JPH1141832A - System and method for solar cell generation - Google Patents
System and method for solar cell generationInfo
- Publication number
- JPH1141832A JPH1141832A JP9192529A JP19252997A JPH1141832A JP H1141832 A JPH1141832 A JP H1141832A JP 9192529 A JP9192529 A JP 9192529A JP 19252997 A JP19252997 A JP 19252997A JP H1141832 A JPH1141832 A JP H1141832A
- Authority
- JP
- Japan
- Prior art keywords
- solar cell
- power
- unit
- power generation
- power conversion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Control Of Electrical Variables (AREA)
- Dc-Dc Converters (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、太陽電池で発生し
た電力を負荷、蓄電池及び電力変換装置等に供給する太
陽電池発電システム及び方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell power generation system and method for supplying power generated by a solar cell to a load, a storage battery, a power converter, and the like.
【0002】[0002]
【従来の技術】従来の太陽電池システムのブロック図を
図3に示す。従来のシステムは太陽電池アレイ10、最
大電力追尾形電力変換装置部20で構成されている。最
大電力追尾形電力変換装置部20は、スイッチング電力
変換回路部30、入力電圧検出回路40、入力電流検出
回路50、制御回路部60からなる。制御回路部60
は、入力電力演算回路61、電流微分回路62、電力微
分回路63、乗算器64、比較器65、駆動回路66か
ら構成される。2. Description of the Related Art FIG. 3 shows a block diagram of a conventional solar cell system. The conventional system includes a solar cell array 10 and a maximum power tracking type power conversion device unit 20. The maximum power tracking type power conversion device unit 20 includes a switching power conversion circuit unit 30, an input voltage detection circuit 40, an input current detection circuit 50, and a control circuit unit 60. Control circuit unit 60
Is composed of an input power calculation circuit 61, a current differentiation circuit 62, a power differentiation circuit 63, a multiplier 64, a comparator 65, and a drive circuit 66.
【0003】従来システムの動作は以下の通りである。
入力電圧検出回路40は、スイッチング電力変換回路3
0の入力電圧Vを検出し、入力電圧信号Vs を発生す
る。入力電流検出回路50は、スイッチング電力変換回
路30の入力電流Iを検出し、入力電流信号Is を発生
する。入力電力演算回路61は入力電力信号Vs 及び入
力電流信号Is により入力電力信号Ws を演算する。The operation of the conventional system is as follows.
The input voltage detection circuit 40 includes the switching power conversion circuit 3
An input voltage V of 0 is detected, and an input voltage signal Vs is generated. The input current detection circuit 50 detects an input current I of the switching power conversion circuit 30 and generates an input current signal Is. The input power calculation circuit 61 calculates the input power signal Ws based on the input power signal Vs and the input current signal Is.
【0004】電流微分回路62は、入力電流信号Is の
微分演算を行い、入力電流微分信号dIs /dtを出力
する。一方、電力微分回路63は、入力電力信号Ws の
微分演算を行い、入力電分微分信号dWs /dtを発生
する。当該入力電流微分信号dIs /dtと入力電力微
分信号dWs /dtは乗算機64で乗算され、乗算信号
Mwsを発生し論理回路65に入力する。A current differentiating circuit 62 performs a differential operation on the input current signal Is and outputs an input current differential signal dIs / dt. On the other hand, the power differentiating circuit 63 performs a differential operation on the input power signal Ws to generate an input electric component differential signal dWs / dt. The input current derivative signal dIs / dt and the input power derivative signal dWs / dt are multiplied by a multiplier 64 to generate a multiplication signal Mws, which is input to the logic circuit 65.
【0005】論理回路65は発生信号Mwsが正のときは
ハイ、乗算信号Mwsが負のときにはローとなるスイッチ
オン期間増減指令信号SHLを発生する。駆動回路66は
スイッチオン期間増減指令信号SHLがハイの時はスイッ
チのオン期間が増加するような、ローの時はスイッチの
オン期間が減少するような駆動信号PHLをスイッチング
電力変換回路30に送り、スイッチング電力変換回路3
0内の半導体スイッチ31を駆動する。[0005] logic circuit 65 generating the signal Mws is positive when the high multiplication signal Mws is when negative for generating a switch-on period increases or decreases the command signal S HL made low. The drive circuit 66 generates a drive signal PHL such that the switch-on period increases when the switch-on period increase / decrease command signal SHL is high and the switch-on period decreases when the switch-on period increase / decrease command signal SHL is low. To the switching power conversion circuit 3
Drive the semiconductor switch 31 within 0.
【0006】太陽電池アレイ10の発電電流−発電電力
特性例のグラフを図4に示す。従来例の構成を、図4の
ように発電電流に対して発電電力が極大値を有する特性
の太陽電池アレイに適用することにより、乗算信号Mws
が正の場合、つまりスイッチング電力変換回路30の入
力電流及び電力、即ち発電電流及び発電電力の動作点が
最適電流Iopt よりも左側の領域にある時にはスイッチ
ング電力変換回路30の半導体スイッチ31のオン期間
は増加する制御を行う。FIG. 4 is a graph showing an example of a generated current-generated power characteristic of the solar cell array 10. By applying the configuration of the conventional example to a solar cell array having a characteristic in which the generated power has a maximum value with respect to the generated current as shown in FIG.
Is positive, that is, when the input current and the power of the switching power conversion circuit 30, that is, the operating points of the generated current and the generated power are in a region on the left side of the optimum current Iopt, the ON period of the semiconductor switch 31 of the switching power conversion circuit 30 Performs increasing control.
【0007】乗算信号Mwsが負の場合、つまりスイッチ
ング電力変換回路30の入力電流I及び電力Ws 、即ち
発電電流及び発電電力の動作点が最適電流Iopt よりも
右側の領域にある時にはスイッチング電力変換回路30
の半導体スイッチ31のオン期間が減少することで、ス
イッチング電力変換回路30の入力電流I及び電力Ws
、即ち発電電流及び発電電力の動作点を常に太陽電池
アレイ10の最大電力発電点(I=Iopt ,W=Wmax
)に向かって移動できることから、太陽電池アレイ1
0を最大電力発電点近傍で動作させることが可能であ
り、従来はこのような構成を採用していた。When the multiplication signal Mws is negative, that is, when the input current I and the power Ws of the switching power conversion circuit 30, that is, the generated current and the operating point of the generated power are in a region on the right side of the optimum current Iopt, the switching power conversion circuit is switched. 30
Is reduced, the input current I and the power Ws of the switching power conversion circuit 30 are reduced.
That is, the operating point of the generated current and the generated power is always set to the maximum power generation point (I = Iopt, W = Wmax) of the solar cell array 10.
), The solar cell array 1
0 can be operated in the vicinity of the maximum power generation point, and such a configuration has conventionally been adopted.
【0008】[0008]
【発明が解決しようとする課題】従来の太陽電池発電シ
ステムの問題点を説明するグラフを図5乃至図7に示
す。太陽電池セル11の発電電流−電圧特性は、セル1
1に入射される太陽光の強度に依存し、最適電流の値も
太陽光の強度によって変化する。従って、従来の太陽電
池システムにおいて、太陽電池アレイ10内に設置角度
が異なる太陽電池セル11が搭載された場合、最適電流
がセル11によって異なるため、全てのセル11内を流
れる電流を最適電流値に制御することが不可能で、シス
テムの発電効率が低下する問題点がある。FIG. 5 to FIG. 7 are graphs for explaining the problems of the conventional solar cell power generation system. The generated current-voltage characteristics of the solar cell 11
The value of the optimum current depends on the intensity of sunlight, which depends on the intensity of sunlight incident on 1. Therefore, in the conventional solar cell system, when solar cells 11 having different installation angles are mounted in the solar cell array 10, the optimum current differs depending on the cells 11. And the power generation efficiency of the system is reduced.
【0009】例えば、図5に示すように太陽光の入射強
度が強く、最大電力発電点(Iopta,Wmaxa)で動作す
る太陽電池セル列Aと、図6に示すように太陽光の入射
強度が弱く、最大電力発電点(Ioptb,Wmaxb)で動作
する太陽電池セル列Bを直列に接続して太陽電池アレイ
(A+B)を構成した場合、太陽電池アレイ(A+B)
の発電電流−発電電力特性は図7のように極大値を2 つ
有し、従来の太陽電池システムを用いた揚合には、第1
極大発電点(I′,W′)又は第2極大発電点(I″,
W″)で動作する。For example, as shown in FIG. 5, the solar light incident intensity is high, and the solar cell array A operating at the maximum power generation point (Iopta, Wmaxa), and as shown in FIG. When the solar cell array (A + B) is configured by connecting the solar cell arrays B that are weak and operate at the maximum power generation points (Ioptb, Wmaxb) in series, the solar cell array (A + B)
As shown in FIG. 7, the generated current-power characteristic has two maximum values, and the first using the conventional solar cell system is the first.
The maximum power generation point (I ', W') or the second maximum power generation point (I ",
W ").
