できることを見出したことにある。
なお、触媒Bは、触媒A、A’又はA”において、未浄
化のHC類及びCOを酸化浄化する作用を担う。従っ
て、かかる酸化浄化を実現する触媒成分を担持させる必
要があり、具体的には、Pt及び/又はPdを担持させ
るが、更にRhを担持させると、NOx浄を補助するの
で、有効である。
As described above, one of the features of the present invention is that β-zeolite is combined with Pt, an alkali metal and an alkaline earth metal, and it has been found that this combination can achieve a specifically high purification effect. It is in.
The catalyst B has a function of oxidizing and purifying unpurified HCs and CO in the catalyst A, A ′ or A ″. Therefore, it is necessary to carry a catalyst component for realizing such oxidative purification. In this case, Pt and / or Pd is supported, but when Rh is further supported, NOx purification is assisted, which is effective.

【0027】次に、本発明の触媒における触媒A、
A’、A”及び触媒Bの製造方法について説明する。β
ゼオライト又はMFIゼオライトに担持する各種金属成
分の原料としては、無機酸塩、酸化物、有機酸塩、塩化
物、炭酸塩、ナトリウム塩、アンモニウム塩及びアンミ
ン錯化合物等の各種化合物を使用することができ、これ
らをイオン交換法、含浸法等の通常用いられる方法で上
記ゼオライトに担持することができる。
Next, the catalyst A in the catalyst of the present invention,
A method for producing A ′, A ″ and the catalyst B will be described.
As a raw material of various metal components supported on zeolite or MFI zeolite, various compounds such as inorganic acid salts, oxides, organic acid salts, chlorides, carbonates, sodium salts, ammonium salts and ammine complex compounds may be used. These can be supported on the zeolite by a commonly used method such as an ion exchange method and an impregnation method.

【0028】通常のイオン交換法、含浸法による担持の
場合、金属原料は溶液で用いることが多く、その溶液に
は、酸又は塩基を添加して適当にpHを調節することが
でき、このpH調節により好ましい結果を与える場合も
あるが、本発明はかかる担持法によって制限されるもの
ではない。なお、上述のようにして得られたゼオライト
系触媒は、常法に従って、アルミナゾル等のバインダー
を用いてハニカム担体に塗布され、これにより、ハニカ
ム状モノリス触媒A、A’、A”及びBが得られる。
In the case of loading by a usual ion exchange method or impregnation method, the metal raw material is often used in a solution, and the pH can be appropriately adjusted by adding an acid or a base to the solution. Adjustment may give better results, but the invention is not limited by such loading methods. The zeolite-based catalyst obtained as described above is applied to a honeycomb carrier using a binder such as alumina sol according to a conventional method, whereby honeycomb monolith catalysts A, A ′, A ″ and B are obtained. Can be

【0029】次に、本発明の排ガス浄化方法について詳
細に説明する。本発明の浄化方法は、上述してきた本発
明の触媒を用いるもので、上述の直列配置式多段構造を
有する本発明の触媒に、酸素濃度5%以上、HC/NO
xの比率が10以下(但し、0を含まず。)の化学量論
条件で、排ガスを流通・接触させることにより、高効率
のNOx浄化を達成するものである。
Next, the exhaust gas purifying method of the present invention will be described in detail. The purification method of the present invention uses the above-mentioned catalyst of the present invention. The catalyst of the present invention having the above-described multi-stage structure of the series arrangement is provided with an oxygen concentration of 5% or more and HC / NO.
Under the stoichiometric conditions where the ratio of x is 10 or less (but not including 0), high efficiency NOx purification is achieved by flowing and contacting exhaust gas.

【0030】本発明の浄化方法では、排ガス中のHCを
ゼオライト触媒表面に濃縮し高効率で活用できるが、む
しろHCが過剰の場合は、HCによる被覆によりNOx
浄化効率が低下することがある。また、排ガス中の酸素
量が少ないと、ゼオライト上にHCが蓄積されたままに
なり、性能が劣化することがある。即ち、酸素量が5%
以上で、HC量は多過ぎず、HC/NOx比は通常の触
媒に要求されるレベルよりもむしろ低い方が、長時間の
触媒作用に際して高効率の浄化能を維持できる。但し、
HCが全く存在しないと、NOx還元反応が進まないの
で、HC/NOx比の下限は0を超えることが必要で、
1以上が好ましく、10以下が有効である。
According to the purification method of the present invention, HC in exhaust gas can be concentrated on the surface of the zeolite catalyst and can be used with high efficiency. However, when HC is excessive, NOx is covered by coating with HC.
Purification efficiency may decrease. Further, when the amount of oxygen in the exhaust gas is small, HC remains accumulated on the zeolite, and the performance may be deteriorated. That is, the oxygen content is 5%
As described above, when the HC amount is not too large and the HC / NOx ratio is lower than the level required for a normal catalyst, highly efficient purification performance can be maintained during long-term catalytic action. However,
If no HC is present, the NOx reduction reaction does not proceed, so the lower limit of the HC / NOx ratio must exceed 0,
One or more is preferable and 10 or less is effective.

