JPH1143369A - High strength ceramic sintered body and method of manufacturing the same - Google Patents
High strength ceramic sintered body and method of manufacturing the sameInfo
- Publication number
- JPH1143369A JPH1143369A JP9201651A JP20165197A JPH1143369A JP H1143369 A JPH1143369 A JP H1143369A JP 9201651 A JP9201651 A JP 9201651A JP 20165197 A JP20165197 A JP 20165197A JP H1143369 A JPH1143369 A JP H1143369A
- Authority
- JP
- Japan
- Prior art keywords
- crystal phase
- sintered body
- ceramic sintered
- strength
- sio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0306—Inorganic insulating substrates, e.g. ceramic, glass
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
(57)【要約】
【課題】金、銀、銅の配線導体と同時焼成可能で、高強
度、高誘電率を有するセラミック焼結体とその製造方法
を提供する。
【解決手段】結晶相として、Al2 O3 、SiO2 およ
びアルカリ土類酸化物からなる複合酸化物結晶相、例え
ばアノーサイトおよび/またはスラウソナイトと、Zr
O2 結晶相とを主体として、さらには、さらにMgAl
2 O4 結晶相、TiO2 結晶相を含有し、結晶化度を9
5%以上に高めることにより、誘電率が8以上、抗折強
度が35kg/mm2 以上の焼結体を得る。
(57) [Problem] To provide a ceramic sintered body having high strength and high dielectric constant, which can be simultaneously fired with gold, silver, and copper wiring conductors, and a method of manufacturing the same. SOLUTION: As a crystal phase, a composite oxide crystal phase composed of Al 2 O 3 , SiO 2 and alkaline earth oxide, for example, anorthite and / or slausonite, and Zr
And O 2 crystal phase mainly news, further MgAl
Contains 2 O 4 crystal phase and TiO 2 crystal phase and has a crystallinity of 9
By increasing it to 5% or more, a sintered body having a dielectric constant of 8 or more and a bending strength of 35 kg / mm 2 or more is obtained.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば集積回路
(IC)や電子部品を搭載した配線基板における絶縁基
板に好適に使用され、応力による破壊、欠けなどの生じ
ることのない高強度セラミック焼結体及びその製造方法
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength ceramic sintering which is preferably used for an insulating substrate in a wiring board on which an integrated circuit (IC) or an electronic component is mounted and which does not cause breakage or chipping due to stress. The present invention relates to a body and a method for producing the same.
【0002】[0002]
【従来技術】従来より、セラミック配線基板などの絶縁
基板としては、アルミナ質焼結体からなる絶縁基板の表
面または内部にタングステンやモリブデンなどの高融点
金属からなる配線層が形成されたものが最も普及してい
る。ところが、従来のタングステンや、モリブデンなど
の高融点金属は導体抵抗が大きく、特に30GHz以上
のミリ波領域において使用できないことから、これらの
金属に代えて、銅、銀、金などの低抵抗金属を使用する
ことが必要である。このような低抵抗金属からなる配線
層は、アルミナと同時焼成することが不可能であるた
め、最近では、ガラス、あるいはガラスとセラミックフ
ィラーとの複合材料からなる、いわゆるガラスセラミッ
クスを絶縁基板として用いた配線基板が開発されつつあ
る。2. Description of the Related Art Conventionally, as an insulating substrate such as a ceramic wiring substrate, an insulating substrate made of an alumina sintered body and having a wiring layer made of a high melting point metal such as tungsten or molybdenum formed on the surface or inside thereof is most often used. Widespread. However, conventional high melting point metals such as tungsten and molybdenum have high conductor resistance and cannot be used particularly in the millimeter wave region of 30 GHz or more. Therefore, instead of these metals, low-resistance metals such as copper, silver, and gold are used. It is necessary to use. Since a wiring layer made of such a low-resistance metal cannot be co-fired with alumina, a so-called glass ceramic made of glass or a composite material of glass and ceramic filler has recently been used as an insulating substrate. Wiring boards are being developed.
【0003】例えば、特公平4−12639号のよう
に、ガラスに、SiO2 系フィラーを添加し、銅、銀、
金などの低抵抗金属からなる配線層と900〜1000
℃の温度で同時焼成した多層配線基板等が提案されてい
る。For example, as disclosed in Japanese Patent Publication No. 4-12639, an SiO 2 filler is added to glass to form copper, silver,
Wiring layer made of low resistance metal such as gold and 900 to 1000
A multilayer wiring board and the like which are simultaneously fired at a temperature of ° C. have been proposed.
【0004】特開昭60−240135号のように、ホ
ウケイ酸亜鉛系ガラスに、Al2 O3 、ZrO2 、ムラ
イトなどのフィラーを添加してシート状成形体を作製
し、その表面に低抵抗金属を含むペーストを塗布して同
時焼成したガラスセラミック配線基板などが提案されて
いる。その他、特開平5−298919号には、ムライ
トやコージェライトを結晶相として析出させたガラスセ
ラミック焼結体も提案されている。As disclosed in JP-A-60-240135, a sheet-like molded body is prepared by adding a filler such as Al 2 O 3 , ZrO 2 , and mullite to a zinc borosilicate glass, and the surface thereof has a low resistance. A glass ceramic wiring board and the like which have been coated with a paste containing a metal and fired simultaneously have been proposed. In addition, JP-A-5-298919 proposes a glass-ceramic sintered body in which mullite or cordierite is precipitated as a crystal phase.