【0010】この場合、第1 又は第2いずれの極大発電
点で動作した場合にも、W′<Wmaxa+Wmaxbもしくは
W″<Wmaxa+Wmaxbであり、システムの出力電力は太
陽電池アレイ(A+B)に搭載された太陽電池セルAと
太陽電池セルBの個々の最大発電電力の加算値を下回る
電力値しか発電能力が無い。In this case, W '<Wmaxa + Wmaxb or W ″ <Wmaxa + Wmaxb when operating at either the first or second maximum power generation point, and the output power of the system is mounted on the solar cell array (A + B). Only the power value less than the sum of the maximum generated powers of the solar cells A and B has power generation capability.
【0011】[0011]
【外1】 [Outside 1]
【0012】従って、従来の太陽電池発電システムで
は、システムに搭載する太陽電池セル数の増加や太陽電
池アレイの大型化を招き、システムの経済性を損なう構
成となっていた。Therefore, the conventional solar cell power generation system has a configuration in which the number of solar cells mounted on the system is increased and the size of the solar cell array is increased, thereby impairing the economy of the system.
【0013】ここにおいて、本発明の解決すべき主要な
目的は、次の通りである。本発明の第1の目的は、シス
テム全体の最大発電電力量が太陽電池セルの最大発電電
力量の単純加算量となる太陽電池発電システムの提供に
ある。Here, the main objects to be solved by the present invention are as follows. A first object of the present invention is to provide a solar cell power generation system in which the maximum generated power amount of the entire system is a simple addition amount of the maximum generated power amount of the solar cell.
【0014】本発明の第2の目的は、太陽電池アレイを
小型化し、システム構成が大規模にならない太陽電池発
電システムの提供にある。A second object of the present invention is to provide a solar cell power generation system in which the size of the solar cell array is reduced and the system configuration does not become large.
【0015】本発明のその他の目的は、明細書、図面、
特に特許請求の範囲の各請求項の記載から自ずと明らか
となろう。[0015] Other objects of the present invention are as follows:
In particular, it will be obvious from the description of each claim in the claims.
【0016】[0016]
【課題を解決するための手段】本発明は、前記課題解決
に当って、太陽電池アレイを構成し、日照太陽光に対し
て設置発電条件を同一とする太陽電池セル群毎にそれぞ
れに最大電力追尾形電力変換装置部を設置して、電力変
換システム全体の最大発電電力量が各太陽電池セル群の
最大発電電力量の単純加算量となる。更に具体的詳細に
述べると、当該課題の解決では、本発明が次に列挙する
上位概念から下位概念に亙る新規な特徴的構成手段又は
手法を採用することにより前記目的を達成する。According to the present invention, in order to solve the above-mentioned problems, a solar cell array is constructed, and the maximum power is provided for each solar cell group having the same installation power generation condition with respect to sunlight. By installing the tracking type power converter unit, the maximum generated power amount of the entire power conversion system is a simple addition amount of the maximum generated power amount of each solar cell group. More specifically, in order to solve the problem, the present invention achieves the above object by adopting a novel characteristic configuration means or technique ranging from a high-level concept to a low-level concept listed below.
【0017】即ち、本発明システムの第1の特徴は、複
数の太陽電池セルから構成された太陽電池アレイ及びス
イッチング電力変換回路と、前記スイッチング電力変換
回路の入力電力が最大値となるように前記スイッチング
電力変換回路のオン期間を制御する制御回路とを有した
最大電力追尾形電力変換装置部からなり、前記太陽電池
アレイの発電電力を前記最大電力追尾形電力変換装置部
を介して負荷等に供給する太陽電池発電システムにおい
て、前記太陽電池アレイとして、前記複数の太陽電池セ
ルを単位接続して構成した単位太陽電池モジュールの複
数からなるモジュール分離形太陽電池アレイを用い、当
該モジュール分離形太陽電池アレイ内の前記各太陽電池
モジュール毎に、前記最大電力追尾形電力変換装置部を
それぞれ接続し、当該複数の最大電力追尾形電力変換装
置部の出力相互を所定に接続することにより、前記モジ
ュール分割形太陽電池アレイの発電電力を前記複数の最
大電力追尾形電力変換装置部を介して負荷等に供給して
なる太陽電池発電システムの構成採用にある。That is, a first feature of the system of the present invention is that a solar cell array and a switching power conversion circuit composed of a plurality of solar cells are provided so that the input power of the switching power conversion circuit has a maximum value. And a control circuit for controlling the on-period of the switching power conversion circuit, comprising a maximum power tracking type power conversion device unit having a control circuit for controlling the ON period of the switching power conversion circuit. In the solar cell power generation system to be supplied, a module separated solar cell array including a plurality of unit solar cell modules configured by connecting the plurality of solar cells as a unit is used as the solar cell array. For each of the solar cell modules in the array, connect the maximum power tracking type power converter unit, By connecting the outputs of the plurality of maximum power tracking power converter units in a predetermined manner, the power generated by the module split type solar cell array is supplied to a load or the like via the plurality of maximum power tracking power converter units. The configuration of the supplied solar cell power generation system is adopted.
【0018】本発明システムの第2の特徴は、前記本発
明システムの第1の特徴における単位太陽電池モジュー
ルが、設置角度等の発電条件を同じくする複数の太陽電
池セルを単位接続して構成してなる太陽電池発電システ
ムの構成採用にある。A second feature of the system of the present invention is that the unit solar cell module according to the first feature of the present system is configured by unit-connecting a plurality of solar cells having the same power generation condition such as an installation angle. It is in the adoption of the configuration of the solar cell power generation system.
【0019】本発明システムの第3の特徴は、本発明シ
ステムの第1又は第2の特徴における単位太陽電池モジ
ュールが、太陽電池セルを直列に接続してなる太陽電池
発電システムの構成採用にある。A third feature of the system of the present invention resides in the adoption of a configuration of a solar battery power generation system in which the unit solar battery modules in the first or second feature of the system of the present invention have solar cells connected in series. .
【0020】本発明システムの第4の特徴は、本発明シ
ステムの第1又は第2の特徴における単位太陽電池モジ
ュールが、太陽電池セルを並列に接続してなる太陽電池
発電システムの構成採用にある。A fourth feature of the system of the present invention resides in adoption of a configuration of a solar cell power generation system in which the unit solar cell modules in the first or second feature of the system of the present invention are formed by connecting solar cells in parallel. .
【0021】本発明システムの第5の特徴は、本発明シ
ステムの第1、第2、第3又は第4の特徴における複数
の最大電力追尾形電力変換装置部が、出力相互を所定に
接続することにより電力変換システムを形成してなる太
陽電池発電システムの構成採用にある。A fifth feature of the system of the present invention is that the plurality of maximum power tracking power converter units in the first, second, third or fourth feature of the present system connect the outputs to each other in a predetermined manner. Accordingly, the present invention resides in adopting a configuration of a solar cell power generation system that forms a power conversion system.
【0022】本発明システムの第6の特徴は、本発明シ
ステムの第5の特徴における最大電力追尾形電力変換装
置部の出力が、それぞれを直列に接続されて電力変換シ
ステム全体の出力としてなる太陽電池発電システムの構
成採用にある。A sixth feature of the system of the present invention is that the output of the maximum power tracking type power converter in the fifth feature of the present system is connected to each other in series and serves as an output of the entire power conversion system. It consists in adopting the configuration of the battery power generation system.
【0023】本発明システムの第7の特徴は、本発明シ
ステムの第5の特徴における最大電力追尾形電力変換装
置部の出力が、それぞれを並列に接続されて電力変換シ
ステム全体の出力としてなる太陽電池発電システムの構
成採用にある。A seventh feature of the system of the present invention resides in that the output of the maximum power tracking type power converter in the fifth feature of the present system is connected to each other in parallel and serves as an output of the entire power conversion system. It consists in adopting the configuration of the battery power generation system.
【0024】本発明システムの第8の特徴は、本発明シ
ステムの第1、第2、第3、第4、第5、第6又は第7
の特徴におけるスイッチング電力変換回路が、一石の降
圧型DC−DCコンバータ、昇圧型コンバータ、昇降圧
コンバータ等のDC−DCコンバータやインバータであ
る太陽電池発電システムの構成採用にある。The eighth feature of the system of the present invention is that the first, second, third, fourth, fifth, sixth or seventh of the system of the present invention.
The switching power conversion circuit according to the first aspect is characterized by adopting a configuration of a DC-DC converter such as a step-down DC-DC converter, a step-up converter, a step-up / step-down converter, and a solar cell power generation system as an inverter.
【0025】本発明システムの第9の特徴は、本発明シ
ステムの第1、第2、第3、第4、第5、第6、第7又
は第8の特徴における制御回路部が、スイッチング電力
変換回路の入力電流・電圧を同時並行入力し最終的に半
導体スイッチのオンオフ時間を制御駆動する駆動信号を
出力して前記スイッチング電力変換回路の出力電力を最
大にする制御機能を有してなる太陽電池発電システムの
構成採用にある。A ninth feature of the system of the present invention is that the control circuit in the first, second, third, fourth, fifth, sixth, seventh or eighth feature of the system of the present invention has a switching power supply. A solar controller having a control function of simultaneously inputting the input current and voltage of the conversion circuit and finally outputting a drive signal for controlling and driving the on / off time of the semiconductor switch to maximize the output power of the switching power conversion circuit. It consists in adopting the configuration of the battery power generation system.