【0031】[0031]

【実施例】以下、本発明を実施例によって更に詳述する
が、本発明はこれによって限定されるものではない。 (実施例1) (1)ハニカム触媒Aの調製 ジニトロジアミン白金水溶液の中にSiO2/Al23
モル比が約28のNH4型βゼオライトの粉末を添加し
て十分に撹拌した後、乾燥機中120℃で8時間乾燥
し、更に空気気流中500℃で2時間焼成して、Ptが
1.2wt%担持されたPt−βゼオライト粉を得た。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. (Example 1) (1) SiO 2 / Al 2 O 3 in the preparation dinitrodiamineplatinum solution of honeycomb catalyst A
After adding NH 4 type β zeolite powder having a molar ratio of about 28 and sufficiently stirring, the mixture was dried in a drier at 120 ° C. for 8 hours, and further calcined in an air stream at 500 ° C. for 2 hours to obtain a Pt of 1 A Pt-β zeolite powder loaded with 0.2 wt% was obtained.

【0032】このゼオライト触媒粉にアルミナゾルと水
を混合して磁性ボールミルポットに投入し、約20分間
混合・粉砕してPt−βゼオライトのスラリーを得た。
アルミナゾルの添加量は、Al23として、吸着水を除
いたPt−βゼオライト触媒粉に対して、8wt%であ
った。
Alumina sol and water were mixed with the zeolite catalyst powder, put into a magnetic ball mill pot, mixed and pulverized for about 20 minutes to obtain a Pt-β zeolite slurry.
The amount of the alumina sol added was 8 wt% as Al 2 O 3 based on the Pt-β zeolite catalyst powder from which the adsorbed water had been removed.

【0033】以上のようにして得られたスラリーを、1
平方インチ断面当たり約400個の流路を持つコージェ
ライト質ハニカム担体0.5Lに塗布し、150℃で熱
風乾燥した後、500℃で1時間焼成して触媒コート量
約120g/Lのハニカム触媒を得た。該ハニカム触媒
を酢酸カルシウム及び酢酸バリウムの混合水溶液に浸し
た後、120℃で乾燥、500℃で1時間焼成し、Ca
及びBaをハニカム触媒容量1L当たりそれぞれ0.1
8モル及び0.21モル含有したハニカム触媒Aを得
た。
The slurry obtained as described above was mixed with 1
A 0.5 L cordierite honeycomb carrier having about 400 flow channels per square inch cross section is applied, dried with hot air at 150 ° C., and then baked at 500 ° C. for 1 hour to obtain a honeycomb catalyst having a catalyst coating amount of about 120 g / L. I got After immersing the honeycomb catalyst in a mixed aqueous solution of calcium acetate and barium acetate, the honeycomb catalyst was dried at 120 ° C., calcined at 500 ° C. for 1 hour, and Ca
And Ba are each added in an amount of 0.1 per liter of the honeycomb catalyst.
A honeycomb catalyst A containing 8 mol and 0.21 mol was obtained.

【0034】(2)ハニカム触媒A”の調製 濃度0.1Mの硝酸銅水溶液にアンモニア水を添加して
溶液のpHを8.5とした。この溶液中にSiO2/A
23モル比が約45のH型MFIゼオライトの粉末を
添加して十分に撹拌し、次いで、濾過して固液を分離し
た。上記の撹拌・濾過操作を2回繰り返すことにより、
Cuをイオン交換担持したMFIゼオライト触媒ケーキ
を得た。このケーキを乾燥器中、120℃で24時間以
上乾燥し、次いで、電気炉を用い、大気雰囲気下600
℃で4時間焼成することにより、Cuが5.8wt%担
持されたMFIゼオライト触媒粉を得た。
[0034] (2) was 8.5 and the pH of the solution by adding ammonia water to the aqueous copper nitrate solution preparation concentration of 0.1M honeycomb catalyst A ". SiO 2 / A into the solution
A powder of H-type MFI zeolite having a molar ratio of l 2 O 3 of about 45 was added thereto, stirred well, and then filtered to separate a solid and a liquid. By repeating the above stirring / filtration operation twice,
An MFI zeolite catalyst cake carrying Cu ion exchange was obtained. The cake is dried in a dryer at 120 ° C. for 24 hours or more, and then dried in an electric furnace under atmospheric air for 600 hours.
By calcining at 4 ° C. for 4 hours, an MFI zeolite catalyst powder carrying 5.8 wt% of Cu was obtained.

【0035】得られた触媒粉をアルミナゾル及び水と混
合し、磁性ボールミルポットで20分間粉砕してスラリ
ーとした。このスラリーを上記ゼオライト系触媒Aと同
様の操作を行うことにより、1.0L容量のハニカム担
体にコーティングし、触媒A”を得た。該触媒のコート
量は約250g/Lであった。
The obtained catalyst powder was mixed with alumina sol and water, and pulverized in a magnetic ball mill pot for 20 minutes to form a slurry. This slurry was coated on a 1.0-liter honeycomb carrier by performing the same operation as the above-mentioned zeolite-based catalyst A to obtain catalyst A ″. The coating amount of the catalyst was about 250 g / L.