【0005】一方、多層回路基板に種々の電子部品や入
出力端子等を接続する工程上で基板に加わる応力から基
板が破壊したり、欠けを生じたりすることを防止する為
に、材料の機械的強度が高いことも要求されている。On the other hand, in order to prevent the substrate from being broken or chipped due to the stress applied to the substrate in the process of connecting various electronic components, input / output terminals, etc. to the multilayer circuit board, a material machine is used. High target strength is also required.
【0006】[0006]
【発明が解決しようとする問題点】しかしながら、従来
のガラスセラミック焼結体は、金、銀、銅などのメタラ
イズ層の多層化及び同時焼成が可能であるが、比誘電率
が7以下と低く、小型化には不向きであった。また、高
強度化に対しては、ガラスセラミック焼結体中に、ガー
ナイトなどのスピネル結晶相やZrO2 結晶相などを析
出させたセラミック焼結体が種々提案されているが、そ
れらの強度はせいぜい30kg/mm2 程度であり、電
子部品や入出力端子等を接続する際に絶縁基板に割れや
欠けが発生するなどの問題があった。また、従来のAl
2 O3 などのセラミック材料に比較して格段に低いため
に、その用途が非常に限られ、ガラスセラミック焼結体
の普及を阻害する大きな要因であった。However, the conventional glass-ceramic sintered body can be multi-layered and simultaneously fired with metallized layers of gold, silver, copper, etc., but has a low relative dielectric constant of 7 or less. However, it was not suitable for miniaturization. In order to increase the strength, various ceramic sintered bodies in which a spinel crystal phase such as garnet or a ZrO 2 crystal phase is precipitated in a glass ceramic sintered body have been proposed. At most, it is about 30 kg / mm 2 , which causes a problem such as cracking or chipping of the insulating substrate when connecting electronic components, input / output terminals, and the like. In addition, conventional Al
Its use is extremely limited because it is much lower than ceramic materials such as 2 O 3 , which is a major factor that hinders the spread of glass ceramic sintered bodies.
【0007】従って、本発明は、金、銀、銅を配線導体
として多層化が可能であるとともに、高強度、高誘電率
を有するセラミック焼結体を提供することを目的とする
ものである。また、本発明は、高強度で高誘電率のセラ
ミック焼結体を低温焼成して作成することのできるセラ
ミック焼結体の製造方法を提供するものである。Accordingly, an object of the present invention is to provide a ceramic sintered body which can be multilayered using gold, silver and copper as wiring conductors and has high strength and high dielectric constant. Another object of the present invention is to provide a method for producing a ceramic sintered body which can be produced by firing a ceramic sintered body having a high strength and a high dielectric constant at a low temperature.
【0008】[0008]
【問題点を解決するための手段】本発明者等は、上記問
題点を鋭意検討した結果、結晶相として、Al2 O
3 と、SiO2 と、アルカリ土類酸化物を含む複合酸化
物結晶相を主体とし、さらにZrO2 結晶相を含有する
焼結体において、その結晶化度を95%以上に高めるこ
とにより、焼結体の強度を35kg/mm2 以上とこれ
までにない非常に高い強度が得られることを見いだし、
本発明に至った。[Means for Solving the Problems] The present inventors have conducted intensive studies on the above problems, and as a result, found that Al 2 O
3 , a sintered body mainly composed of a composite oxide crystal phase containing SiO 2 and an alkaline earth oxide, and further containing a ZrO 2 crystal phase, by increasing the crystallinity of the sintered body to 95% or more. It was found that the strength of the solidified body was 35 kg / mm 2 or more, which was extremely high as never before.
The present invention has been reached.
【0009】即ち、本発明のセラミック焼結体は、結晶
相として、Al2 O3 、SiO2 と、アルカリ土類酸化
物とからなる複合酸化物結晶相と、ZrO2 結晶相とを
主体として含有するセラミック焼結体であって、該焼結
体の結晶化度が95%以上であり、且つ抗折強度が35
kg/mm2 以上であることを特徴とするものであり、
さらには、結晶相として、MgAl2 O4 結晶相やTi
O2 結晶相を含有すること、また、前記複合酸化物結晶
相が、アノーサイトおよび/またはスラウソナイトであ
ることを特徴とするものである。That is, the ceramic sintered body of the present invention mainly comprises, as crystal phases, a composite oxide crystal phase composed of Al 2 O 3 and SiO 2 and an alkaline earth oxide, and a ZrO 2 crystal phase. A ceramic sintered body containing the sintered body having a crystallinity of 95% or more and a transverse rupture strength of 35%.
kg / mm 2 or more,
Further, as a crystal phase, a MgAl 2 O 4 crystal phase or Ti
It contains an O 2 crystal phase, and the composite oxide crystal phase is anorthite and / or slausonite.
【0010】また、本発明のセラミック焼結体の製造方
法は、少なくともSiO2 、Al2O3 、アルカリ土類
金属、ZnOおよびB2 O3 を含有するガラス粉末45
〜80重量%と、CaOおよびZrO2 、あるいはそれ
らの化合物を合量で5〜30重量%、SrOおよびTi
O2 あるいはそれらの化合物を合量で5〜30重量%の
割合で含有する成形体を、700〜750℃の温度に保
持して焼成した後、さらに800〜1000℃に昇温し
て焼成して、Al2 O3 、SiO2 およびアルカリ土類
酸化物とからなる複合酸化物結晶相と、ZrO2 結晶相
とを主として析出させたことを特徴とするものである。The method for producing a ceramic sintered body according to the present invention is directed to a glass powder 45 containing at least SiO 2 , Al 2 O 3 , an alkaline earth metal, ZnO and B 2 O 3.