【0026】本発明システムの第10の特徴は、本発明
システムの第1、第2、第3、第4、第5、第6、第
7、第8又は第9の特徴における単位太陽電池モジュー
ルが、円柱周側面に縦横列に設置した内の各縦列の太陽
セル群を直列又は並列に接続構成してなる太陽電池発電
システムの構成採用にある。A tenth feature of the present invention system is the unit solar cell module according to the first, second, third, fourth, fifth, sixth, seventh, eighth or ninth feature of the present invention system. However, there is a configuration adoption of a solar cell power generation system in which the solar cell groups in each column among the columns installed in a column on the circumferential side surface of the cylinder are connected in series or in parallel.
【0027】本発明方法の第1の特徴は、複数の太陽電
池セルからなる太陽電池アレイを構成し、発電電流のス
イッチングを行って電力変換制御を行い、最大となる電
力変換システム全体の出力電力を負荷等に供給するに当
り、複数の前記太陽電池セルが単位接続された単位太陽
電池モジュール群から前記太陽電池アレイを構成し、前
記各単位太陽電池モジュール毎に電力が最大となるよう
電流のスイッチングをフィードバック制御して出力し、
前記各単位太陽電池モジュールの最大出力電力値を単純
加算し、電力変換システム全体の最大出力電力値を得る
ことにより発電効率を高めてなる太陽電池発電方法の構
成採用にある。A first feature of the method of the present invention is that a solar cell array composed of a plurality of solar cells is constructed, power generation control is performed by switching a generated current, and the maximum output power of the entire power conversion system is obtained. In supplying to a load or the like, the solar cell array is configured from a unit solar cell module group in which a plurality of the solar cells are unit-connected, and the current is set so that the power is maximized for each of the unit solar cell modules. Outputs switching by feedback control,
The present invention is to adopt a configuration of a solar cell power generation method in which the maximum output power value of each unit solar cell module is simply added to obtain the maximum output power value of the entire power conversion system to thereby increase the power generation efficiency.
【0028】本発明方法の第2の特徴は、本発明方法の
第1の特徴における単位接続する複数の太陽電池セル
が、同一設置角に配列し発電条件を同じくし一律に最適
電流値に制御され通電してなる太陽電池発電方法の構成
採用にある。A second feature of the method of the present invention resides in that a plurality of solar cells connected in a unit in the first feature of the method of the present invention are arranged at the same installation angle and the power generation conditions are the same, and are uniformly controlled to an optimum current value. And the configuration of a solar cell power generation method that is energized.
【0029】本発明方法の第3の特徴は、本発明方法の
第1又は第2の特徴における単位太陽電池モジュール中
の各太陽電池セルが、直列に接続してなる太陽電池発電
方法の構成採用にある。A third feature of the method of the present invention resides in the adoption of a configuration of a solar cell power generation method in which each solar cell in a unit solar cell module in the first or second feature of the method of the present invention is connected in series. It is in.
【0030】本発明方法の第4の特徴は、本発明方法の
第1又は第2の特徴における単位太陽電池モジュール中
の各太陽電池セルが、並列に接続してなる太陽電池発電
方法の構成採用にある。A fourth feature of the method of the present invention is that the configuration of the solar cell power generation method in which the respective solar cells in the unit solar cell module in the first or second feature of the method of the present invention are connected in parallel. It is in.
【0031】本発明方法の第5の特徴は、本発明方法の
第1、第2、第3又は第4の特徴における電力変換シス
テム全体の最大出力値が、単位太陽電池モジュールの出
力を直列に接続することにより得てなる太陽電池発電方
法の構成採用にある。A fifth feature of the method of the present invention is that the maximum output value of the entire power conversion system according to the first, second, third or fourth feature of the method of the present invention is such that the output of the unit solar cell module is connected in series. The present invention is to adopt a configuration of a solar cell power generation method obtained by connecting.
【0032】本発明方法の第6の特徴は、本発明方法の
第1、第2、第3又は第4の特徴における電力変換シス
テム全体の最大出力値が、単位太陽電池モジュールの出
力を並列に接続することにより得てなる太陽電池発電方
法の構成採用ある。A sixth feature of the method of the present invention is that the maximum output value of the entire power conversion system in the first, second, third or fourth feature of the method of the present invention is such that the output of the unit solar cell module is connected in parallel. There is a configuration adoption of a solar cell power generation method obtained by connecting.
【0033】[0033]
【発明の実施の形態】本発明の実施の形態をそのシステ
ム例、方法例及び実施例につき図面を参照して説明す
る。 (システム例)本システム例の太陽電池発電システムの
ブロック図を第1図に示す。本システムは、モジュール
分割形太陽電池アレイ100、電力変換システム200
で構成される。モジュール分割形太陽電池アレイ100
は、設置角度等発電条件を同じくする複数の太陽電池セ
ル11を直列もしくは並列に単位接続することによって
構成した複数の単位太陽電池モジュール100―1〜1
00―nからなる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings with reference to an example of a system, an example of a method, and an example. (Example of System) FIG. 1 shows a block diagram of a solar cell power generation system of this example of the system. The system includes a module-divided solar cell array 100 and a power conversion system 200.
It consists of. Module-divided solar cell array 100
Is a plurality of unit solar cell modules 100-1 to 100-1 configured by connecting a plurality of solar cells 11 having the same power generation condition such as an installation angle in series or in parallel.
00-n.
【0034】電力変換システム200は複数の最大電力
追尾形電力変換装置部20―1〜20―nで構成され、
複数の単位太陽電池モジュール100―1〜100―n
の出力にそれぞれ接続される。最大電力追尾形電力変換
装置部20―1〜20―nは、スイッチング電力変換回
路30、入力電圧検出回路40、入力電流検出回路5
0、制御回路部60からなり、制御回路部60は、入力
電力演算回路61、電流微分回路62、電力微分回路6
3、乗算器64、比較器65、駆動回路66から構成さ
れる。The power conversion system 200 is composed of a plurality of maximum power tracking type power conversion units 20-1 to 20-n.
Plurality of unit solar cell modules 100-1 to 100-n
Connected to the outputs of The maximum power tracking type power conversion device units 20-1 to 20-n include a switching power conversion circuit 30, an input voltage detection circuit 40, and an input current detection circuit 5.
0, a control circuit section 60. The control circuit section 60 includes an input power calculation circuit 61, a current differentiation circuit 62, a power differentiation circuit 6
3, a multiplier 64, a comparator 65, and a drive circuit 66.
【0035】(方法例)前記本システム例に適用される
本方法例の動作手順を説明する。最大電力追尾形電力変
換装置部20―1〜20―n内の入力電圧検出回路40
は、スイッチング電力変換回路30の入力電圧Vを検出
し、入力電圧信号Vs を発生する。入力電流検出回路5
0は、スイッチング電力変換回路30の入力電流Iを検
出し、入力電流信号Is を発生する。(Example of Method) An operation procedure of the example of the method applied to the example of the present system will be described. Input voltage detection circuit 40 in maximum power tracking type power converter units 20-1 to 20-n
Detects an input voltage V of the switching power conversion circuit 30 and generates an input voltage signal Vs. Input current detection circuit 5
0 detects the input current I of the switching power conversion circuit 30 and generates an input current signal Is.
【0036】入力電力演算回路61は、入力電力信号V
s 及び入力電流信号Is により入力電力信号Ws を演算
する。電流微分回路62は入カ電流信号Is の微分演算
を行い入力電流微分信号dIs /dtを出力する。一
方、電力微分回路63は、入力電力信号Wsの微分演算
を行い、入力電力微分信号dWs /dtを発生する。入
力電流微分信号dIs /dtと入力電力微分信号dWs
/dtは乗算器64で乗算され、乗算信号Mwsを発生し
論理回路65に入力する。The input power calculation circuit 61 calculates the input power signal V
An input power signal Ws is calculated from s and the input current signal Is. The current differentiating circuit 62 performs a differential operation on the input current signal Is and outputs an input current differential signal dIs / dt. On the other hand, the power differentiating circuit 63 performs a differential operation on the input power signal Ws to generate an input power differential signal dWs / dt. Input current differential signal dIs / dt and input power differential signal dWs
/ Dt is multiplied by the multiplier 64 to generate a multiplied signal Mws, which is input to the logic circuit 65.