【0036】(3)ハニカム触媒Bの調製 γ−アルミナを主成分とする活性アルミナにジニトロジ
アンミンパラジウム水溶液を加え、含浸法でPd担持し
た後、乾燥器中120℃で8時間乾燥、空気気流中45
0℃で2時間焼成し、Pdが2.8wt%担持されたP
d−活性アルミナを得た。このPd−活性アルミナに活
性アルミナ及び硝酸酸性ベーマイトゾルを添加混合し、
磁性ボールミルポットで1時間粉砕してスラリーを得
た。このスラリーを上記ゼオライト系触媒と同様にして
1.2L容量のハニカム担体にコーティングした。該触
媒のコード量は約80g/Lであった。
(3) Preparation of Honeycomb Catalyst B An aqueous solution of dinitrodiammine palladium was added to activated alumina containing γ-alumina as a main component, and Pd was supported by impregnation, followed by drying in a drier at 120 ° C. for 8 hours and in an air stream. 45
Baking at 0 ° C. for 2 hours, P loaded with 2.8 wt% of Pd
d-Activated alumina was obtained. Activated alumina and nitric acid acidic boehmite sol were added to and mixed with this Pd-activated alumina,
A slurry was obtained by grinding for 1 hour in a magnetic ball mill pot. This slurry was coated on a 1.2 L honeycomb carrier in the same manner as in the above zeolite-based catalyst. The cord amount of the catalyst was about 80 g / L.

【0037】次いで、同様にして活性アルミナにジニト
ロジアンミン白金水溶液を加え、含浸法でPt成分を担
持した後、乾燥器中120℃で8時間乾燥し、空気気流
中450℃で2時間焼成して、Ptが1.2wt%担持
されたPt−活性アルミナ粉末を得た。このPt−活性
アルミナ粉に硝酸酸性ベーマイトゾル及び水を添加混合
し、磁性ボールミルポットで1時間粉砕してスラリーを
得た。このスラリーを上記Pd−活性アルミナがコート
されたハニカム上にコーティングし、同様に、乾燥・焼
成の工程を経てハニカム触媒Bを得た。該Pt−活性ア
ルミナのハニカム担体に対するコート量は、60g/L
であった。
Next, an aqueous solution of dinitrodiammine platinum is added to the activated alumina in the same manner as above, and the Pt component is supported by the impregnation method. And Pt-activated alumina powder carrying 1.2 wt% of Pt. A nitric acid boehmite sol and water were added to and mixed with the Pt-activated alumina powder, and the mixture was pulverized with a magnetic ball mill pot for 1 hour to obtain a slurry. This slurry was coated on the above-mentioned honeycomb coated with Pd-activated alumina, and similarly, a honeycomb catalyst B was obtained through the steps of drying and firing. The coating amount of the Pt-activated alumina on the honeycomb carrier was 60 g / L.
Met.

【0038】上記(1)、(2)及び(3)のハニカム
触媒A、A”及びBを直列に配置して触媒コンバーター
に組み込み、[0.5L+1.0L+1.2L]=2.
7Lの3段触媒[1]を得た。
The honeycomb catalysts A, A ″ and B of the above (1), (2) and (3) are arranged in series and assembled into a catalytic converter, and [0.5L + 1.0L + 1.2L] = 2.
7 L of a three-stage catalyst [1] was obtained.

【0039】(実施例2) (1)ハニカム触媒A’の調製 実施例1と同様にして得たPt−βゼオライト触媒粉の
スラリーを、1平方インチ断面当たり約400個の流路
を持つコージェライト質ハニカム担体1.5Lにコーテ
ィングし、実施例1と同様の工程を経て触媒コート量約
45g/Lのハニカム触媒を得た。該ハニカム触媒への
Ca、Ba及びKの担持も同様にして行い、Ca、Ba
及びKをハニカム触媒容量1L当たり、それぞれ0.2
1モル、0.19モル及び0.04モル含有させたハニ
カム触媒Aを得た。
Example 2 (1) Preparation of Honeycomb Catalyst A 'A slurry of the Pt-β zeolite catalyst powder obtained in the same manner as in Example 1 was prepared using a cordier having about 400 channels per square inch cross section. The honeycomb was coated on 1.5 L of the light honeycomb carrier and subjected to the same processes as in Example 1 to obtain a honeycomb catalyst having a catalyst coating amount of about 45 g / L. Carrying of Ca, Ba and K on the honeycomb catalyst was carried out in the same manner.
And K are each 0.2 L per 1 L of honeycomb catalyst capacity.
A honeycomb catalyst A containing 1 mol, 0.19 mol and 0.04 mol was obtained.

【0040】更に、このハニカム触媒Aの上に、実施例
1で得られたCu−MFIゼオライト触媒粉を含むスラ
リーをコーティングし、以下同様の工程により約210
g/Lのコートを形成し、多層ハニカム触媒A’を得
た。上記多層ハニカム触媒A’と実施例1のハニカム触
媒Bとを触媒コンバーターに直列配置して組み込み、
[1.5L+1.2L]=2.7Lの2段触媒[2]を
得た。
Further, on this honeycomb catalyst A, a slurry containing the Cu-MFI zeolite catalyst powder obtained in Example 1 was coated, and the same process was repeated for about 210
g / L of a coat was formed to obtain a multilayer honeycomb catalyst A '. The multilayer honeycomb catalyst A ′ and the honeycomb catalyst B of Example 1 are arranged in series in a catalytic converter and incorporated.
[1.5 L + 1.2 L] = 2.7 L of a two-stage catalyst [2] was obtained.