80 wt% and 5 to 30 wt% CaO and ZrO 2, or those compounds in total, SrO and Ti
A molded body containing O 2 or a compound thereof in a total amount of 5 to 30% by weight is fired while being maintained at a temperature of 700 to 750 ° C., and is further heated to 800 to 1000 ° C. for firing. Further, a composite oxide crystal phase composed of Al 2 O 3 , SiO 2 and an alkaline earth oxide, and a ZrO 2 crystal phase are mainly deposited.
【0011】[0011]
【発明の実施の形態】本発明のセラミック焼結体は、図
1の組織の概略図に示すように、結晶相として、SiO
2 、Al2 O3 およびアルカリ土類元素酸化物からなる
複合酸化物結晶相(Sl)1を主結晶相とする。この主
結晶相としては、CaAl2 Si2 O8 の化学式で表さ
れるアノサーイト結晶、または(Ca,Sr)Al2 S
i2 O8 で表されるスラウソナイト結晶が挙げられる。
この主結晶相は、焼結体中に、平均粒径が1〜3μmの
結晶粒子として存在する。この主結晶相は焼結体中に5
0重量%以上の割合で含有される。BEST MODE FOR CARRYING OUT THE INVENTION As shown in the schematic diagram of the structure of FIG.
2 , a composite oxide crystal phase (Sl) 1 comprising Al 2 O 3 and an alkaline earth element oxide is defined as a main crystal phase. As the main crystal phase, an anorthite crystal represented by a chemical formula of CaAl 2 Si 2 O 8 or (Ca, Sr) Al 2 S
Slausonite crystals represented by i 2 O 8 are mentioned.
This main crystal phase exists as crystal particles having an average particle size of 1 to 3 μm in the sintered body. This main crystal phase contains 5
It is contained in a proportion of 0% by weight or more.
【0012】また、この主結晶相以外の第2の結晶相と
して、ZrO2 結晶相(Z)2を必須として含有する。
このZrO2 結晶相は、主として正方晶および/または
立方晶として存在する。このZrO2 結晶相は、主結晶
相である前記複合酸化物結晶相の粒内および粒界に平均
粒径100nm以下の微細な結晶粒子として分散して存
在する。このように主結晶相内にZrO2 結晶が微細な
粒子として存在することにより主結晶相の強度を高める
作用をなし、セラミック焼結体全体の強度を高めること
ができる。また、ZrO2 は、それ自体の誘電率が高い
ことから、焼結体の誘電率を高める作用もなす。このZ
rO2 は、焼結体中において、10〜30重量%の割合
で含有することが望ましく、特に10〜20重量%の割
合で含む。従って、このZrO2 の含有量が10重量%
より少ないと強度を高めることが難しく、また30重量
%を越えると焼結性が低下しやすくなる。Further, as a second crystal phase other than the main crystal phase, a ZrO 2 crystal phase (Z) 2 is essentially contained.
This ZrO 2 crystal phase exists mainly as tetragonal and / or cubic. This ZrO 2 crystal phase is present in the form of fine crystal particles having an average particle diameter of 100 nm or less in the grains and the grain boundaries of the composite oxide crystal phase as the main crystal phase. As described above, the presence of ZrO 2 crystals as fine particles in the main crystal phase serves to increase the strength of the main crystal phase, and can increase the strength of the entire ceramic sintered body. ZrO 2 also has a function of increasing the dielectric constant of the sintered body because of its high dielectric constant. This Z
and rO 2, in the sintered body, desirably in a proportion of 10 to 30 wt%, including at particular proportion of 10 to 20 wt%. Therefore, the content of ZrO 2 is 10% by weight.
If the amount is less than the above, it is difficult to increase the strength, and if it exceeds 30% by weight, the sinterability tends to decrease.
【0013】本発明のセラミック焼結体は、焼結体中の
結晶相として、上記主結晶相およびZrO2 結晶相を不
可欠の結晶相として含むものであるが、このような結晶
相を含有するとともに、セラミック焼結体の結晶化度が
95%以上、特に97%以上の高結晶化度の焼結体であ
る。この結晶化度は、焼結体の強度を高める上で非常に
重要であり、本発明では、結晶化度を95%以上とする
ことにより、抗折強度35kg/mm2 以上の優れた強
度を発揮することができる。The ceramic sintered body of the present invention contains the above-mentioned main crystal phase and ZrO 2 crystal phase as indispensable crystal phases as crystal phases in the sintered body. The ceramic sintered body has a high crystallinity of 95% or more, particularly 97% or more. This degree of crystallinity is very important in increasing the strength of the sintered body. In the present invention, by setting the degree of crystallinity to 95% or more, an excellent strength with a transverse rupture strength of 35 kg / mm 2 or more can be obtained. Can be demonstrated.
【0014】また、本発明のセラミック焼結体は、結晶
化度を高める上で、上記主結晶相および第2の結晶相以
外に、MgAl2 O4 (スピネル型)結晶相(SP)
3、TiO2 (ルチル型)結晶相(T)4のうちの少な
くとも1種以上の結晶相を含有する場合もある。これら
は、焼結体中に含まれる種々の成分により、析出する結
晶相であるとともに、前記主結晶相である複合酸化物結
晶相とともに焼結体の誘電特性を制御するなどの作用を
具備する。また、場合によってはAl2 O3 結晶相が析
出する場合もある。In order to increase the crystallinity of the ceramic sintered body of the present invention, in addition to the main crystal phase and the second crystal phase, a MgAl 2 O 4 (spinel type) crystal phase (SP) is used.