【0037】論理回路65は、乗算信号Mwsが正のとき
はハイ、乗算信号Mwsが負のときにはローとなるスイッ
チオン期間増減指令信号SHLを発生する。駆動回路66
はスイッチオン期間増減指令信号SHLがハイの時はスイ
ッチのオン期間が増加するような、ローの時はスイッチ
のオン期間が減少するような駆動信号PHLをスイッチン
グ電力変換回路30に送り、スイッチング電力変換回路
30内の半導体スイッチ31を駆動する。The logic circuit 65 multiplies the signal Mws is positive when the high multiplication signal Mws is when negative for generating a switch-on period increases or decreases the command signal S HL made low. Drive circuit 66
Sends a drive signal P HL to the switching power conversion circuit 30 such that the switch on-period increase / decrease command signal S HL increases the switch on-period when it is high, and decreases the switch on-period when it is low. The semiconductor switch 31 in the switching power conversion circuit 30 is driven.
【0038】太陽電池モジュール100―1〜100―
nの発電電流−発電電力特性が、それぞれ図4のように
発電電流に対して発電電力が極大値を有するとき、乗算
信号Mwsが正の場合、つまりスイッチング電力変換回路
30の入力電流及び電力、即ち発電電流及び発電電力の
動作点が最適電流Iopt よりも左側の領域にある時には
スイッチング電力変換回路30や半導体スイッチ31の
オン期間は増加する。Solar cell modules 100-1 to 100-
When the generated power has a maximum value with respect to the generated current as shown in FIG. 4 when the multiplied signal Mws is positive, that is, the input current and the power of the switching power conversion circuit 30, That is, when the operating points of the generated current and the generated power are in the region on the left side of the optimum current Iopt, the ON periods of the switching power conversion circuit 30 and the semiconductor switch 31 increase.
【0039】乗算信号Mwsが負の場合、つまりスイッチ
ング電力変換回路30の入力電流及び電力、即ち発電電
流及び発電電力の動作点が最適電流Iopt よりも右側の
領域にある時にはスイッチング電力変換回路30の半導
体スイッチ31のオン期間が減少する。この動作によっ
て、スイッチング電力変換回路30の入力電流及び電
力、即ち発電電流及び発電電力の動作点を常にそれぞれ
の太陽電池モジュール100―1〜100―nの最大電
力発電点(Iopt ,Wmax )に向かってそれぞれ移動で
きる。When the multiplication signal Mws is negative, that is, when the input current and the power of the switching power conversion circuit 30, ie, the operating point of the generated current and the generated power are in the region on the right side of the optimum current Iopt, the switching power conversion circuit 30 The ON period of the semiconductor switch 31 decreases. By this operation, the input current and the power of the switching power conversion circuit 30, that is, the operating points of the generated current and the generated power are always directed to the maximum power generation points (Iopt, Wmax) of the respective solar cell modules 100-1 to 100-n. You can move each.
【0040】従って、太陽電池モジュール100―1〜
100―nをそれぞれ独立に最大電力発電点近傍で動作
させることができる。また、複数の最大電力追尾形電力
変換装置部20―1〜20―nの出力は直列に接続さ
れ、電力変換システム200の出力となる。Therefore, the solar cell modules 100-1 to 100-1
100-n can be operated independently near the maximum power generation point. Also, the outputs of the plurality of maximum power tracking power converter units 20-1 to 20-n are connected in series and become the output of the power conversion system 200.
【0041】本発明では、複数の太陽電池モジュール1
00―1〜100―nは枚数の最大電力追尾形電力変換
装置部20―1〜20―nによってそれぞれ独立に制御
されるため、予め設置角度等発電条件を同じくする太陽
電池セル11でそれぞれのモジュールを構成することに
より、全てのセル内を流れる電流を最適電流値に制御す
ることが可能で、システムの発電効率を高くすることが
でき、経済的な太陽電池発電システムが実現できる。In the present invention, a plurality of solar cell modules 1
Since 00-1 to 100-n are independently controlled by the maximum power tracking type power converter units 20-1 to 20-n, each of the solar cells 11 having the same power generation condition such as an installation angle in advance is used. By configuring the module, the current flowing in all the cells can be controlled to an optimum current value, the power generation efficiency of the system can be increased, and an economical solar cell power generation system can be realized.
【0042】なお、図1にはスイッチング電力変換回路
30として1石の降圧形DC−DCコンバータを用いた
例を示したが、昇圧形コンバータ、昇降圧形コンバータ
等他のDC−DCコンバータやインバータ等を用いた場
合にも同様の効果が得られる。Although FIG. 1 shows an example in which a single step-down DC-DC converter is used as the switching power conversion circuit 30, other DC-DC converters such as a step-up converter and a step-up / step-down converter, and inverters The same effect can be obtained by using such a method.
【0043】更に、図1では、複数の最大電力追尾形電
力変換装置部20―1から20―nの出力を直列に接続
した例を示したが、太陽電池は電流源であり、本発明で
は最大電力値を得る為に電流制御を行うため、並列に接
続した場合にも本発明の効果が損なわれないことは明ら
かである。Further, FIG. 1 shows an example in which the outputs of the plurality of maximum power tracking type power converters 20-1 to 20-n are connected in series. However, the solar cell is a current source, and in the present invention, Since the current control is performed to obtain the maximum power value, it is apparent that the effects of the present invention are not impaired even when the power supply is connected in parallel.
【0044】[0044]
【実施例】本発明の実施例を図2に示す。本実施例は通
信用等の円筒形支柱21の周側面に太陽電池セル22群
を縦横列に設置し、太陽電池パネルを構成した例であ
る。この様な例では、円柱周側面の円周方向の角度によ
って太陽電池セル22の方位角が異り、太陽光の入射条
件が異なる。従って、方位角の等しい太陽電池セル22
を直列に縦列接続して単位太陽電池モジュール23を形
成しモジュール毎に最大電力追尾制御コンバータ24を
接続して制御している。FIG. 2 shows an embodiment of the present invention. This embodiment is an example in which solar battery cells 22 are arranged in rows and columns on the peripheral side surface of a cylindrical column 21 for communication or the like to constitute a solar battery panel. In such an example, the azimuth of the solar battery cell 22 varies depending on the circumferential angle of the cylindrical peripheral side surface, and the sunlight incidence condition varies. Therefore, the solar cells 22 having the same azimuth angle
Are connected in series in tandem to form a unit solar cell module 23, and a maximum power tracking control converter 24 is connected and controlled for each module.
【0045】それぞれのモジュールで得られた出力を直
列又は並列に接続して得られた、電力変換システム20
0全体の出力を蓄電池25又は負荷26へ供給する。本
実施例を東京に設置した場合の、一日当たりの年平均発
電量を従来例と比較した結果、従来例では、202[W
h/m2 ・日]であるのに対し、本実施例では240
[Wh/m2 ・日]となり約20パーセント効率が向上
することが確認できている。The power conversion system 20 obtained by connecting the outputs obtained by the respective modules in series or in parallel
0 is supplied to the storage battery 25 or the load 26. As a result of comparing the annual average power generation per day when the present example is installed in Tokyo with the conventional example, the conventional example shows that 202 [W]
h / m 2 · day], whereas in the present embodiment it is 240
[Wh / m 2 · day], and it has been confirmed that the efficiency is improved by about 20%.
【0046】[0046]
【発明の効果】以上説明したように本発明は、太陽電池
アレイを構成する単位太陽電池モジュールそれぞれに最
大電力追尾形電力変換装置部を接続して、全ての単位太
陽電池モジュール群内を流れる電流を最適電流値を最大
発電電力量をとるような値に制御することが可能で、電
力変換システム全体の最大発電電力量が各単位太陽電池
モジュールの最大発電電力量の単純加算量をとり、電力
変換システムの発電効率を高くすることができ、経済的
な太陽電池発電システムが実現できる効果を奏する。As described above, according to the present invention, the maximum power tracking type power converter unit is connected to each of the unit photovoltaic modules constituting the photovoltaic cell array, so that the current flowing in all the photovoltaic module groups can be obtained. It is possible to control the optimal current value to a value that takes the maximum generated power amount, and the maximum generated power amount of the entire power conversion system is a simple addition of the maximum generated power amount of each unit solar cell module, and the power The power generation efficiency of the conversion system can be increased, and an effect of realizing an economical solar cell power generation system can be achieved.
【0047】他に、電力変換システム全体の最大発電電
力量が大きくなるので、発電量を従来例と等しくする場
合は従来例よりも太陽電池アレイの小型化が図られ、太
陽電池発電システム構成の規模を縮小できる効果を奏す
る。In addition, since the maximum power generation amount of the entire power conversion system is increased, when the power generation amount is made equal to that of the conventional example, the size of the solar cell array is reduced as compared with the conventional example, and the structure of the solar cell power generation system is reduced. This has the effect of reducing the scale.
【図1】本発明の実施形態の太陽電池発電システムのブ
ロック図である。FIG. 1 is a block diagram of a solar cell power generation system according to an embodiment of the present invention.
【図2】本発明の実施形態の実施例を表す図である。FIG. 2 is a diagram illustrating an example of an embodiment of the present invention.
【図3】従来の太陽電池発電システムのブロック図であ
る。FIG. 3 is a block diagram of a conventional solar cell power generation system.
【図4】太陽電池アレイ10の発電電流−発電電圧特性
例を示すグラフである。FIG. 4 is a graph showing an example of a generated current-generated voltage characteristic of the solar cell array 10.