【0041】(実施例3)ハニカム触媒A’のCa、B
a及びKの担持量をハニカム触媒容量1L当たり、それ
ぞれ0.02モル、0.18モル及び0.01モルとし
た以外は、実施例2と同様の操作を繰り返し、2段触媒
[3]を得た。
(Example 3) Ca, B of honeycomb catalyst A '
The same operation as in Example 2 was repeated except that the supported amounts of a and K were 0.02 mol, 0.18 mol, and 0.01 mol, respectively, per liter of the honeycomb catalyst, and a two-stage catalyst [3] was obtained. Obtained.

【0042】(実施例4)ハニカム触媒A’のCa、B
a及びKの担持量をハニカム触媒容量1L当たり、それ
ぞれ0.20モル、0.32モル、及び0.05モルと
した以外は、実施例2と同様の操作を繰り返し、2段触
媒[4]を得た。
Example 4 Ca, B of honeycomb catalyst A '
The same operation as in Example 2 was repeated except that the supported amounts of a and K were 0.20 mol, 0.32 mol, and 0.05 mol, respectively, per liter of the honeycomb catalyst, and the two-stage catalyst [4] I got

【0043】(実施例5)Pt−βゼオライト触媒粉に
おけるβゼオライトをSiO2/Al23モル比が約2
2.5のβゼオライトに代えた以外は、実施例2と同様
の操作を繰り返し、2段触媒[5]を得た。
Example 5 β-zeolite in Pt-β zeolite catalyst powder was prepared by converting SiO 2 / Al 2 O 3 molar ratio to about 2
A two-stage catalyst [5] was obtained by repeating the same operation as in Example 2 except that β zeolite of 2.5 was used.

【0044】(実施例6)Pt−βゼオライト触媒粉に
おけるβゼオライトをSiO2/Al23モル比が約1
25のβゼオライトに代えた以外は、実施例2と同様の
操作を繰り返し、2段触媒[6]を得た。
Example 6 β-zeolite in Pt-β zeolite catalyst powder was prepared by converting SiO 2 / Al 2 O 3 molar ratio to about 1
A two-stage catalyst [6] was obtained by repeating the same operation as in Example 2 except that 25 was replaced with β zeolite.

【0045】(実施例7)実施例1のCu−MFIゼオ
ライト触媒粉の調製において、SiO2/Al23モル
比が約45のH型MFIゼオライトの粉末をSiO2
Al23モル比が約28のNH4型βゼオライトの粉末
に代え、その他の工程は実施例2と同様にして2段触媒
[7]を得た。但し、Cu−βゼオライトのCu担持量
は、6.6wt%であった。
Example 7 In the preparation of the Cu-MFI zeolite catalyst powder of Example 1, the H-type MFI zeolite powder having a SiO 2 / Al 2 O 3 molar ratio of about 45 was converted to SiO 2 /
A two-stage catalyst [7] was obtained in the same manner as in Example 2 except that the powder of NH 4 type zeolite having an Al 2 O 3 molar ratio of about 28 was used. However, the amount of supported Cu of the Cu-β zeolite was 6.6 wt%.

【0046】(実施例8)実施例1のCu−MFIゼオ
ライト触媒粉の調製において、SiO2/Al23モル
比が約45のH型MFIゼオライトの粉末をSiO2
Al23モル比が約76のNH4型MFIゼオライトの
粉末に代え、その他の工程は実施例2と同様にして2段
触媒[8]を得た。但し、このCu−MFIゼオライト
のCu担持量は、4.9wt%であった。
Example 8 In the preparation of the Cu-MFI zeolite catalyst powder of Example 1, the H-type MFI zeolite powder having a SiO 2 / Al 2 O 3 molar ratio of about 45 was converted to SiO 2 /
A two-stage catalyst [8] was obtained in the same manner as in Example 2 except that the powder was changed to NH 4 type MFI zeolite having an Al 2 O 3 molar ratio of about 76. However, the amount of supported Cu of this Cu-MFI zeolite was 4.9 wt%.

【0047】(実施例9)ハニカム触媒A’のCa、B
a及びKを、Ba、La、及びCsの組み合わせに代
え、それぞれの担持量をハニカム触媒容量1L当たり、
0.2モル、0.1モル及び0.02モルとした以外
は、実施例2と同様の操作を繰り返し、2段触媒[9]
を得た。
Example 9 Ca, B of honeycomb catalyst A '
a and K are replaced with a combination of Ba, La, and Cs, and the supported amount of each is per 1 L of the honeycomb catalyst capacity.
The same operation as in Example 2 was repeated except that the amounts were 0.2 mol, 0.1 mol and 0.02 mol, and the two-stage catalyst [9]
I got

【0048】(比較例1)実施例1において、ハニカム
触媒Aを除いて、ハニカム触媒A”+ハニカム触媒Bを
触媒コンバーターに組み込み、[1.0L+1.2L]
=2.2Lの2段触媒Ref[1]を得た。
(Comparative Example 1) In Example 1, honeycomb catalyst A "+ honeycomb catalyst B was incorporated into a catalytic converter except for honeycomb catalyst A, and [1.0 L + 1.2 L]
= 2.2 L of a two-stage catalyst Ref [1].