3. It may contain at least one or more of TiO 2 (rutile type) crystal phases (T) 4. These are crystal phases precipitated by various components contained in the sintered body, and have an action of controlling the dielectric properties of the sintered body together with the composite oxide crystal phase as the main crystal phase. . In some cases, an Al 2 O 3 crystal phase is precipitated.
【0015】また、本発明のセラミック焼結体は、ガラ
ス相5をわずかな量で含有される場合もある。その場
合、ガラス相は、SiO2 、アルカリ土類元素酸化物、
アルミニウム等によって構成される。Further, the ceramic sintered body of the present invention may contain a small amount of the glass phase 5 in some cases. In that case, the glass phase is SiO 2 , alkaline earth element oxide,
It is made of aluminum or the like.
【0016】本発明のセラミック焼結体は、例えば、出
発原料組成として、少なくともSiO2 、Al2 O3 、
MgO、ZnOおよびB2 O3 を含む結晶化ガラスを4
5〜80重量%、特に50〜70重量%と、フィラー成
分としてCaOおよびZrO2 、あるいはそれらの化合
物を合量で5〜30重量%、特に10〜25重量%、さ
らには誘電率及び抗折強度の関係からZrはZrO2 換
算量で全量中4〜29重量%、CaはCaO換算で全量
中1〜15重量%の範囲で配合する。さらにフイラーと
してSrOおよびTiO2 あるいはそれらの化合物を合
量で5〜30重量%、特に10〜20重量%の割合で配
合する。そして、上記の比率が配合された混合粉末を含
有する成形体を非酸化性雰囲気または酸化性雰囲気中で
800℃〜1000℃の温度で焼成して緻密化すること
ができるが、上記の焼成前に、非酸化性雰囲気または酸
化性雰囲気中で700〜750℃で0.1〜1時間程度
保持することにより、結晶化度を95%以上に高めるこ
とができる。これは、上記の一時保持によって結晶種が
生成され、これにより結晶化が進行しやすくなるためと
考えられる。The ceramic sintered body of the present invention has, for example, at least SiO 2 , Al 2 O 3 ,
Crystallized glass containing MgO, ZnO and B 2 O 3
5-80% by weight, in particular with 50 to 70 wt%, 5-30 wt% CaO and ZrO 2 as a filler component, or those compounds in total, in particular 10 to 25 wt%, more dielectric constant and transverse rupture Zr from the relationship between the intensity total amount of 4-29 wt% in terms of ZrO 2 amount, Ca is added in amounts of 1-15 wt% in the total amount calculated as CaO. Furthermore 5-30 wt% in total of SrO and TiO 2 or a compound thereof as a filler, in a proportion of particularly 10 to 20 wt%. The compact containing the mixed powder in which the above ratio is blended can be densified by firing at a temperature of 800 ° C. to 1000 ° C. in a non-oxidizing atmosphere or an oxidizing atmosphere. In addition, the crystallinity can be increased to 95% or more by holding at 700 to 750 ° C. for about 0.1 to 1 hour in a non-oxidizing atmosphere or an oxidizing atmosphere. This is presumably because crystal seeds are generated by the above-mentioned temporary holding, which facilitates crystallization.
【0017】なお、上記結晶化ガラスの好適な組成とし
てはSiO2 :40〜45重量%、Al2 O3 :25〜
30重量%、MgO:8〜12重量%、ZnO:6〜9
重量%、B2 O3 :8〜11重量%である。The preferred composition of the crystallized glass is as follows: SiO 2 : 40 to 45% by weight, Al 2 O 3 : 25 to
30% by weight, MgO: 8 to 12% by weight, ZnO: 6 to 9
Wt%, B 2 O 3: is a 8-11 wt%.
【0018】なお、出発原料組成において、ガラスおよ
びフィラー量を状上記の比率に限定したのは、上記ガラ
ス量が45重量%より少ないか、言い換えればガラス以
外のフィラー成分の合計量が55重量%より多いと、8
00〜1000℃の温度で磁器が十分に緻密化すること
ができず、逆に、上記ガラス量が80重量%より多い
か、言い換えればフィラー成分の合計量が20重量%よ
り少ないと誘電率が8より低く、本発明の目的に合致し
ないためである。The reason why the amounts of glass and filler are limited to the above-mentioned ratios in the starting raw material composition is that the amount of glass is less than 45% by weight, in other words, the total amount of filler components other than glass is 55% by weight. If more, 8
At a temperature of 00 to 1000 ° C., the porcelain cannot be sufficiently densified. Conversely, if the amount of the glass is more than 80% by weight, in other words, if the total amount of the filler components is less than 20% by weight, the dielectric constant becomes low. 8, which does not meet the purpose of the present invention.
【0019】フィラー成分として、CaおよびZr量
が、5重量%より少ない場合、焼結体の強度が低く、逆
に30重量%より多いと焼成温度が1000℃より高く
なり、金、銀、銅などの同時焼成ができなくなるためで
ある。When the content of Ca and Zr is less than 5% by weight as a filler component, the strength of the sintered body is low. On the other hand, when the content is more than 30% by weight, the sintering temperature becomes higher than 1000 ° C., and gold, silver, copper This is because it becomes impossible to perform simultaneous firing such as described above.
【0020】また、SrおよびTiは、誘電特性の制御
する上で、必要であり、上記の範囲を逸脱すると、誘電
率、誘電正接または誘電率の温度特性が大きくなるなど
の弊害が生じる。Further, Sr and Ti are necessary for controlling the dielectric properties, and if the above range is deviated, adverse effects such as an increase in the dielectric constant, the dielectric loss tangent, or the temperature characteristic of the dielectric constant will occur.