【図5】太陽電池セル列Aの発電電流−発電電圧特性を
示すグラフである。FIG. 5 is a graph showing a generated current-generated voltage characteristic of a solar cell array A.
【図6】太陽電池セル列Bの発電電流−発電電圧特性を
示すグラフである。FIG. 6 is a graph showing a generated current-generated voltage characteristic of a solar cell array B.
【図7】太陽電池セル列A及び太陽電池セル列Bを太陽
電池アレイ(A+B)の発電電流−発電電圧特性を示す
グラフである。FIG. 7 is a graph showing a generated current-generated voltage characteristic of a solar cell array (A + B) in a solar cell array A and a solar cell array B;
10…太陽電池アレイ 11,22…太陽電池セル 20,20―1〜20―n,24…最大電力追尾形電力
変換装置部 21…円筒形支体 23,100―1〜100―n…太陽電池モジュール 25…蓄電池 26…負荷 30…スイッチング変換回路 31…半導体スイッチ 40…入力電圧検出回路 50…入力電流検出回路 60…制御回路部 61…入力電力演算回路 62…電流微分回路 63…電力微分回路 64…乗算器 65…比較器 66…駆動回路 100…モジュール分割形太陽電池アレイ 200…電力変換システムREFERENCE SIGNS LIST 10 solar cell array 11, 22 solar cell 20, 20-1 to 20 -n, 24 maximum power tracking type power converter unit 21 cylindrical support 23, 100-1 to 100 -n solar cell Module 25 ... Storage battery 26 ... Load 30 ... Switching conversion circuit 31 ... Semiconductor switch 40 ... Input voltage detection circuit 50 ... Input current detection circuit 60 ... Control circuit unit 61 ... Input power calculation circuit 62 ... Current differentiation circuit 63 ... Power differentiation circuit 64 ... Multiplier 65 ... Comparator 66 ... Drive circuit 100 ... Module-divided solar cell array 200 ... Power conversion system
Claims (16)
池アレイ及びスイッチング電力変換回路と、前記スイッ
チング電力変換回路の入力電力が最大値となるように前
記スイッチング電力変換回路のオン期間を制御する制御
回路部とを有した最大電力追尾形電力変換装置部からな
り、前記太陽電池アレイの発電電力を前記最大電力追尾
形電力変換装置部を介して負荷等に供給する太陽電池発
電システムにおいて、 前記太陽電池アレイとして、前記複数の太陽電池セルを
単位接続して構成した単位太陽電池モジュールの複数か
らなるモジュール分離形太陽電池アレイを用い、当該モ
ジュール分離形太陽電池アレイ内の前記各太陽電池モジ
ュール毎に、前記最大電力追尾形電力変換装置部をそれ
ぞれ接続し、当該複数の最大電力追尾形電力変換装置部
の出力相互を所定に接続することにより、前記モジュー
ル分割形太陽電池アレイの発電電力を前記複数の最大電
力追尾形電力変換装置部を介して負荷等に供給する、 ことを特徴とする太陽電池発電システム。1. A solar cell array including a plurality of solar cells and a switching power conversion circuit, and an on-period of the switching power conversion circuit is controlled so that input power of the switching power conversion circuit becomes a maximum value. A solar cell power generation system comprising a maximum power tracking type power conversion device unit having a control circuit unit and supplying generated power of the solar cell array to a load or the like via the maximum power tracking type power conversion device unit. As a solar cell array, a module-separated solar cell array including a plurality of unit solar cell modules configured by unit-connecting the plurality of solar cells is used, and each of the solar cell modules in the module-separated solar cell array is used. Connected to the plurality of maximum power tracking power converters, respectively. By connecting the outputs of the storage units in a predetermined manner, the power generated by the module-divided solar cell array is supplied to a load or the like via the plurality of maximum power tracking power converter units. Battery power generation system.
を単位接続して構成した、 ことを特徴とする請求項1に記載の太陽電池発電システ
ム。2. The solar cell power generation system according to claim 1, wherein the unit solar cell module is configured by unit-connecting a plurality of solar cells having the same power generation condition such as an installation angle.
システム。3. The solar cell power generation system according to claim 1, wherein the unit solar cell module is formed by connecting solar cells in series.
システム。4. The solar cell power generation system according to claim 1, wherein the unit solar cell modules are formed by connecting solar cells in parallel.
を形成する、 異を特徴とする請求項1、2、3又は4に記載の太陽電
池発電システム。5. The power conversion system according to claim 1, wherein the plurality of maximum power tracking type power conversion units form a power conversion system by connecting the outputs to each other in a predetermined manner. Solar power generation system.
としてなる、 ことを特徴とする請求項5に記載の太陽電池発電システ
ム。6. The solar cell power generation system according to claim 5, wherein the output of the maximum power tracking type power converter unit is connected to each other in series and becomes an output of the entire power conversion system.
としてなる、 ことを特徴とする請求項5に記載の太陽電池発電システ
ム。7. The photovoltaic power generation system according to claim 5, wherein the output of the maximum power tracking type power converter unit is connected to each other in parallel and becomes the output of the entire power conversion system.
タ、昇降圧コンバータ等のDC−DCコンバータやイン
バータである、 ことを特徴とする請求項1、2、3、4、5、6又は7
に記載の太陽電池発電システム。8. The switching power conversion circuit is a DC-DC converter such as a step-down DC-DC converter, a step-up converter, a step-up / step-down converter, or an inverter. 4, 5, 6, or 7
A solar cell power generation system according to item 1.
入力し最終的に半導体スイッチのオンオフ時間を制御駆
動する駆動信号を出力して前記スイッチング電力変換回
路の出力電力を最大にする制御機能を有する、 ことを特徴とする請求項1、2、3、4、5、6、7又
は8に記載の太陽電池発電システム。9. A control circuit, comprising: a control circuit section for simultaneously inputting an input current and a voltage of a switching power conversion circuit; and finally outputting a drive signal for controlling and driving an on / off time of a semiconductor switch, thereby outputting an output power of the switching power conversion circuit. The solar cell power generation system according to any one of claims 1, 2, 3, 4, 5, 6, 7, and 8 having a control function of maximizing the following.
を直列又は並列に接続構成する、 ことを特徴とする請求項1、2、3、4、5、6、7、
8又は9に記載の太陽電池発電システム。10. The unit solar cell module, wherein solar cell groups in each column of the columns installed in a column on the circumferential side surface of the column are connected in series or in parallel. 4, 5, 6, 7,
10. The solar cell power generation system according to 8 or 9.
レイを構成し、発電電流のスイッチングを行って電力変
換制御を行い、最大となる電力変換システム全体の出力
電力を負荷等に供給するに当り、 複数の前記太陽電池セルが単位接続された単位太陽電池
モジュール群から前記太陽電池アレイを構成し、前記各
単位太陽電池モジュール毎に電力が最大となるよう電流
のスイッチングをフィードバック制御して出力し、前記
各単位太陽電池モジュールの最大出力電力値を単純加算
し、電力変換システム全体の最大出力電力値を得ること
により発電効率を高める、 ことを特徴とする太陽電池発電方法。11. A photovoltaic cell array comprising a plurality of photovoltaic cells is configured, power generation control is performed by switching a generated current, and a maximum output power of the entire power conversion system is supplied to a load or the like. A plurality of the solar cells are unit-connected to constitute the solar cell array from a unit solar cell module group, and the current switching is feedback-controlled and output so that the electric power is maximized for each of the unit solar cell modules. A simple addition of the maximum output power value of each of the unit solar cell modules to obtain a maximum output power value of the entire power conversion system, thereby enhancing power generation efficiency.
値に制御され通電する、 ことを特徴とする請求項11に記載の太陽電池発電方
法。12. The solar cell according to claim 11, wherein the plurality of solar cells connected in a unit are arranged at the same installation angle, have the same power generation conditions, and are uniformly controlled to an optimum current value and are energized. Power generation method.
セルは、 直列に接続する、 ことを特徴とする請求項11又は12に記載の太陽電池
発電方法。13. The solar cell power generation method according to claim 11, wherein each solar cell in the unit solar cell module is connected in series.
セルは、 並列に接続する、 ことを特徴とする請求項11又は12に記載の太陽電池
発電方法。14. The solar cell power generation method according to claim 11, wherein each solar cell in the unit solar cell module is connected in parallel.
より得る、 ことを特徴とする請求項11、12、13又は14に記
載の太陽電池発電方法。15. The photovoltaic power generation system according to claim 11, wherein the maximum output value of the entire power conversion system is obtained by connecting the outputs of the unit photovoltaic modules in series. Method.