【0049】(比較例2)実施例1におけるSiO2
Al23モル比が約28のNH4型βゼオライトを、S
iO2/Al23モル比が約32のNH4型MFIゼオラ
イトに代え、その他の工程は実施例2と同様にして2段
触媒Ref[2]を得た。
(Comparative Example 2) The SiO 2 /
An NH 4 type zeolite having an Al 2 O 3 molar ratio of about 28 was converted to S
A two-stage catalyst Ref [2] was obtained in the same manner as in Example 2 except that the NH 4 type MFI zeolite having an iO 2 / Al 2 O 3 molar ratio of about 32 was used.

【0050】(比較例3)ハニカム触媒A’のCa、B
a及びKの担持量をハニカム触媒容量1L当たり、それ
ぞれ0.02モル、0.14モル及び0.01モルとし
た以外は、実施例2と同様の操作を繰り返し、2段触媒
Ref[3]を得た。
Comparative Example 3 Ca, B of honeycomb catalyst A '
The same operation as in Example 2 was repeated except that the supported amounts of a and K were 0.02 mol, 0.14 mol, and 0.01 mol, respectively, per 1 L of the honeycomb catalyst, and the two-stage catalyst Ref [3]. I got

【0051】(比較例4)ハニカム触媒A’のCa、B
a、及びKの担持量をハニカム触媒容量1L当たり、そ
れぞれ0.1モル、0.35モル及び0.2モルとした
以外は、実施例2と同様の操作を繰り返し、2段触媒R
ef[4]を得た。
(Comparative Example 4) Ca, B of honeycomb catalyst A '
The same operation as in Example 2 was repeated except that the supported amounts of a and K were 0.1 mol, 0.35 mol and 0.2 mol, respectively, per 1 L of the honeycomb catalyst volume, and the two-stage catalyst R
ef [4] was obtained.

【0052】(比較例5)実施例2のPt−βゼオライ
ト触媒粉におけるβゼオライトをSiO2/Al23
ル比が約18のβゼオライトに代えた以外は同様にして
2段触媒Ref[5]を得た。
(Comparative Example 5) A two-stage catalyst Ref [was prepared in the same manner as in Example 2 except that the β zeolite in the Pt-β zeolite catalyst powder was changed to β zeolite having a SiO 2 / Al 2 O 3 molar ratio of about 18. 5].

【0053】(比較例6)実施例2のPt−βゼオライ
ト触媒粉におけるβゼオライトをSiO2/Al23
ル比が約135のβゼオライトに代えた以外は同様にし
て2段触媒Ref[6]を得た。
Comparative Example 6 A two-stage catalyst Ref [] was prepared in the same manner as in Example 2 except that β zeolite in the Pt-β zeolite catalyst powder was replaced with β zeolite having a SiO 2 / Al 2 O 3 molar ratio of about 135. 6] was obtained.

【0054】(比較例7)実施例1のCu−MFIゼオ
ライト触媒粉の調製において、SiO2/Al23モル
比が約45のH型MFIゼオライトの粉末をSiO2
Al23モル比が約18のNH4型MFIゼオライトの
粉末に代え、その他の工程は実施例2と同様にして2段
触媒Ref[7]を得た。但し、このCu−βゼオライ
トのCu担持量は、8.6wt%であった。
Comparative Example 7 In the preparation of the Cu-MFI zeolite catalyst powder of Example 1, the H-type MFI zeolite powder having a SiO 2 / Al 2 O 3 molar ratio of about 45 was converted to SiO 2 /
A two-stage catalyst Ref [7] was obtained in the same manner as in Example 2 except that the powder of NH 4 type MFI zeolite having an Al 2 O 3 molar ratio of about 18 was used. However, the amount of supported Cu of this Cu-β zeolite was 8.6 wt%.

【0055】(比較例8)実施例1のCu−MFIゼオ
ライト触媒粉の調製において、SiO2/Al23モル
比が約45のH型MFIゼオライトの粉末をSiO2
Al23モル比が約83のNH4型MFIゼオライトの
粉末に代え、その他の工程は実施例2と同様にして2段
触媒Ref[8]を得た。但し、このCu−MFIゼオ
ライトのCu担持量は、3.9wt%であった。
(Comparative Example 8) In the preparation of the Cu-MFI zeolite catalyst powder of Example 1, the H-type MFI zeolite powder having a SiO 2 / Al 2 O 3 molar ratio of about 45 was converted to SiO 2 /
A two-stage catalyst Ref [8] was obtained in the same manner as in Example 2 except that the powder was changed to NH 4 type MFI zeolite having an Al 2 O 3 molar ratio of about 83. However, the amount of supported Cu of this Cu-MFI zeolite was 3.9 wt%.