【0021】さらに、本発明では、上記の出発原料組成
物に対して、耐薬品性を高める上で、さらにAlの酸化
物(Al2 O3 )、あるいはAlの酸化物とSiの酸化
物(SiO2 )を合量で0.1〜20重量%、とくに1
〜10重量%割合で含有することが望ましい。特に、S
iはSiO2 換算量で全量中0〜15重量%の範囲であ
ることが望ましい。それは、Al、あるいはAlおよび
Si量が酸化物換算による合量で0.1重量%より少な
いか、またはAl2 O3 量が0.1%重量より少ない場
合、耐薬品性の向上効果が小さく、SiおよびAlの上
記含有量が20重量%より多いか、またはAl2 O3 量
が20重量%より多い場合、磁器の緻密化温度が100
0℃より高くなり導体としての銅、金、銀の収縮曲線と
大きくずれ導体が剥離してしまうという問題が発生する
からである。Further, in the present invention, in order to enhance the chemical resistance of the starting material composition, an oxide of Al (Al 2 O 3 ) or an oxide of Al and an oxide of Si ( SiO 2 ) in a total amount of 0.1 to 20% by weight,
Desirably, the content is 10 to 10% by weight. In particular, S
i is preferably in the range of 0 to 15% by weight of the total amount in terms of SiO 2 . When the amount of Al or the total amount of Al and Si is less than 0.1% by weight in terms of oxide, or the amount of Al 2 O 3 is less than 0.1% by weight, the effect of improving chemical resistance is small. , Si and Al are more than 20% by weight or Al 2 O 3 is more than 20% by weight, the densification temperature of the porcelain is 100%.
This is because the temperature becomes higher than 0 ° C., and the shrinkage curves of copper, gold, and silver as conductors are greatly deviated, and a problem that the conductors peel off occurs.
【0022】また、本発明のセラミック焼結体を絶縁基
板とする配線基板を作製するには、上記のようにして作
製した混合粉末を公知のテープ成形法、例えばドクター
ブレード法、圧延法等に従い、絶縁層形成用のグリーン
シートを作製した後、そのシートの表面に配線層用のメ
タライズとして、Ag、AuやCuの粉末、特にCu粉
末を含む金属ペーストを用いて、シート表面に配線パタ
ーンにスクリーン印刷し、場合によってはシートにスル
ーホールを形成してホール内に上記ペーストを充填す
る。その後、複数のシートを積層圧着した後、上述した
条件で焼成し、さらに結晶化度を高める処理を施すこと
により、高強度の絶縁基板の表面および/または内部に
配線層を具備する多層配線基板を作製することができ
る。In order to produce a wiring substrate using the ceramic sintered body of the present invention as an insulating substrate, the mixed powder produced as described above is subjected to a known tape molding method, for example, a doctor blade method, a rolling method or the like. After preparing a green sheet for forming an insulating layer, a metal pattern containing a powder of Ag, Au or Cu, particularly a Cu powder is used as a metallization for a wiring layer on the surface of the sheet, and a wiring pattern is formed on the sheet surface. Screen printing is performed, and in some cases, through holes are formed in the sheet to fill the holes with the paste. After that, a plurality of sheets are laminated and pressed, baked under the above-described conditions, and further subjected to a process of increasing the crystallinity, whereby a multilayer wiring board having a wiring layer on the surface and / or inside of a high-strength insulating substrate is provided. Can be produced.
【0023】[0023]
【実施例】SiO2 −Al2 O3 −MgO−ZnO−B
2 O3 系結晶性ガラスとして 結晶性ガラスA:SiO2 44重量%−Al2 O3 29
重量%−MgO11重量%−ZnO7重量%−B2 O3
9重量% 結晶性ガラスB:SiO2 45重量%、Al2 O3 25
重量%−MgO10重量%−ZnO9重量%−B2 O3
11重量% の2種のガラスと、平均粒径が1μm以下のZrO2 お
よびCaCO3 、平均粒径が1μm以下のSrTi
O3 、平均粒径が1μm以下のAl2 O3 、SiO2を
表1、2の組成に従い混合した。なお、表1、2中、試
料No.1〜17については平均粒径0.7μmのCaZ
rO3 粉末を添加した。[Example] SiO 2 -Al 2 O 3 -MgO-ZnO-B
Crystalline glass A: SiO 2 44% by weight—Al 2 O 3 29 as 2 O 3 -based crystalline glass
Wt% -MgO11 wt% -ZnO7 wt% -B 2 O 3
9% by weight crystalline glass B: SiO 2 45% by weight, Al 2 O 3 25
Wt% -MgO10 wt% -ZnO9 wt% -B 2 O 3
11% by weight of two kinds of glass, ZrO 2 and CaCO 3 having an average particle diameter of 1 μm or less, and SrTi having an average particle diameter of 1 μm or less.
O 3 , Al 2 O 3 and SiO 2 having an average particle diameter of 1 μm or less were mixed according to the compositions shown in Tables 1 and 2. In Tables 1 and 2, for samples Nos. 1 to 17, CaZ with an average particle size of 0.7 μm was used.
rO 3 powder was added.