より得る、 ことを特徴とする請求項11、12、13又は14に記
載の太陽電池発電方法。16. The photovoltaic power generation system according to claim 11, wherein the maximum output value of the entire power conversion system is obtained by connecting the outputs of the unit photovoltaic modules in parallel. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9192529A JPH1141832A (en) | 1997-07-17 | 1997-07-17 | System and method for solar cell generation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9192529A JPH1141832A (en) | 1997-07-17 | 1997-07-17 | System and method for solar cell generation |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1141832A true JPH1141832A (en) | 1999-02-12 |
Family
ID=16292804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9192529A Pending JPH1141832A (en) | 1997-07-17 | 1997-07-17 | System and method for solar cell generation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1141832A (en) |
Cited By (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007058845A (en) * | 2005-07-27 | 2007-03-08 | Gunma Prefecture | Photovoltaic power generator |
JP2008176474A (en) * | 2007-01-17 | 2008-07-31 | Tokyo Metropolitan Univ | Solar power system |
WO2009092110A3 (en) * | 2008-01-18 | 2009-10-29 | Tenksolar, Inc. | Redundant electrical architecture for photovoltaic modules |
JP2010177554A (en) * | 2009-01-30 | 2010-08-12 | Toshiba Corp | Solar power generating apparatus |
WO2008132553A3 (en) * | 2006-12-06 | 2010-08-26 | Solaredge Technologies | Distributed power harvesting systems using dc power sources |
WO2011112228A1 (en) * | 2010-03-09 | 2011-09-15 | Texas Instruments Incorporated | Energy harvester battery charger circuit and method |
US8933320B2 (en) | 2008-01-18 | 2015-01-13 | Tenksolar, Inc. | Redundant electrical architecture for photovoltaic modules |
US8947194B2 (en) | 2009-05-26 | 2015-02-03 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US8957645B2 (en) | 2008-03-24 | 2015-02-17 | Solaredge Technologies Ltd. | Zero voltage switching |
US8963369B2 (en) | 2007-12-04 | 2015-02-24 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8988838B2 (en) | 2012-01-30 | 2015-03-24 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US9000617B2 (en) | 2008-05-05 | 2015-04-07 | Solaredge Technologies, Ltd. | Direct current power combiner |
US9006569B2 (en) | 2009-05-22 | 2015-04-14 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US9041339B2 (en) | 2006-12-06 | 2015-05-26 | Solaredge Technologies Ltd. | Battery power delivery module |
US9088178B2 (en) | 2006-12-06 | 2015-07-21 | Solaredge Technologies Ltd | Distributed power harvesting systems using DC power sources |
US9112379B2 (en) | 2006-12-06 | 2015-08-18 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9231570B2 (en) | 2010-01-27 | 2016-01-05 | Solaredge Technologies Ltd. | Fast voltage level shifter circuit |
US9235228B2 (en) | 2012-03-05 | 2016-01-12 | Solaredge Technologies Ltd. | Direct current link circuit |
US9276410B2 (en) | 2009-12-01 | 2016-03-01 | Solaredge Technologies Ltd. | Dual use photovoltaic system |
US9291696B2 (en) | 2007-12-05 | 2016-03-22 | Solaredge Technologies Ltd. | Photovoltaic system power tracking method |
US9299861B2 (en) | 2010-06-15 | 2016-03-29 | Tenksolar, Inc. | Cell-to-grid redundandt photovoltaic system |
US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
US9368964B2 (en) | 2006-12-06 | 2016-06-14 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US9401599B2 (en) | 2010-12-09 | 2016-07-26 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US9407161B2 (en) | 2007-12-05 | 2016-08-02 | Solaredge Technologies Ltd. | Parallel connected inverters |
US9438035B2 (en) | 2003-05-28 | 2016-09-06 | Solaredge Technologies Ltd. | Power converter for a solar panel |
US9537445B2 (en) | 2008-12-04 | 2017-01-03 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US9543890B2 (en) | 2009-01-21 | 2017-01-10 | Tenksolar, Inc. | Illumination agnostic solar panel |
US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US9590526B2 (en) | 2006-12-06 | 2017-03-07 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US9647442B2 (en) | 2010-11-09 | 2017-05-09 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US9644993B2 (en) | 2006-12-06 | 2017-05-09 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US9673711B2 (en) | 2007-08-06 | 2017-06-06 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US9680304B2 (en) | 2006-12-06 | 2017-06-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US9773933B2 (en) | 2010-02-23 | 2017-09-26 | Tenksolar, Inc. | Space and energy efficient photovoltaic array |
US9812984B2 (en) | 2012-01-30 | 2017-11-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US9819178B2 (en) | 2013-03-15 | 2017-11-14 | Solaredge Technologies Ltd. | Bypass mechanism |
US9831824B2 (en) | 2007-12-05 | 2017-11-28 | SolareEdge Technologies Ltd. | Current sensing on a MOSFET |
US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
US9853538B2 (en) | 2007-12-04 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9866098B2 (en) | 2011-01-12 | 2018-01-09 | Solaredge Technologies Ltd. | Serially connected inverters |
US9870016B2 (en) | 2012-05-25 | 2018-01-16 | Solaredge Technologies Ltd. | Circuit for interconnected direct current power sources |
US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US9960667B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US10061957B2 (en) | 2016-03-03 | 2018-08-28 | Solaredge Technologies Ltd. | Methods for mapping power generation installations |
KR101897748B1 (en) * | 2017-04-24 | 2018-09-12 | 엘지전자 주식회사 | Curved solar cell module |
US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
US10396662B2 (en) | 2011-09-12 | 2019-08-27 | Solaredge Technologies Ltd | Direct current link circuit |
US10599113B2 (en) | 2016-03-03 | 2020-03-24 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
CN112104304A (en) * | 2019-06-17 | 2020-12-18 | 三菱重工业株式会社 | Photovoltaic power generation module device |
US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
US11081608B2 (en) | 2016-03-03 | 2021-08-03 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
WO2023191203A1 (en) * | 2022-03-31 | 2023-10-05 | 주식회사 커널로그 | Dc-dc converter for converting i-v characteristics, and energy conversion system comprising same |
US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06332554A (en) * | 1993-05-24 | 1994-12-02 | Sanyo Electric Co Ltd | Controlling method for photovoltaic system |
JPH07177652A (en) * | 1993-12-17 | 1995-07-14 | Canon Inc | Solar beam power generation system and protective system therefor |
JPH07302130A (en) * | 1994-05-02 | 1995-11-14 | Canon Inc | Power controller |
JPH08185235A (en) * | 1994-12-27 | 1996-07-16 | Sharp Corp | Linkage type solar light power generating device with abnormality checking function for solar battery module |
JPH0965583A (en) * | 1995-08-24 | 1997-03-07 | Kiyokuichi:Kk | Feeding method and feeding equipment corresponding to emergency case |
JPH09131081A (en) * | 1995-10-31 | 1997-05-16 | Canon Inc | Power controller for battery power supply |
JPH1075580A (en) * | 1996-08-29 | 1998-03-17 | Yaskawa Electric Corp | Photovolatic power converter |
JPH10117440A (en) * | 1996-10-11 | 1998-05-06 | Nissin Electric Co Ltd | Photovoltaic power generation system |
-
1997
- 1997-07-17 JP JP9192529A patent/JPH1141832A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06332554A (en) * | 1993-05-24 | 1994-12-02 | Sanyo Electric Co Ltd | Controlling method for photovoltaic system |
JPH07177652A (en) * | 1993-12-17 | 1995-07-14 | Canon Inc | Solar beam power generation system and protective system therefor |
JPH07302130A (en) * | 1994-05-02 | 1995-11-14 | Canon Inc | Power controller |
JPH08185235A (en) * | 1994-12-27 | 1996-07-16 | Sharp Corp | Linkage type solar light power generating device with abnormality checking function for solar battery module |
JPH0965583A (en) * | 1995-08-24 | 1997-03-07 | Kiyokuichi:Kk | Feeding method and feeding equipment corresponding to emergency case |
JPH09131081A (en) * | 1995-10-31 | 1997-05-16 | Canon Inc | Power controller for battery power supply |
JPH1075580A (en) * | 1996-08-29 | 1998-03-17 | Yaskawa Electric Corp | Photovolatic power converter |
JPH10117440A (en) * | 1996-10-11 | 1998-05-06 | Nissin Electric Co Ltd | Photovoltaic power generation system |
Cited By (200)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9438035B2 (en) | 2003-05-28 | 2016-09-06 | Solaredge Technologies Ltd. | Power converter for a solar panel |
US11476663B2 (en) | 2003-05-28 | 2022-10-18 | Solaredge Technologies Ltd. | Power converter for a solar panel |
US11658508B2 (en) | 2003-05-28 | 2023-05-23 | Solaredge Technologies Ltd. | Power converter for a solar panel |
US11075518B2 (en) | 2003-05-28 | 2021-07-27 | Solaredge Technologies Ltd. | Power converter for a solar panel |
US10910834B2 (en) | 2003-05-28 | 2021-02-02 | Solaredge Technologies Ltd. | Power converter for a solar panel |
US11817699B2 (en) | 2003-05-28 | 2023-11-14 | Solaredge Technologies Ltd. | Power converter for a solar panel |
US11824398B2 (en) | 2003-05-28 | 2023-11-21 | Solaredge Technologies Ltd. | Power converter for a solar panel |
US10135241B2 (en) | 2003-05-28 | 2018-11-20 | Solaredge Technologies, Ltd. | Power converter for a solar panel |
JP2007058845A (en) * | 2005-07-27 | 2007-03-08 | Gunma Prefecture | Photovoltaic power generator |