【0056】(触媒性能試験例1)直列4気筒2Lエン
ジンの排気ガスを用いたエンジンダイナモ装置によるラ
イトオフ−ライトオンの繰り返しテストを上記実施例及
び比較例の触媒に関して実施し、NOx、HC、COの
各成分について平均浄化率を求めた。なお、実施例及び
比較例の触媒は、本試験に先立って予めエンジンリーン
排ガスで600℃×100hrの前処理を行った。テス
ト中の触媒入口温度は、150℃〜400℃であり、排
ガス中のHC/NOx比は2.5、ガス空間速度は45
000h-1とした。テスト中の触媒入口温度の昇温速度
は30℃/min、降温速度は10℃/minであり、
このときの平均HC/NOx比は約6、排ガスO2濃度
は約10%であった。表1に、実施例及び比較例の触媒
によるライトオン−ライトオフ繰り返しテストにおける
HC、CO、NOxの平均浄化率を示す。
(Catalyst Performance Test Example 1) A light-off / light-on repetition test by an engine dynamo device using exhaust gas of an in-line four-cylinder 2L engine was performed on the catalysts of the above embodiment and comparative example, and NOx, HC, The average purification rate was determined for each component of CO. The catalysts of Examples and Comparative Examples were pretreated at 600 ° C. × 100 hr with engine lean exhaust gas before the test. The catalyst inlet temperature during the test was 150 ° C. to 400 ° C., the HC / NOx ratio in the exhaust gas was 2.5, and the gas space velocity was 45.
000h- 1 . The temperature increase rate of the catalyst inlet temperature during the test was 30 ° C./min, and the temperature decrease rate was 10 ° C./min.
At this time, the average HC / NOx ratio was about 6, and the exhaust gas O 2 concentration was about 10%. Table 1 shows the average purification rates of HC, CO, and NOx in the light-on / light-off repetition test using the catalysts of Examples and Comparative Examples.

【0057】[0057]

【表1】 [Table 1]

【0058】(触媒性能試験例2)試験例1において、
実施例2の触媒(エンジンリーン排ガス600℃×10
0hrの前処理後)を用いたテストでエンジン排ガス中
のHC及びNOx濃度を変化させて、HC/NOx比に
対するNOx平均浄化率を求めた。得られた結果を図1
に示す。図1は、HC/NOx比(横軸)に対するNO
xの平均浄化率(縦軸)を示すもので、本発明の範囲に
含まれる実施例2の触媒では、HC/NOx比が10を
超える条件下でNOx浄化率が急激に低下しており、む
しろ適度なHC量で十分に高い浄化率が得られることが
わかる。
(Catalyst Performance Test Example 2)
Catalyst of Example 2 (Engine lean exhaust gas 600 ° C × 10
(After pretreatment of 0 hr), the HC and NOx concentrations in the exhaust gas of the engine were changed to obtain the average NOx purification ratio with respect to the HC / NOx ratio. Figure 1 shows the results obtained.
Shown in FIG. 1 shows the relationship between the HC / NOx ratio (horizontal axis) and the NO.
x indicates the average purification rate of x (vertical axis). In the catalyst of Example 2 included in the range of the present invention, the NOx purification rate sharply decreases under the condition that the HC / NOx ratio exceeds 10. Rather, it can be seen that a sufficiently high purification rate can be obtained with an appropriate amount of HC.

【0059】(触媒性能試験例3)試験例1の浄化性能
テストにおいて、実施例2の触媒を(エンジンリーン排
ガス600℃×100hrの前処理後)用い、エンジン
排ガス組成の酸素濃度を2〜10%の範囲で変化させ
て、ライトオフ−ライトオンの繰り返しを10回行った
後のライトオフ−ライトオンテストでのNOx成分につ
いて平均浄化率を求めた。得られた結果を図2に示す。
図2は、酸素濃度(横軸)に対するNOxの平均浄化率
(縦軸)を示すもので、酸素濃度が5%未満でライトオ
フ−ライトオンテストを繰り返した場合には、NOx転
化性能が十分得られないことが良く分かる。即ち、本触
媒は5%以上のむしろ比較的酸素量の多い条件下で高性
能を発揮する。
(Catalyst Performance Test Example 3) In the purification performance test of Test Example 1, the catalyst of Example 2 was used (after pretreatment of engine lean exhaust gas at 600 ° C. × 100 hours), and the oxygen concentration of the engine exhaust gas composition was 2 to 10%. %, And the average purification rate of the NOx component in the light-off-light-on test after repeating the light-off-light-on 10 times was determined. FIG. 2 shows the obtained results.
FIG. 2 shows the average NOx purification rate (vertical axis) with respect to the oxygen concentration (horizontal axis). When the light-off-light-on test was repeated at an oxygen concentration of less than 5%, the NOx conversion performance was sufficient. It can be clearly understood that it cannot be obtained. That is, the present catalyst exhibits high performance under a relatively high oxygen content of 5% or more.

【0060】[0060]

【発明の効果】以上説明してきたように、本発明によれ
ば、白金とアルカリ金属等を含むゼオライト系触媒と、
銅を含むゼオライト系触媒と、HC・CO浄化触媒とを
特定の配置構成とすることとしたため、リーンバーンエ
ンジンに好適に適用でき、特に低温度領域及び低HC/
NOx比の排ガス条件下であっても優れたNOx浄化能
力を発揮する排ガス浄化用触媒及び排ガス浄化方法を提
供することができる。
As described above, according to the present invention, a zeolite-based catalyst containing platinum, an alkali metal, and the like,
Since the zeolite-based catalyst containing copper and the HC / CO purification catalyst are arranged in a specific arrangement, the catalyst can be suitably applied to a lean burn engine, particularly in a low temperature range and a low HC / CO ratio.
It is possible to provide an exhaust gas purifying catalyst and an exhaust gas purifying method that exhibit excellent NOx purifying ability even under an exhaust gas condition of a NOx ratio.