【0024】そして、この混合物に有機バインダー、可
塑剤、トルエンを添加し、ドクターブレード法により厚
さ300μmのグリーンシートを作製した。そして、こ
のグリーンシートを5枚積層し、50℃の温度で100
kg/cm2 の圧力を加えて熱圧着した。得られた積層
体を水蒸気含有/窒素雰囲気中で、500〜700℃で
脱バインダーした後、730℃で30分間保持した後、
さらに乾燥窒素中で表1、2の条件において焼成した。Then, an organic binder, a plasticizer, and toluene were added to the mixture, and a green sheet having a thickness of 300 μm was prepared by a doctor blade method. Then, five green sheets are laminated, and 100
Thermocompression bonding was performed by applying a pressure of kg / cm 2 . After debinding the obtained laminate at 500 to 700 ° C. in a water vapor-containing / nitrogen atmosphere, after holding at 730 ° C. for 30 minutes,
Further, it was fired in dry nitrogen under the conditions shown in Tables 1 and 2.
【0025】得られた焼結体について比誘電率、抗折強
度、X線回折による結晶化度を以下の方法で評価した。
比誘電率は、試料形状 直径50mm、厚み1mmの試
料を切り出し、3.0GHzにてネットワークアナライ
ザー、シンセサイズドスイーパーを用いて空洞共振器法
により測定した。測定では、サファイヤを充填した円筒
空洞共振器の間に試料の誘電体基板を挟んで測定した。
共振器のTE011 モードの共振特性より、比誘電率を算
出した。The obtained sintered body was evaluated for relative permittivity, flexural strength, and crystallinity by X-ray diffraction by the following methods.
The relative permittivity was measured by cutting a sample having a diameter of 50 mm and a thickness of 1 mm from the sample shape at 3.0 GHz by a cavity resonator method using a network analyzer and a synthesized sweeper. The measurement was performed with a dielectric substrate of a sample interposed between cylindrical cavities filled with sapphire.
The relative dielectric constant was calculated from the resonance characteristic of the TE011 mode of the resonator.
【0026】抗折強度は、試料形状 長さ70mm,厚
さ3mm,幅4mmとし、JIS−C−2141の規定
に準じて3点曲げ試験を行った。測定の結果は表1、2
に示した。The bending strength was a sample shape having a length of 70 mm, a thickness of 3 mm, and a width of 4 mm, and a three-point bending test was performed in accordance with JIS-C-2141. Tables 1 and 2 show the measurement results.
It was shown to.
【0027】結晶化度の評価は、複数の結晶相が析出す
るため、リートベルト法を用いて評価した。リートベル
ト法では、得られた焼結体を粉砕した後、内部標準試料
としてZnOを添加し、エタノールを加えて湿式混合を
行った。この混合は、焼結体粉末と内部標準試料がほぼ
均一になるまで行った。予めそれぞれの秤量しておいた
重量とリートベルト法により得られる定量結果から焼結
体に存在する結晶質の割合、すなわち結晶化度を評価し
た。また試料No.2とNo.4に対して各結晶相の定量結
果と結晶化度の定量結果を表3に示した。The crystallinity was evaluated by the Rietveld method since a plurality of crystal phases were precipitated. In the Rietveld method, after the obtained sintered body was pulverized, ZnO was added as an internal standard sample, ethanol was added, and wet mixing was performed. This mixing was performed until the sintered body powder and the internal standard sample became substantially uniform. From the previously weighed weights and the quantitative results obtained by the Rietveld method, the proportion of crystalline substances present in the sintered body, that is, the degree of crystallinity, was evaluated. Table 3 shows the quantitative results of the crystal phases and the crystallinity of Samples No. 2 and No. 4.
【0028】また、比較例として、フィラー成分とし
て、ZrO2 やCaOに代わり、Al2 O3 、フォルス
テライトを用いて同様に焼結体を作製し評価した(試料
No.23、24)。As a comparative example, a sintered body was prepared and evaluated similarly using Al 2 O 3 and forsterite instead of ZrO 2 and CaO as a filler component (samples Nos. 23 and 24).
【0029】また、上記結晶性ガラスに代わり、 結晶性ガラスC:SiO2 55.2重量%、Al2 O3
12重量% B2 O3 4.4重量%、MgO20重量%、ZnO6.
7重量%、Na2 O1.6重量%、ZrO2 0.1重量
% 結晶性ガラスD:SiO2 60.7重量%、Al
2 O3 :9.3重量% B2 O3 5重量%、MgO15.4重量%、ZnO8.
6重量%、K2 O1重量% のガラスを用いて、同様にして焼結体を作成し、同様に
評価を行った。In place of the above crystalline glass, crystalline glass C: 55.2% by weight of SiO 2 , Al 2 O 3
12 wt% B 2 O 3 4.4 wt%, MgO20 wt%, ZnO6.
7 wt%, Na 2 O 1.6 wt%, ZrO 2 0.1 wt% Crystalline glass D: SiO 2 60.7 wt%, Al
2 O 3 : 9.3 wt% B 2 O 3 5 wt%, MgO 15.4 wt%, ZnO 8.
A sintered body was prepared in the same manner using glass of 6% by weight and 1% by weight of K 2 O, and was similarly evaluated.
【0030】[0030]
【表1】 [Table 1]
【0031】[0031]
【表2】 [Table 2]
【0032】[0032]
【表3】 [Table 3]
【0033】表1、2の結果から明らかなように、結晶
化処理を施し、結晶相として(Ca,Sr)−Al−S
i−O(スラウソナイト)系複合酸化物結晶相、ZrO
2 結晶を含み、その結晶化度が95%以上の本発明の焼
結体は、いずれも誘電率が8以上、強度が35kg/m
m2 以上の高い値を示した。これに対して、結晶化処理
を施さなかった試料No.1、3、5、7では、結晶化度
を95%以上まで高めることができず、抗折強度が35
kg/mm2 に満たないものであった。As is clear from the results in Tables 1 and 2, crystallization treatment was performed and (Ca, Sr) -Al-S
i-O (slausonite) composite oxide crystal phase, ZrO
The sintered body of the present invention containing two crystals and having a crystallinity of 95% or more has a dielectric constant of 8 or more and a strength of 35 kg / m2.