US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11002774B2 (en) | 2006-12-06 | 2021-05-11 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US9853490B2 (en) | 2006-12-06 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9041339B2 (en) | 2006-12-06 | 2015-05-26 | Solaredge Technologies Ltd. | Battery power delivery module |
US11575261B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9088178B2 (en) | 2006-12-06 | 2015-07-21 | Solaredge Technologies Ltd | Distributed power harvesting systems using DC power sources |
US9112379B2 (en) | 2006-12-06 | 2015-08-18 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11575260B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11476799B2 (en) | 2006-12-06 | 2022-10-18 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US10637393B2 (en) | 2006-12-06 | 2020-04-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US10673253B2 (en) | 2006-12-06 | 2020-06-02 | Solaredge Technologies Ltd. | Battery power delivery module |
US11579235B2 (en) | 2006-12-06 | 2023-02-14 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11594882B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9368964B2 (en) | 2006-12-06 | 2016-06-14 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US10447150B2 (en) | 2006-12-06 | 2019-10-15 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US12224706B2 (en) | 2006-12-06 | 2025-02-11 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US11594881B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9543889B2 (en) | 2006-12-06 | 2017-01-10 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US12107417B2 (en) | 2006-12-06 | 2024-10-01 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11594880B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9590526B2 (en) | 2006-12-06 | 2017-03-07 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US9644993B2 (en) | 2006-12-06 | 2017-05-09 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US10230245B2 (en) | 2006-12-06 | 2019-03-12 | Solaredge Technologies Ltd | Battery power delivery module |
US9680304B2 (en) | 2006-12-06 | 2017-06-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US11962243B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US11183922B2 (en) | 2006-12-06 | 2021-11-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11598652B2 (en) | 2006-12-06 | 2023-03-07 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
WO2008132553A3 (en) * | 2006-12-06 | 2010-08-26 | Solaredge Technologies | Distributed power harvesting systems using dc power sources |
US12068599B2 (en) | 2006-12-06 | 2024-08-20 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11961922B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US10097007B2 (en) | 2006-12-06 | 2018-10-09 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US12046940B2 (en) | 2006-12-06 | 2024-07-23 | Solaredge Technologies Ltd. | Battery power control |
US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11073543B2 (en) | 2006-12-06 | 2021-07-27 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US12032080B2 (en) | 2006-12-06 | 2024-07-09 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11063440B2 (en) | 2006-12-06 | 2021-07-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US11043820B2 (en) | 2006-12-06 | 2021-06-22 | Solaredge Technologies Ltd. | Battery power delivery module |
US11031861B2 (en) | 2006-12-06 | 2021-06-08 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US12027970B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11658482B2 (en) | 2006-12-06 | 2023-05-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US12027849B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US9948233B2 (en) | 2006-12-06 | 2018-04-17 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9960667B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US9960731B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US9966766B2 (en) | 2006-12-06 | 2018-05-08 | Solaredge Technologies Ltd. | Battery power delivery module |
US11682918B2 (en) | 2006-12-06 | 2023-06-20 | Solaredge Technologies Ltd. | Battery power delivery module |
US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
JP2008176474A (en) * | 2007-01-17 | 2008-07-31 | Tokyo Metropolitan Univ | Solar power system |
US9673711B2 (en) | 2007-08-06 | 2017-06-06 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US10116217B2 (en) | 2007-08-06 | 2018-10-30 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US10516336B2 (en) | 2007-08-06 | 2019-12-24 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US11594968B2 (en) | 2007-08-06 | 2023-02-28 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US9853538B2 (en) | 2007-12-04 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8963369B2 (en) | 2007-12-04 | 2015-02-24 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US12055647B2 (en) | 2007-12-05 | 2024-08-06 | Solaredge Technologies Ltd. | Parallel connected inverters |
US11894806B2 (en) | 2007-12-05 | 2024-02-06 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11693080B2 (en) | 2007-12-05 | 2023-07-04 | Solaredge Technologies Ltd. | Parallel connected inverters |
US11183969B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11183923B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Parallel connected inverters |
US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US9407161B2 (en) | 2007-12-05 | 2016-08-02 | Solaredge Technologies Ltd. | Parallel connected inverters |
US10693415B2 (en) | 2007-12-05 | 2020-06-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US9291696B2 (en) | 2007-12-05 | 2016-03-22 | Solaredge Technologies Ltd. | Photovoltaic system power tracking method |
US9979280B2 (en) | 2007-12-05 | 2018-05-22 | Solaredge Technologies Ltd. | Parallel connected inverters |
US10644589B2 (en) | 2007-12-05 | 2020-05-05 | Solaredge Technologies Ltd. | Parallel connected inverters |
US9831824B2 (en) | 2007-12-05 | 2017-11-28 | SolareEdge Technologies Ltd. | Current sensing on a MOSFET |
US9768725B2 (en) | 2008-01-18 | 2017-09-19 | Tenksolar, Inc. | Redundant electrical architecture for photovoltaic modules |
WO2009092110A3 (en) * | 2008-01-18 | 2009-10-29 | Tenksolar, Inc. | Redundant electrical architecture for photovoltaic modules |
US8933320B2 (en) | 2008-01-18 | 2015-01-13 | Tenksolar, Inc. | Redundant electrical architecture for photovoltaic modules |
US9876430B2 (en) | 2008-03-24 | 2018-01-23 | Solaredge Technologies Ltd. | Zero voltage switching |
US8957645B2 (en) | 2008-03-24 | 2015-02-17 | Solaredge Technologies Ltd. | Zero voltage switching |
US10468878B2 (en) | 2008-05-05 | 2019-11-05 | Solaredge Technologies Ltd. | Direct current power combiner |
US9000617B2 (en) | 2008-05-05 | 2015-04-07 | Solaredge Technologies, Ltd. | Direct current power combiner |
US11424616B2 (en) | 2008-05-05 | 2022-08-23 | Solaredge Technologies Ltd. | Direct current power combiner |
US9362743B2 (en) | 2008-05-05 | 2016-06-07 | Solaredge Technologies Ltd. | Direct current power combiner |
US12218498B2 (en) | 2008-05-05 | 2025-02-04 | Solaredge Technologies Ltd. | Direct current power combiner |
US9537445B2 (en) | 2008-12-04 | 2017-01-03 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US10461687B2 (en) | 2008-12-04 | 2019-10-29 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US9543890B2 (en) | 2009-01-21 | 2017-01-10 | Tenksolar, Inc. | Illumination agnostic solar panel |
JP2010177554A (en) * | 2009-01-30 | 2010-08-12 | Toshiba Corp | Solar power generating apparatus |
US11509263B2 (en) | 2009-05-22 | 2022-11-22 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US10879840B2 (en) | 2009-05-22 | 2020-12-29 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US11695371B2 (en) | 2009-05-22 | 2023-07-04 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US9006569B2 (en) | 2009-05-22 | 2015-04-14 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US10686402B2 (en) | 2009-05-22 | 2020-06-16 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US12074566B2 (en) | 2009-05-22 | 2024-08-27 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US10411644B2 (en) | 2009-05-22 | 2019-09-10 | Solaredge Technologies, Ltd. | Electrically isolated heat dissipating junction box |
US9748896B2 (en) | 2009-05-22 | 2017-08-29 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US9748897B2 (en) | 2009-05-22 | 2017-08-29 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US9869701B2 (en) | 2009-05-26 | 2018-01-16 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US8947194B2 (en) | 2009-05-26 | 2015-02-03 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US11867729B2 (en) | 2009-05-26 | 2024-01-09 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US10969412B2 (en) | 2009-05-26 | 2021-04-06 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US11735951B2 (en) | 2009-12-01 | 2023-08-22 | Solaredge Technologies Ltd. | Dual use photovoltaic system |
US9276410B2 (en) | 2009-12-01 | 2016-03-01 | Solaredge Technologies Ltd. | Dual use photovoltaic system |
US11056889B2 (en) | 2009-12-01 | 2021-07-06 | Solaredge Technologies Ltd. | Dual use photovoltaic system |
US10270255B2 (en) | 2009-12-01 | 2019-04-23 | Solaredge Technologies Ltd | Dual use photovoltaic system |
US9231570B2 (en) | 2010-01-27 | 2016-01-05 | Solaredge Technologies Ltd. | Fast voltage level shifter circuit |
US9917587B2 (en) | 2010-01-27 | 2018-03-13 | Solaredge Technologies Ltd. | Fast voltage level shifter circuit |
US9564882B2 (en) | 2010-01-27 | 2017-02-07 | Solaredge Technologies Ltd. | Fast voltage level shifter circuit |