【0061】従って、本発明の排ガス浄化方法及び触媒
を用いると、150℃程度の低温を含む条件で、しかも
低HC/NOx比条件の排ガス浄化が高効率で浄化可能
となるため、環境汚染が少なく、経済性(燃費)に優れ
た自動車を提供することができる。
Therefore, the use of the exhaust gas purifying method and the catalyst of the present invention makes it possible to purify exhaust gas with high efficiency under conditions including a low temperature of about 150 ° C. and at a low HC / NOx ratio. It is possible to provide an automobile that is low in cost and fuel economy (fuel efficiency).

【図面の簡単な説明】[Brief description of the drawings]

【図1】NOx浄化率に対する排ガスHC/NOx比の
影響を示すグラフである。
FIG. 1 is a graph showing the effect of the exhaust gas HC / NOx ratio on the NOx purification rate.

【図2】NOx浄化率に対する排ガスO2濃度の影響を
示すグラフである。
FIG. 2 is a graph showing the influence of the exhaust gas O 2 concentration on the NOx purification rate.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 29/46 F01N 3/24 U F01N 3/24 3/28 301B 3/28 301 B01D 53/36 102H 102B 104A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B01J 29/46 F01N 3/24 U F01N 3/24 3/28 301B 3/28 301 B01D 53/36 102H 102B 104A

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 空燃比(Air/Fuel比=A/F)
が14.7を超えるリーン領域で運転される内燃機関の
排気系に2個以上の触媒を直列配置して成る多段式排ガ
ス浄化用触媒であって、 上記排気系の上流側に、白金(Pt)成分を含み、且つ
アルカリ金属、アルカリ土類金属及び希土類金属から成
る群より選ばれた少なくとも1種の成分を含むβゼオラ
イトを塗布したハニカム状モノリス触媒Aを配置し、 その下流側に、Pt及び/又はパラジウム(Pd)を含
むハニカム状モノリス触媒Bを設置し、 上記触媒Aにおけるβゼオライト層の上層に、銅(C
u)成分を含むβゼオライト及び/又はMFIゼオライ
トを含む層を設けて成る触媒A’を形成して成ることを
特徴とする排ガス浄化用触媒。
1. An air-fuel ratio (Air / fuel ratio = A / F)
Is a multi-stage exhaust gas purifying catalyst in which two or more catalysts are arranged in series in an exhaust system of an internal combustion engine operated in a lean region exceeding 14.7, and platinum (Pt) is provided upstream of the exhaust system. ), A honeycomb-shaped monolith catalyst A coated with β zeolite containing at least one component selected from the group consisting of an alkali metal, an alkaline earth metal and a rare earth metal, and a downstream Pt. And / or a honeycomb-shaped monolith catalyst B containing palladium (Pd) was installed, and copper (C
u) A catalyst for purifying exhaust gas, comprising forming a catalyst A ′ having a layer containing β zeolite and / or MFI zeolite containing a component.
【請求項2】 上記Cuを含むβゼオライト及び/又は
MFIゼオライトを含有する層をハニカム状モノリス担
体に塗布することにより上記触媒Aとは別体の触媒A”
を形成し、この触媒A”を上記触媒Aと触媒Bとの間に
設置して成ることを特徴とする請求項1記載の排ガス浄
化用触媒。
2. A catalyst A ″ separate from the catalyst A by applying a layer containing the above β-containing zeolite containing Cu and / or MFI zeolite to a honeycomb monolithic carrier.
The exhaust gas purifying catalyst according to claim 1, wherein the catalyst A "is provided between the catalyst A and the catalyst B.
【請求項3】 上記アルカリ金属、アルカリ土類金属及
び希土類金属から成る群より選ばれた少なくとも1種の
成分が、カルシウム(Ca)、カリウム(K)、バリウ
ム(Ba)、セシウム(Cs)及びランタン(La)か
ら成る群より選ばれた少なくとも1種の成分であり、そ
の含有量がハニカム状モノリス触媒1L当たり0.2モ
ル〜0.6モルであることを特徴とする請求項1又は2
記載の排ガス浄化用触媒。
3. At least one component selected from the group consisting of alkali metals, alkaline earth metals and rare earth metals is calcium (Ca), potassium (K), barium (Ba), cesium (Cs) and 3. The composition according to claim 1, which is at least one component selected from the group consisting of lanthanum (La) and has a content of 0.2 mol to 0.6 mol per 1 L of the honeycomb-shaped monolith catalyst.
The exhaust gas purifying catalyst according to the above.
【請求項4】 上記Ptを含み、且つアルカリ金属、ア
ルカリ土類金属及び希土類金属から成る群より選ばれた
少なくとも1種の成分を含むβゼオライトのシリカ/ア
ルミナ比(SiO2/Al23モル比)が20〜130
であることを特徴とする請求項1〜3のいずれか1つの
項に記載の排ガス浄化用触媒。
4. The silica / alumina ratio (SiO 2 / Al 2 O 3) of β zeolite containing the above Pt and containing at least one component selected from the group consisting of alkali metals, alkaline earth metals and rare earth metals. (Molar ratio) 20-130
The exhaust gas purifying catalyst according to any one of claims 1 to 3, characterized in that:
【請求項5】 上記Cuを含むβゼオライト及び/又は
MFIゼオライトのシリカ/アルミナ比が25〜80で
あることを特徴とする請求項1〜4のいずれか1つの項
に記載の排ガス浄化用触媒。
5. The exhaust gas purifying catalyst according to claim 1, wherein the β-zeolite and / or the MFI zeolite containing Cu has a silica / alumina ratio of 25 to 80. .
【請求項6】 請求項1〜5のいずれか1つの項に記載
の排ガス浄化用触媒を用いた排ガス浄化方法であって、 請求項1〜5のいずれか1つの項に記載の直列配置式多
段触媒に、酸素濃度が5%以上で、且つ窒素酸化物と炭
化水素が反応して窒素酸化物を窒素に添加するのに必要
な炭化水素量と窒素酸化物量の比(HC/NOx比)が
10以下の排ガスを流通、接触させることを特徴とする
排ガス浄化方法。
6. An exhaust gas purifying method using the exhaust gas purifying catalyst according to any one of claims 1 to 5, wherein the exhaust gas purifying method is a series arrangement type according to any one of claims 1 to 5. The ratio between the amount of hydrocarbons and the amount of nitrogen oxides necessary for adding nitrogen oxides to nitrogen by reacting nitrogen oxides with hydrocarbons when the oxygen concentration is 5% or more in the multi-stage catalyst (HC / NOx ratio) Exhaust gas having a flow rate of not more than 10 is brought into contact with the exhaust gas.
JP9222976A 1997-08-06 1997-08-06 Catalyst and method for purifying exhaust gas Pending JPH1147605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9222976A JPH1147605A (en) 1997-08-06 1997-08-06 Catalyst and method for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9222976A JPH1147605A (en) 1997-08-06 1997-08-06 Catalyst and method for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPH1147605A true JPH1147605A (en) 1999-02-23

Family

ID=16790851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9222976A Pending JPH1147605A (en) 1997-08-06 1997-08-06 Catalyst and method for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPH1147605A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004045765A1 (en) * 2002-11-18 2006-03-16 株式会社アイシーティー Exhaust gas purification catalyst and exhaust gas purification method
US7758832B2 (en) 2004-10-12 2010-07-20 Johnson Matthey Public Limited Company Method of decomposing nitrogen dioxide
US8092767B2 (en) 2003-04-17 2012-01-10 Johnson Matthey Public Limited Company Method of decomposing nitrogen dioxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004045765A1 (en) * 2002-11-18 2006-03-16 株式会社アイシーティー Exhaust gas purification catalyst and exhaust gas purification method
JP2009066596A (en) * 2002-11-18 2009-04-02 Ict:Kk Method for suppressing oxidization of sulfur dioxide in exhaust gas
JP4594097B2 (en) * 2002-11-18 2010-12-08 株式会社アイシーティー Exhaust gas purification catalyst and exhaust gas purification method
US8092767B2 (en) 2003-04-17 2012-01-10 Johnson Matthey Public Limited Company Method of decomposing nitrogen dioxide
US7758832B2 (en) 2004-10-12 2010-07-20 Johnson Matthey Public Limited Company Method of decomposing nitrogen dioxide

Similar Documents

Publication Publication Date Title
WO2005044426A1 (en) Method for catalytically reducing nitrogen oxide and catalyst therefor
EP0935055A2 (en) Device for purifying oxygen rich exhaust gas
JPH11104493A (en) Catalyst for purifying exhaust gas and its use
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JPH11221466A (en) Catalyst for purifying exhaust gas and purification of exhaust gas
JPH08281106A (en) Catalyst for purifying exhaust gas and its production
JP3407901B2 (en) Exhaust gas purifying catalyst, method for producing the catalyst, and method for purifying exhaust gas
JP3546908B2 (en) Ammonia purification catalyst device
JPH07213910A (en) Adsorbing catalyst for purifying exhaust gas
JP2004176589A (en) Exhaust gas purification device
JPH10192713A (en) Exhaust gas purifying catalyst and its use
JPH10165819A (en) Catalyst for cleaning of exhaust gas and its use method
JP4501166B2 (en) Exhaust gas purification system
JPH09253496A (en) Catalyst for clarification of exhaust gas and method for clarification of exhaust gas
JPH1147605A (en) Catalyst and method for purifying exhaust gas
JP2003320222A (en) Method for catalytically removing nitrogen oxide and apparatus therefor
JP3695394B2 (en) Exhaust gas purification device and manufacturing method
JP4290391B2 (en) Method and apparatus for catalytic removal of nitrogen oxides
JP2000042415A (en) Catalyst for exhaust gas purification using hydrocarbon reforming material
JPH11138005A (en) Exhaust gas purification catalyst and production of the same
JP3721112B2 (en) Method for catalytic reduction of nitrogen oxides and catalyst therefor
JPH11226402A (en) Catalyst for purification of exhaust gas and purifying method of exhaust gas
JP2000015104A (en) Catalyst for purification of exhaust gas and purification of exhaust gas
JP2000297627A (en) Catalyst for exhaust emission purification and system for the same
JPH0957066A (en) Catalyst for purification of exhaust gas