It showed a high value of m 2 or more. On the other hand, in Samples Nos. 1, 3, 5, and 7 which were not subjected to the crystallization treatment, the crystallinity could not be increased to 95% or more, and the transverse rupture strength was 35%.
It was less than kg / mm 2 .
【0034】また、結晶相として、Al2 O3 、SiO
2 およびアルカリ土類酸化物を含む複合酸化物結晶相
や、ZrO2 結晶相を含有しない試料No.20〜25で
は、35kg/mm2 以上の強度を達成することができ
なかった。Further, Al 2 O 3 , SiO 2
Samples Nos. 20 to 25 containing no composite oxide crystal phase containing 2 and alkaline earth oxides or no ZrO 2 crystal phase could not achieve a strength of 35 kg / mm 2 or more.
【0035】[0035]
【発明の効果】以上詳述した通り、本発明の高強度セラ
ミック焼結体は、高い誘電率と優れた強度を有するため
に、マイクロ波用回路素子等において小型化が可能とな
り、さらに、基板材料の高強度化により入出力端子部に
施すリードの接合や実装における基板の信頼性を向上で
きる。しかも、800〜1000℃で焼成されるため、
Au、AgおよびCu等による配線を同時焼成により形
成することができる。As described in detail above, the high-strength ceramic sintered body of the present invention has a high dielectric constant and excellent strength, so that it can be miniaturized in microwave circuit elements and the like. By increasing the strength of the material, it is possible to improve the reliability of the substrate in bonding and mounting leads applied to the input / output terminals. Moreover, since it is fired at 800 to 1000 ° C.,
Wiring made of Au, Ag, Cu, or the like can be formed by simultaneous firing.
【図1】本発明の高強度セラミック焼結体の組織の概略
図である。FIG. 1 is a schematic view of the structure of a high-strength ceramic sintered body of the present invention.
1 (Ca,Sr)−Al−Si−O(スラウソナイ
ト)系複合酸化物結晶相 2 ZrO2 結晶相 3 スピネル型結晶相 4 TiO2 (ルチル型)結晶相 5 ガラス相DESCRIPTION OF SYMBOLS 1 (Ca, Sr) -Al-Si-O (slausonite) type composite oxide crystal phase 2 ZrO 2 crystal phase 3 Spinel type crystal phase 4 TiO 2 (rutile type) crystal phase 5 glass phase
Claims (5)
びアルカリ土類酸化物からなる複合酸化物結晶相と、Z
rO2 結晶相とを主体として含有するセラミック焼結体
であって、該焼結体の結晶化度が95%以上であり、且
つ抗折強度が35kg/mm2 以上であることを特徴と
する高強度セラミック焼結体。1. A composite oxide crystal phase comprising Al 2 O 3 , SiO 2 and an alkaline earth oxide,
A ceramic sintered body mainly containing an rO 2 crystal phase, wherein the sintered body has a crystallinity of 95% or more and a transverse rupture strength of 35 kg / mm 2 or more. High strength ceramic sintered body.
相を含有する請求項1記載の高強度セラミック焼結体。2. The high-strength ceramic sintered body according to claim 1, further comprising a MgAl 2 O 4 crystal phase as a crystal phase.
有する請求項1または請求項2記載の記載の高強度セラ
ミック焼結体。3. The high-strength ceramic sintered body according to claim 1, further comprising a TiO 2 crystal phase as a crystal phase.
よび/またはスラウソナイトである請求項1記載の高強
度セラミック焼結体。4. The high-strength ceramic sintered body according to claim 1, wherein the composite oxide crystal phase is anorthite and / or slausonite.
リ土類金属、ZnOおよびB2 O3 を含有するガラス粉
末45〜80重量%と、CaOおよびZrO2、あるい
はそれらの化合物を合量で5〜30重量%、SrOおよ
びTiO2 あるいはそれらの化合物を合量で5〜30重
量%の割合で含有する成形体を、700〜750℃の温
度に保持して焼成した後、さらに800〜1000℃に
昇温して焼成し、Al2 O3 、SiO2 およびアルカリ
土類酸化物からなる複合酸化物結晶相と、ZrO2 結晶
相を主として析出させたことを特徴とする高強度セラミ
ック焼結体の製造方法。5. A total amount of 45 to 80% by weight of a glass powder containing at least SiO 2 , Al 2 O 3 , alkaline earth metal, ZnO and B 2 O 3 , and CaO and ZrO 2 or a compound thereof. 5 to 30 wt%, the molded body containing SrO and TiO 2 or a compound thereof in a proportion of 5 to 30 wt% in total, was calcined by keeping at a temperature of 700 to 750 ° C., further 800 to 1,000 ° C and fired to precipitate a composite oxide crystal phase composed of Al 2 O 3 , SiO 2 and alkaline earth oxides, and a ZrO 2 crystal phase mainly, thereby sintering a high-strength ceramic. How to make the body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20165197A JP3792355B2 (en) | 1997-07-28 | 1997-07-28 | High-strength ceramic sintered body, method for producing the same, and wiring board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20165197A JP3792355B2 (en) | 1997-07-28 | 1997-07-28 | High-strength ceramic sintered body, method for producing the same, and wiring board |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1143369A true JPH1143369A (en) | 1999-02-16 |
JP3792355B2 JP3792355B2 (en) | 2006-07-05 |
Family
ID=16444633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20165197A Expired - Fee Related JP3792355B2 (en) | 1997-07-28 | 1997-07-28 | High-strength ceramic sintered body, method for producing the same, and wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3792355B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001240470A (en) * | 2000-02-29 | 2001-09-04 | Kyocera Corp | High frequency porcelain composition, high frequency porcelain, and method of manufacturing high frequency porcelain |
EP2308805A2 (en) | 2009-10-07 | 2011-04-13 | Asahi Glass Company, Limited | Ceramic material composition |
WO2024139227A1 (en) * | 2022-12-30 | 2024-07-04 | 重庆鑫景特种玻璃有限公司 | Drop-resistant toughened microcrystalline glass having safe stress state, preparation method therefor and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004260753A (en) * | 2003-02-27 | 2004-09-16 | Matsushita Electric Ind Co Ltd | Transmission power control apparatus |
JP2010536223A (en) * | 2007-08-09 | 2010-11-25 | エルジー エレクトロニクス インコーポレイティド | RACH preamble configuration method and RACH signal transmission method |