US9773933B2 (en) | 2010-02-23 | 2017-09-26 | Tenksolar, Inc. | Space and energy efficient photovoltaic array |
WO2011112228A1 (en) * | 2010-03-09 | 2011-09-15 | Texas Instruments Incorporated | Energy harvester battery charger circuit and method |
US9063559B2 (en) | 2010-03-09 | 2015-06-23 | Texas Instruments Incorporation | Battery charger and method for collecting maximum power from energy harvester circuit |
US9299861B2 (en) | 2010-06-15 | 2016-03-29 | Tenksolar, Inc. | Cell-to-grid redundandt photovoltaic system |
US11070051B2 (en) | 2010-11-09 | 2021-07-20 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US11349432B2 (en) | 2010-11-09 | 2022-05-31 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US11489330B2 (en) | 2010-11-09 | 2022-11-01 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US9647442B2 (en) | 2010-11-09 | 2017-05-09 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10931228B2 (en) | 2010-11-09 | 2021-02-23 | Solaredge Technologies Ftd. | Arc detection and prevention in a power generation system |
US12003215B2 (en) | 2010-11-09 | 2024-06-04 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US9935458B2 (en) | 2010-12-09 | 2018-04-03 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US11996488B2 (en) | 2010-12-09 | 2024-05-28 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US9401599B2 (en) | 2010-12-09 | 2016-07-26 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US11271394B2 (en) | 2010-12-09 | 2022-03-08 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US12218505B2 (en) | 2011-01-12 | 2025-02-04 | Solaredge Technologies Ltd. | Serially connected inverters |
US9866098B2 (en) | 2011-01-12 | 2018-01-09 | Solaredge Technologies Ltd. | Serially connected inverters |
US11205946B2 (en) | 2011-01-12 | 2021-12-21 | Solaredge Technologies Ltd. | Serially connected inverters |
US10666125B2 (en) | 2011-01-12 | 2020-05-26 | Solaredge Technologies Ltd. | Serially connected inverters |
US10396662B2 (en) | 2011-09-12 | 2019-08-27 | Solaredge Technologies Ltd | Direct current link circuit |
US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
US11979037B2 (en) | 2012-01-11 | 2024-05-07 | Solaredge Technologies Ltd. | Photovoltaic module |
US11620885B2 (en) | 2012-01-30 | 2023-04-04 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US10992238B2 (en) | 2012-01-30 | 2021-04-27 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US11929620B2 (en) | 2012-01-30 | 2024-03-12 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US10381977B2 (en) | 2012-01-30 | 2019-08-13 | Solaredge Technologies Ltd | Photovoltaic panel circuitry |
US9923516B2 (en) | 2012-01-30 | 2018-03-20 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US8988838B2 (en) | 2012-01-30 | 2015-03-24 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
US11183968B2 (en) | 2012-01-30 | 2021-11-23 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US10608553B2 (en) | 2012-01-30 | 2020-03-31 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US9812984B2 (en) | 2012-01-30 | 2017-11-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US12191668B2 (en) | 2012-01-30 | 2025-01-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US12094306B2 (en) | 2012-01-30 | 2024-09-17 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US9639106B2 (en) | 2012-03-05 | 2017-05-02 | Solaredge Technologies Ltd. | Direct current link circuit |
US10007288B2 (en) | 2012-03-05 | 2018-06-26 | Solaredge Technologies Ltd. | Direct current link circuit |
US9235228B2 (en) | 2012-03-05 | 2016-01-12 | Solaredge Technologies Ltd. | Direct current link circuit |
US11334104B2 (en) | 2012-05-25 | 2022-05-17 | Solaredge Technologies Ltd. | Circuit for interconnected direct current power sources |
US9870016B2 (en) | 2012-05-25 | 2018-01-16 | Solaredge Technologies Ltd. | Circuit for interconnected direct current power sources |
US10705551B2 (en) | 2012-05-25 | 2020-07-07 | Solaredge Technologies Ltd. | Circuit for interconnected direct current power sources |
US11740647B2 (en) | 2012-05-25 | 2023-08-29 | Solaredge Technologies Ltd. | Circuit for interconnected direct current power sources |
US11177768B2 (en) | 2012-06-04 | 2021-11-16 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US12218628B2 (en) | 2012-06-04 | 2025-02-04 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US10778025B2 (en) | 2013-03-14 | 2020-09-15 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US11742777B2 (en) | 2013-03-14 | 2023-08-29 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US12119758B2 (en) | 2013-03-14 | 2024-10-15 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US11545912B2 (en) | 2013-03-14 | 2023-01-03 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US12003107B2 (en) | 2013-03-14 | 2024-06-04 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US12255457B2 (en) | 2013-03-14 | 2025-03-18 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US10651647B2 (en) | 2013-03-15 | 2020-05-12 | Solaredge Technologies Ltd. | Bypass mechanism |
US9819178B2 (en) | 2013-03-15 | 2017-11-14 | Solaredge Technologies Ltd. | Bypass mechanism |
US12132125B2 (en) | 2013-03-15 | 2024-10-29 | Solaredge Technologies Ltd. | Bypass mechanism |
US11424617B2 (en) | 2013-03-15 | 2022-08-23 | Solaredge Technologies Ltd. | Bypass mechanism |
US10886832B2 (en) | 2014-03-26 | 2021-01-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
US12136890B2 (en) | 2014-03-26 | 2024-11-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US11632058B2 (en) | 2014-03-26 | 2023-04-18 | Solaredge Technologies Ltd. | Multi-level inverter |
US11296590B2 (en) | 2014-03-26 | 2022-04-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US11855552B2 (en) | 2014-03-26 | 2023-12-26 | Solaredge Technologies Ltd. | Multi-level inverter |
US10886831B2 (en) | 2014-03-26 | 2021-01-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US12224365B2 (en) | 2016-03-03 | 2025-02-11 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
US10599113B2 (en) | 2016-03-03 | 2020-03-24 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
US10540530B2 (en) | 2016-03-03 | 2020-01-21 | Solaredge Technologies Ltd. | Methods for mapping power generation installations |
US11824131B2 (en) | 2016-03-03 | 2023-11-21 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
US10061957B2 (en) | 2016-03-03 | 2018-08-28 | Solaredge Technologies Ltd. | Methods for mapping power generation installations |
US11538951B2 (en) | 2016-03-03 | 2022-12-27 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
US11081608B2 (en) | 2016-03-03 | 2021-08-03 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
US11870250B2 (en) | 2016-04-05 | 2024-01-09 | Solaredge Technologies Ltd. | Chain of power devices |
US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
US11201476B2 (en) | 2016-04-05 | 2021-12-14 | Solaredge Technologies Ltd. | Photovoltaic power device and wiring |
US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
EP3618127A4 (en) * | 2017-04-24 | 2020-12-30 | LG Electronics Inc. -1- | CURVED SOLAR CELL MODULE |
WO2018199481A1 (en) * | 2017-04-24 | 2018-11-01 | 엘지전자(주) | Curved solar cell module |
CN110832645A (en) * | 2017-04-24 | 2020-02-21 | Lg电子株式会社 | Curved solar cell module |
KR101897748B1 (en) * | 2017-04-24 | 2018-09-12 | 엘지전자 주식회사 | Curved solar cell module |
CN112104304A (en) * | 2019-06-17 | 2020-12-18 | 三菱重工业株式会社 | Photovoltaic power generation module device |
WO2023191203A1 (en) * | 2022-03-31 | 2023-10-05 | 주식회사 커널로그 | Dc-dc converter for converting i-v characteristics, and energy conversion system comprising same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH1141832A (en) | System and method for solar cell generation | |
EP2162978B1 (en) | Delivery of electric power by means of a plurality of parallel inverters and control method based on maximum power point tracking (mppt) | |
US8334616B2 (en) | Photovoltaic integrated variable frequency drive | |
WO2004107543A3 (en) | Power converter for a solar panel | |
CA2737134A1 (en) | Systems for highly efficient solar power | |
KR20010044490A (en) | Apparatus for Generating of Electric Power by Solar Energy | |
JP6291111B2 (en) | Solar inverter | |
JP2010177554A (en) | Solar power generating apparatus | |
KR102255840B1 (en) | Efficient operating system of tcs circulating inverter for solar power generation | |
KR20080065818A (en) | Grid-connected solar power generation system and its operation method | |
JP3553462B2 (en) | Photovoltaic power generation system and boost unit used for it | |
WO2003075113A1 (en) | Power generating system | |
KR101737461B1 (en) | System for obtaining a driving power source to the power generation of the solar cell and method therefor | |
CN110061556B (en) | Photovoltaic system with auxiliary charging module for generating electrical energy | |
CN110350855B (en) | Multi-Power System for Photovoltaic Cell Control | |
KR20180111159A (en) | Photovoltaic inverter | |
JP2002088493A (en) | Water electrolysis system | |
JP4797142B2 (en) | Photovoltaic power generation control device | |
JP2013510551A (en) | Bootstrap charger | |
KR102391722B1 (en) | Self-powered string optima and method for supplying the same | |
JP7168541B2 (en) | water electrolysis system | |
JP2001218368A (en) | Power converter and photovoltaic generation system | |
JP2022078717A (en) | Control unit for vehicle, method, program, and vehicle | |
JPH09238427A (en) | Power supply apparatus and photovoltaic power generator using power supply apparatus | |
CN113492683B (en) | Charging device |