JP2013017060A (en) * | 2011-07-05 | 2013-01-24 | Sharp Corp | Wireless communication system, base station device, mobile station device, wireless communication method, and integrated circuit |
-
1997
- 1997-07-28 JP JP20165197A patent/JP3792355B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004260753A (en) * | 2003-02-27 | 2004-09-16 | Matsushita Electric Ind Co Ltd | Transmission power control apparatus |
JP2010536223A (en) * | 2007-08-09 | 2010-11-25 | エルジー エレクトロニクス インコーポレイティド | RACH preamble configuration method and RACH signal transmission method |
JP2013017060A (en) * | 2011-07-05 | 2013-01-24 | Sharp Corp | Wireless communication system, base station device, mobile station device, wireless communication method, and integrated circuit |
Non-Patent Citations (3)
Title |
---|
JPN6016040456; New Postcom: 'Discussion to RAN2 LS on common search space for RACH on Scell[online]' 3GPP TSG RAN WG1 Meeting #67 R1-113688 , 20111108, インターネット<URL:http://www.3gpp.org/ftp/tsg_ra * |
JPN6016040457; QUALCOMM Europe: 'Random access procedure options[online]' 3GPP TSG-RAN WG2#56 R2-063278 , 20061101, インターネット<URL:http://www.3gpp.org/ftp/tsg_ra * |
JPN6016040458; 'Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specificat' 3GPP TS 36.321 V11.2.0 (2013-03) , 20130313, インターネット<URL:http://www.3gpp.org/ftp/Specs/ * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001240470A (en) * | 2000-02-29 | 2001-09-04 | Kyocera Corp | High frequency porcelain composition, high frequency porcelain, and method of manufacturing high frequency porcelain |
EP2308805A2 (en) | 2009-10-07 | 2011-04-13 | Asahi Glass Company, Limited | Ceramic material composition |
US8304357B2 (en) | 2009-10-07 | 2012-11-06 | Asahi Glass Company, Limited | Ceramic material composition |
WO2024139227A1 (en) * | 2022-12-30 | 2024-07-04 | 重庆鑫景特种玻璃有限公司 | Drop-resistant toughened microcrystalline glass having safe stress state, preparation method therefor and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3792355B2 (en) | 2006-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3297569B2 (en) | Low temperature firing porcelain composition | |
JP5056528B2 (en) | Insulator ceramic composition and insulator ceramic using the same | |
US8173565B2 (en) | Sintered body of low temperature cofired ceramic and multilayer ceramic substrate | |
JP2002111210A (en) | Wiring board and method of manufacturing the same | |
EP0960866B1 (en) | Ceramic substrate composition and ceramic circuit component | |
JP3517062B2 (en) | Copper metallized composition and glass-ceramic wiring board using the same | |
JP2001240470A (en) | High frequency porcelain composition, high frequency porcelain, and method of manufacturing high frequency porcelain | |
JP3792355B2 (en) | High-strength ceramic sintered body, method for producing the same, and wiring board | |
JP3550270B2 (en) | Low temperature fired porcelain composition and method for producing low temperature fired porcelain | |
JP2004115295A (en) | Low temperature sinterable ceramic composition for high frequency and method of producing the same | |
JP3377898B2 (en) | Low temperature firing porcelain composition | |
JP4202117B2 (en) | Low-frequency fired porcelain composition for high frequency and manufacturing method thereof | |
JP3527818B2 (en) | Low-temperature firing porcelain and method of manufacturing the same | |
JP4580923B2 (en) | Low-frequency fired porcelain composition for high frequency, its manufacturing method and electronic component | |
JP3314130B2 (en) | Low temperature firing porcelain composition | |
JP3363299B2 (en) | Low temperature firing porcelain composition | |
JP3101970B2 (en) | Glass-ceramic sintered body and method for producing the same | |
JP2002053369A (en) | Ceramic sintered compact and wiring board using the same | |
JP2003238235A (en) | Low temperature-firable porcelain composition for high frequency use and production method therefor | |
JP2003073162A (en) | Glass ceramic and wiring board using the same | |
JP3101971B2 (en) | Glass-ceramic sintered body and method for producing the same | |
JP3441924B2 (en) | Wiring board and its mounting structure | |
JP3420437B2 (en) | Low temperature firing porcelain composition | |
JP3401147B2 (en) | Low temperature firing porcelain composition | |
JP2003137657A (en) | Glass ceramic, method for producing the same, and wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050308 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050509 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060320 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060405 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090414 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100414 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110414 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110414 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120414 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120414 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140414 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |